Controlling the Molar Ratios of Cation to Anion of Precursors for High Performance Capacitive Properties of MnO2 Hybridized Carbon-Based Materials Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of MnO2-Based Hybrid Electrode
2.2. Characterization
2.3. Electrochemical Properties of MnO2-Based/NF Electrodes
3. Results and Discussion
3.1. Physical Properties of the as-Prepared MnO2 Materials
3.2. Morphologies of the as-Deposited MnO2/CM/NF Hybrid Electrode
3.3. Electrochemical Properties Analysis of MnO2/NF Electrode
3.4. Electrical Analysis of MnO2/CM/NF Hybrid Electrode
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, C.; Zhang, S.; Jewell, D.; Chen, G.Z. Carbon nanotube and conducting polymer composites for supercapacitors. Prog. Nat. Sci. 2008, 18, 777–788. [Google Scholar] [CrossRef]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614. [Google Scholar] [CrossRef]
- Ghodbane, O.; Pascal, J.L.; Fraisse, B.; Favier, F. Structural in situ study of the thermal behavior of manganese dioxide materials: Toward selected electrode materials for supercapacitors. Appl. Mater. Interfaces 2010, 2, 3493–3505. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Zhou, R.; Zhao, X. Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 2010, 20, 5983–5992. [Google Scholar] [CrossRef]
- Ghodbane, O.; Pascal, J.; Favier, F. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl. Mater. Interfaces 2009, 1, 1130–1139. [Google Scholar] [CrossRef]
- Devaraj, S.; Munichandraiah, N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 2008, 112, 4406–4417. [Google Scholar] [CrossRef]
- De Wolff, P.M. Interpretation of some γ-MnO2 diffraction patterns. Acta Crystallogr. 1959, 12, 341–345. [Google Scholar] [CrossRef]
- Jadhav, P.R.; Suryawanshi, M.P.; Dalavi, D.S.; Patil, D.S.; Jo, A.; Kolekar, S.S.; Wali, A.A.; Karanjkar, M.M.; Kim, J.P.; Patil, S. Design and electro-synthesis of 3-D nanofibers of MnO2 thin films and their application in high performance supercapacitor. Electrochim. Acta 2015, 176, 523–532. [Google Scholar] [CrossRef]
- Yang, M.H.; Choi, B.G. Rapid one-step synthesis of conductive and porous MnO2/graphene nanocomposite for high performance supercapacitors. J. Electroanal. Chem. 2016, 776, 134–138. [Google Scholar] [CrossRef]
- Deng, S.; Sun, D.; Wu, C.H.; Wang, H.; Liu, J.B.; Sun, Y.X.; Yan, H. Synthesis and electrochemical properties of MnO2 nanorods/graphene composites for supercapacitor applications. Electrochim. Acta 2013, 111, 707–712. [Google Scholar] [CrossRef]
- Zhai, D.; Li, B.; Du, H.; Gao, G.; Gan, L.; He, Y.; Yang, Q.; Kang, F. The preparation of graphene decorated with manganese dioxide nanoparticles by electrostatic adsorption for use in supercapacitors. Carbon 2012, 50, 5034–5043. [Google Scholar] [CrossRef]
- Zeng, W.; Zhang, G.; Hou, S.; Wang, T.; Duan, H. Facile synthesis of graphene@NiO/MoO3 composite nanosheet arrays for high-performance supercapacitors. Electrochim. Acta 2015, 151, 510–516. [Google Scholar] [CrossRef]
- Williams, G.; Seger, B.; Kamat, P.V. TiO2-graphene nanocomposites: UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 7, 1487–1491. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Lu, G.; Wu, F.; Xu, C.; Kang, X.; Cheng, Z. Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors. Appl. Surf. Sci. 2018, 427, 986–993. [Google Scholar] [CrossRef]
- Li, W.Y.; Xu, K.B.; An, L.; Jiang, F.R.; Zhou, X.Y.; Yang, J.M.; Yang, Z.G.; Chen, Z.G.; Zou, R.J.; Hu, J.Q. Effect of temperature on the performance of ultrafine MnO2 nanobelt supercapacitors. J. Mater. Chem. 2014, A2, 1443–1447. [Google Scholar] [CrossRef]
- Pang, M.J.; Long, G.H.; Jiang, S.; Ji, Y.; Han, W.; Wang, B.; Liu, X.L.; Xi, Y.L. One pot low-temperature growth of hierarchical δ-MnO2 nanosheets on nickel foam for supercapacitor applications. Electrochim. Acta 2015, 161, 297–304. [Google Scholar] [CrossRef]
- Xie, Y.J.; Yu, Y.Y.; Gong, X.Q.; Guo, Y.; Guo, Y.L.; Wang, Y.Q.; Lu, G.Z. Effect of the crystal plane figure on the catalytic performance of MnO2 for the total oxidation of propane. CrystEngComm 2015, 17, 3005–3014. [Google Scholar] [CrossRef]
- Sun, X.; Wang, H.; Lei, Z.; Liu, Z.; Wei, L. MnO2 nanoflakes grown on 3D graphite network for enhanced electrocapacitive performance. RSC Adv. 2014, 4, 30233–30240. [Google Scholar] [CrossRef]
- He, Y.; Chen, W.; Li, X.; Zhang, Z.; Fu, J.; Zhao, C.; Xie, E. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174–182. [Google Scholar] [CrossRef]
- You, B.; Li, N.; Zhu, H.; Zhu, X.; Yang, J. Graphene oxide-dispersed pristine CNTs support for MnO2 nanorods as high performance supercapacitor electrodes. ChemSusChem 2013, 6, 474–480. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, K.; Chan, H.S.O.; Wu, J. Nanostructured MnO2/graphene composites for supercapacitor electrodes: The effect of morphology, crystallinity and composition. J. Mater. Chem. 2012, 22, 1845–1851. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, N.; Zhang, J.; Wang, X.; Jin, J.; Zheng, X.; Fang, Y. The additive-free electrode based on the layered MnO2 nanoflowers/reduced, graphene oxide film for high performance supercapacitor, Ceram. Int. 2017, 7, 5374–5381. [Google Scholar]
- Dai, K.; Lu, L.; Liang, C.; Dai, J.; Liu, Q.; Zhang, Y.; Zhu, G.; Liu, Z. In situ assembly of MnO2 nanowires/graphene oxide nanosheets composite with high specific capacitance. Electrochim. Acta 2014, 116, 111–117. [Google Scholar] [CrossRef]
- Kovacı, H.; Akaltun, Y.; Yetim, A.F.; Çelik, Y.U.A. Investigation of the usage possibility of CuO and CuS thin films produced by successive ionic layer adