Value Extraction from End-of-Life Textile Products in Pakistan
Abstract
:1. Introduction
2. Results and Discussion
2.1. LCIA Results
2.1.1. Raw Material Extraction
2.1.2. Spinning and Weaving
2.1.3. Wet Processing
3. Materials and Methods
3.1. Apparel Production Process
3.2. Life Cycle Assessment Methodology
3.2.1. Goal and Scope of Study
3.2.2. Functional Units
3.2.3. The System Boundary
3.2.4. Allocations
3.2.5. Life Cycle Inventory, Analysis, Data Collection, and Assumptions
3.2.6. Impact Assessment Method and LCA Software
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chavan, R. Environmental sustainability through textile recycling. J. Text. Sci. Eng. S 2014, 2, 2. [Google Scholar]
- Pace Platform for Accelerating the Circular Economy. Circular Economy Action Agenda Textiles. 2020. Available online: https://pacecircular.org/action-agenda/textiles (accessed on 15 February 2025).
- Moorhouse, D. Sustainable design: Circular economy in fashion and textiles. Des. J. 2017, 20 (Suppl. 1), S1948–S1959. [Google Scholar] [CrossRef]
- Kabir, S.; Chakraborty, S.; Hoque, S.; Mathur, K. Sustainability assessment of cotton-based textile wet processing. Clean. Technol. 2019, 1, 232–246. [Google Scholar] [CrossRef]
- Moazzem, S.; Wang, L.; Daver, F.; Crossin, E. Environmental impact of discarded apparel landfilling and recycling. Resour. Conserv. Recycl. 2021, 166, 105338. [Google Scholar] [CrossRef]
- Eryuruk, S.H. Greening of the textile and clothing industry. Fibres Text. East. Eur. 2012, 6A, 22–27. [Google Scholar]
- Claudio, L. Waste Couture: Environmental Impact of the Clothing Industry; National Institute of Environmental Health Sciences: Durham, NC, USA, 2007. [Google Scholar]
- Pensupa, N.; Leu, S.-Y.; Hu, Y.; Du, C.; Liu, H.; Jing, H.; Wang, H.; Lin, C.S.K. Recent trends in sustainable textile waste recycling methods: Current situation and future prospects. Chem. Chem. Technol. Waste Valorization 2017, 375, 189–228. [Google Scholar]
- Coşkun, G.; Başaran, F.N. Post-Consumer Textile Waste Minimization: A Review. J. Strateg. Res. Soc. Sci. 2019, 5, 1–18. [Google Scholar]
- Gardas, B.B.; Raut, R.D.; Narkhede, B. Modelling the challenges to sustainability in the textile and apparel (T&A) sector: A Delphi-DEMATEL approach. Sustain. Prod. Consum. 2018, 15, 96–108. [Google Scholar]
- Noman, M.; Batool, S.A.; Chaudhary, M.N. Economic and employment potential in textile waste management of Faisalabad. Waste Manag. Res. 2013, 31, 485–493. [Google Scholar] [CrossRef]
- Programme, U.E. Sustainability and Circularity in Textile Value Chain. 2020. Available online: https://www.oneplanetnetwork.org/sites/default/files/sustainability_and_circularity_in_the_textile_value_chain_-_22_october_2020.pdf (accessed on 15 February 2025).
- Periyasamy, A.; Wiener, J.; Militky, J. Life-cycle assessment of denim. In Sustainability in Denim; Elsevier: Amsterdam, The Netherlands, 2017; pp. 83–110. [Google Scholar]
- Khan, E.A.N.; Begum, M.S.; Rakib, M.M.A.; Ali, M.A.; Ara, Z.A.; Ashadujjaman, M.M. Lifecycle Analysis (LCA) of a White Cotton T-shirt and Investigation of Sustainability Hot Spots: A Case Study. Lond. J. Res. Sci. Nat. Formal. Vol. 2018, 18, 21–31. [Google Scholar]
- Joung, H.M.; Park-Poaps, H. Factors motivating and influencing clothing disposal behaviours. Int. J. Consum. Stud. 2013, 37, 105–111. [Google Scholar] [CrossRef]
- Mitchell, J.; Carr, D.; Niven, B.; Harrison, K.; Girvan, E. Physical and mechanical degradation of shirting fabrics in burial conditions. Forensic Sci. Int. 2012, 222, 94–101. [Google Scholar] [CrossRef]
- Li, L.; Frey, M.; Browning, K.J. Biodegradability study on cotton and polyester fabrics. J. Eng. Fibers Fabr. 2010, 5, 155892501000500406. [Google Scholar] [CrossRef]
- Leonas, K.K. The use of recycled fibers in fashion and home products. In Textiles and Clothing Sustainability; Springer: Singapore, 2017; pp. 55–77. [Google Scholar]
- Marin Perez, M. Analysis of European Post-Consumer Textile Waste for Automated Sorting. Master’s Thesis, Uppsala University, Uppsala, Sweden, 2021. [Google Scholar]
- Hussain, A.; Kamboj, N.; Podgurski, V.; Antonov, M.; Goliandin, D. Circular economy approach to recycling technologies of postconsumer textile waste in Estonia: A review. Proc. Est. Acad. Sci. 2021, 70, 82–92. [Google Scholar] [CrossRef]
- Azeem, K.; Qamar, F.; Azam, N.; Saboor, R.; Khan, Y. Exports Performance of Pakistan’s Textile Industry. J. Poverty Invest. Dev. 2017, 32, 1–8. [Google Scholar]
- Khan, M.M.R.; Islam, M.M. Materials and manufacturing environmental sustainability evaluation of apparel product: Knitted T-shirt case study. In Textiles and Clothing Sustainability; Springer: Singapore, 2015; Volume 1, pp. 1–12. [Google Scholar]
- Moretto, A.; Macchion, L.; Lion, A.; Caniato, F.; Danese, P.; Vinelli, A. Designing a roadmap towards a sustainable supply chain: A focus on the fashion industry. J. Clean. Prod. 2018, 193, 169–184. [Google Scholar] [CrossRef]
- Nath, S.D.; Eweje, G.; Bathurst, R. The invisible side of managing sustainability in global supply chains: Evidence from multitier apparel suppliers. J. Bus. Logist. 2019, 42, 207–232. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/37456.html (accessed on 15 February 2025).
- Boero, A.; Mercier, A.; Mounaïm-Rousselle, C.; Valera-Medina, A.; Ramirez, A.D. Environmental assessment of road transport fueled by ammonia from a life cycle perspective. J. Clean. Prod. 2023, 390, 136150. [Google Scholar] [CrossRef]
- Maciel, A.M.; Otenio, M.H.; de Paula, V.R.; Benhami, V.M.L.; Piekarski, C.M.; da Rocha, C.M.; Barros, N.O. Life cycle assessment of milk production system in Brazil: Environmental impact reduction linked with anaerobic treatment of dairy manure. Sustain. Energy Technol. Assess. 2022, 54, 102883. [Google Scholar]
- Rodrigues, I.; Mata, T.M.; Martins, A.A. Environmental analysis of a bio-based coating material for automobile interiors. J. Clean. Prod. 2022, 367, 133011. [Google Scholar] [CrossRef]
- Amicarelli, V.; Bux, C.; Spinelli, M.P.; Lagioia, G. Life cycle assessment to tackle the take-make-waste paradigm in the textiles production. Waste Manag. 2022, 151, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, H.; Zhu, L.; Zhang, C.; Ren, F.; Liu, Z. Could the recycled yarns substitute for the virgin cotton yarns: A comparative LCA. Int. J. Life Cycle Assess. 2020, 25, 2050–2062. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Xiao, R.; Yuan, Z. Life cycle assessment of cotton T-shirts in China. Int. J. Life Cycle Assess. 2015, 20, 994–1004. [Google Scholar] [CrossRef]
- Winkler, A. Environmental Performance of a T-Shirt in a Clothing Rental: A Case Study Using Life Cycle Assessment. Master’s Thesis, Uppsala University, Uppsala, Sweden, 2023. [Google Scholar]
- Bianco, I.; De Bona, A.; Zanetti, M.; Panepinto, D. Environmental Impacts in the Textile Sector: A Life Cycle Assessment Case Study of a Woolen Undershirt. Sustainability 2023, 15, 11666. [Google Scholar] [CrossRef]
- Moazzem, S.; Daver, F.; Crossin, E.; Wang, L. Assessing environmental impact of textile supply chain using life cycle assessment methodology. J. Text. Inst. 2018, 109, 1574–1585. [Google Scholar] [CrossRef]
- Lee, A.W.L.; Neo, E.R.K.; Khoo, Z.-Y.; Yeo, Z.; Tan, Y.S.; Chng, S.; Yan, W.; Lok, B.K.; Low, J.S.C. Life cycle assessment of single-use surgical and embedded filtration layer (EFL) reusable face mask. Resour. Conserv. Recycl. 2021, 170, 105580. [Google Scholar] [CrossRef]
- Gupta, R.; Kushwaha, A.; Dave, D.; Mahanta, N.R. Waste management in fashion and textile industry: Recent advances and trends, life-cycle assessment, and circular economy. In Emerging Trends to Approaching Zero Waste; Elsevier: Amsterdam, The Netherlands, 2022; pp. 215–242. [Google Scholar]
- Daystar, J.; Chapman, L.L.; Moore, M.M.; Pires, S.T.; Golden, J. Quantifying apparel consumer use behavior in six countries: Addressing a data need in life cycle assessment modeling. J. Text. Appar. Technol. Manag. 2019, 11, 1–25. [Google Scholar]
- Holmquist, H.; Roos, S.; Schellenberger, S.; Jönsson, C.; Peters, G. What difference can drop-in substitution actually make? A life cycle assessment of alternative water repellent chemicals. J. Clean. Prod. 2021, 329, 129661. [Google Scholar] [CrossRef]
- Salah, F.; Vololonirina, O.; Gidik, H. Development of fibrous materials applied in timber-framed construction using recycled fibers from textile waste. J. Clean. Prod. 2022, 347, 131203. [Google Scholar] [CrossRef]
- van der Velden, N.M.; Patel, M.K.; Vogtländer, J.G. LCA benchmarking study on textiles made of cotton, polyester, nylon, acryl, or elastane. Int. J. Life Cycle Assess. 2014, 19, 331–356. [Google Scholar] [CrossRef]
- Subramanian, K.; Chopra, S.S.; Cakin, E.; Li, X.; Lin, C.S.K. Environmental life cycle assessment of textile bio-recycling–valorizing cotton-polyester textile waste to pet fiber and glucose syrup. Resour. Conserv. Recycl. 2020, 161, 104989. [Google Scholar] [CrossRef]
- Krishna, I.M.; Manickam, V.; Shah, A.; Davergave, N. Environmental Management: Science and Engineering for Industry; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Esteve-Turrillas, F.A.; de La Guardia, M. Environmental impact of Recover cotton in textile industry. Resour. Conserv. Recycl. 2017, 116, 107–115. [Google Scholar] [CrossRef]
- Peters, G.; Spak, B.; Sandin, G. LCA on recycling of blended fiber fabrics. Ecology 2019, 22, 1286–1294. [Google Scholar]
- Sandin, G.; Peters, G.M. Environmental impact of textile reuse and recycling—A review. J. Clean. Prod. 2018, 184, 353–365. [Google Scholar] [CrossRef]
- Ullah, A.; Perret, S.R.; Gheewala, S.H.; Soni, P. Eco-efficiency of cotton-cropping systems in Pakistan: An integrated approach of life cycle assessment and data envelopment analysis. J. Clean. Prod. 2016, 134, 623–632. [Google Scholar] [CrossRef]
- Laursen, S.E.; Hansen, J.; Knudsen, H.H.; Wenzel, H.; Larsen, H.F.; Kristensen, F.M. EDIPTEX-Environmental Assessment of Textiles; Danish Environmental Protection Agency: Copenhagen, Denmark, 2007; p. 8770525153. [Google Scholar]
- Parisi, M.L.; Fatarella, E.; Spinelli, D.; Pogni, R.; Basosi, R. Environmental impact assessment of an eco-efficient production for coloured textiles. J. Clean. Prod. 2015, 108, 514–524. [Google Scholar] [CrossRef]
- Woolridge, A.C.; Ward, G.D.; Phillips, P.S.; Collins, M.; Gandy, S. Life cycle assessment for reuse/recycling of donated waste textiles compared to use of virgin material: An UK energy saving perspective. Resour. Conserv. Recycl. 2006, 46, 94–103. [Google Scholar] [CrossRef]
- Dahlbo, H.; Aalto, K.; Eskelinen, H.; Salmenperä, H. Increasing textile circulation—Consequences and requirements. Sustain. Prod. Consum. 2017, 9, 44–57. [Google Scholar] [CrossRef]
- Wu, Z. Haode Evaluating the Life-Cycle Environmental Impacts of Polyester Sports T-Shirts. Proc. IOP Conf. Ser. Earth Environ. Sci. 2020, 474, 022017. [Google Scholar] [CrossRef]
- Acero, A.P.; Rodríguez, C.; Ciroth, A. LCIA Methods Impact Assessment Methods in Life Cycle Assessment and Their Impact Categories; GreenDelta GmbH: Berlin, Germany, 2014; Volume 23. [Google Scholar]
- Huijbregts, M.; Steinmann, Z.; Elshout, P.; Stam, G.; Verones, F.; Vieira, M.; van Zelm, R. A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Report I: Characterization. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar]
- Abdalla, A.; Faheem, A.F.; Walters, E. Life cycle assessment of eco-friendly asphalt pavement involving multi-recycled materials: A comparative study. J. Clean. Prod. 2022, 362, 132471. [Google Scholar] [CrossRef]
- Fei, X.; Jia, W.; Chen, T.; Ling, Y. Life cycle assessment of food waste anaerobic digestion with hydrothermal and ionizing radiation pretreatment. J. Clean. Prod. 2022, 338, 130611. [Google Scholar] [CrossRef]
- Fischer, J. Comparing Wind and Solar Energy Impacts on the Environment: A LCA Approach Using OpenLCA Platform; Honors Program; Bryant University: Smithfield, RI, USA, 2021. [Google Scholar]
- Luo, Y.; Wu, X.; Ding, X. Carbon and water footprints assessment of cotton jeans using the method based on modularity: A full life cycle perspective. J. Clean. Prod. 2022, 332, 130042. [Google Scholar] [CrossRef]
- Yudhistira, R.; Khatiwada, D.; Sanchez, F. A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage. J. Clean. Prod. 2022, 358, 131999. [Google Scholar] [CrossRef]
- Hottle, T.; Hawkins, T.R.; Chiquelin, C.; Lange, B.; Young, B.; Sun, P.; Elgowainy, A.; Wang, M. Environmental life-cycle assessment of concrete produced in the United States. J. Clean. Prod. 2022, 363, 131834. [Google Scholar] [CrossRef]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; Schryver, A.D.; Struijs, J.; Van Zelm, R. ReCiPe 2009: A Life Cycle Impact Assessment Method Which Comprises Harmonized Category Indicators at the Midpoint and the Endpoint Level; Ministry of VROM: The Hague, The Netherlands, 2009. [Google Scholar]
- Rashedi, A.; Khanam, T. Life cycle assessment of most widely adopted solar photovoltaic energy technologies by mid-point and end-point indicators of ReCiPe method. Environ. Sci. Pollut. Res. 2020, 27, 29075–29090. [Google Scholar] [CrossRef]
Impact Category | Unit | Virgin Cotton | PCTW | Virgin Polyester | Scenario 1 | Scenario 2 |
---|---|---|---|---|---|---|
Fine particulate matter formation | kg PM2.5 eq | 2196 | 31 | 35 | 43 | 30 |
Fossil resource scarcity | kg oil eq | 2572 | 2948 | 2869 | 2802 | 2833 |
Freshwater ecotoxicity | kg 1,4-DCB | 519 | 607 | 580 | 577 | 583 |
Freshwater eutrophication | kg P eq | 8 | 22 | 21 | 21 | 21 |
Global warming potential | kg CO2 eq | 31,240 | 19,220 | 18,729 | 21,881 | 18,467 |
Human carcinogenic toxicity | kg 1,4-DCB | 1058 | 1169 | 1139 | 1120 | 1123 |
Human non-carcinogenic toxicity | kg 1,4-DCB | 15,596 | 16,892 | 16,439 | 16,269 | 16,227 |
Ionizing radiation | kBq Co-60 eq | 8577 | 9295 | 9043 | 8951 | 8928 |
Land use | m2a crop eq | 39 | 44 | 43 | 42 | 42 |
Marine ecotoxicity | kg 1,4-DCB | 736 | 839 | 815 | 799 | 806 |
Marine eutrophication | kg N eq | 2 | 2 | 1 | 1 | 1 |
Mineral resource scarcity | kg Cu eq | 30 | 14 | 14 | 18 | 14 |
Ozone formation, Human health | kg NOx eq | 53 | 30 | 29 | 35 | 29 |
Terrestrial ecosystems | kg NOx eq | 53 | 30 | 30 | 36 | 29 |
Terrestrial acidification | kg SO2 eq | 7217 | 94 | 108 | 145 | 90 |
Terrestrial ecotoxicity | kg 1,4-DCB | 75,803 | 13,292 | 82,444 | 14,630 | 12,772 |
Water consumption | m3 | 313,019 | 353,202 | 343,698 | 336,905 | 339,259 |
Include in system boundaries |
|
Excluded from system boundaries |
|
| |
| |
| |
| |
| |
|
Processes | Sub Processes | Categories | Units | Values |
---|---|---|---|---|
Cotton Fiber | Cultivation and harvesting | Electricity | kWh | 3.89 |
Fertilizers | kg | 0.184–0.204 | ||
Pesticides | kg | 0.0043–0.00506 | ||
Water | kg | 4823–5947 | ||
H2SO4 | kg | 0.00092–0.00166 | ||
Tillage | Ha | 0.00046–0.00050 | ||
CO2 | kg | 3.05–3.42 | ||
NOx | kg | 0.00282–0.00315 | ||
NH3 | kg | 0.0179–0.0200 | ||
NO3 | kg | 0.202–0.223 | ||
PO4 | kg | 0.018–0.030 | ||
[46] | ||||
Yarn spinning | Electricity | MJ | 4.2 | |
[47] | ||||
Fabric weaving | Warping and sizing | Electricity | kWh | 10.63 |
Weaving | kWh | 9.39 | ||
[40] | ||||
Polyvinyl alcohol | kg | 0.025 | ||
Water | kg | 0.075 | ||
Pretreatment | Washing agents | kg | 0.005 | |
Water | kg | 10 | ||
Electricity | kWh | 0.16 | ||
[48] | ||||
Bleaching | Electricity | MJ | 3.04 | |
Steam | MJ | 26.74 | ||
Water | kg | 177 | ||
Hydrogen peroxide | kg | 0.02955 | ||
NaOH | kg | 0.02955 | ||
Salt | kg | 0.8274 | ||
Softener | kg | 0.02364 | ||
Silicon | kg | 0.01182 | ||
Acetic acid | kg | 0.04728 | ||
Chemicals | kg | 0.06855 | ||
Wastewater | kg | 175.8 | ||
COD | kg | 0.2303 | ||
[43] | ||||
Dyeing | Electricity | MJ | 3.86 | |
Coal | MJ | 69.12 | ||
Steam | MJ | 3.16 | ||
Water | kg | 186 | ||
Dyes | kg | 0.050 | ||
Auxiliaries | kg | 1.346 | ||
Water vapor | kg | 77.78 | ||
NOx | kg | 0.095 | ||
CO2 | kg | 7.843 | ||
Fly ash | kg | 0.044 | ||
SO2 | kg | 0.0078 | ||
Wastewater | kg | 84.3 | ||
Phosphorus | kg | 0.0000588 | ||
Hydrocarbons | kg | 0.0000588 | ||
Solids (dissolved) | kg | 0.0045752 | ||
Nitrogen | kg | 0.0058824 | ||
COD | kg | 0.0065359 | ||
[43] | ||||
Wet processing | Electricity | kWh | 3.79 | |
Liquefied petroleum gas | MJ | 69.9 | ||
Light fuel oil | MJ | 0.38 | ||
[40] | ||||
Finishing | Electricity | kWh | 0.6 | |
Natural gas | MJ | 28.8 | ||
Water | L | 27.0 | ||
Acid detergent | kg | 0.005 | ||
[40] | ||||
Drying | Electricity | kWh | 0.04 | |
Natural gas | kWh | 0.27 | ||
[48] | ||||
Garment stitching | Electricity | kWh | 23.42 | |
[49] | ||||
Packaging | Electricity | kWh | 0.8 | |
PCTW fiber | Cutting | Electricity | kWh | 10.25 |
Shredding | Electricity | kWh | 0.9 | |
Sorting | Electricity | kWh | 0.000125 | |
[50] | ||||
Polyester dying | Electricity | MJ | 12.06 | |
Suspended particle | kg | 0.0603 | ||
Hydrocarbon | kg | 0.0402 | ||
Water | L | 73.7 | ||
CO2 | kg | 5.963 | ||
NOx | mg/m3 | 0.0067 | ||
SO2 | mg/m3 | 0.0201 | ||
CO | mg/m3 | 0.0268 | ||
[51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, M.W.; Ramzan, M.B.; Manzoor, H.; Qureshi, S.M. Value Extraction from End-of-Life Textile Products in Pakistan. Recycling 2025, 10, 101. https://doi.org/10.3390/recycling10030101
Iqbal MW, Ramzan MB, Manzoor H, Qureshi SM. Value Extraction from End-of-Life Textile Products in Pakistan. Recycling. 2025; 10(3):101. https://doi.org/10.3390/recycling10030101
Chicago/Turabian StyleIqbal, Muhammad Waqas, Muhammad Babar Ramzan, Haleema Manzoor, and Sheheryar Mohsin Qureshi. 2025. "Value Extraction from End-of-Life Textile Products in Pakistan" Recycling 10, no. 3: 101. https://doi.org/10.3390/recycling10030101
APA StyleIqbal, M. W., Ramzan, M. B., Manzoor, H., & Qureshi, S. M. (2025). Value Extraction from End-of-Life Textile Products in Pakistan. Recycling, 10(3), 101. https://doi.org/10.3390/recycling10030101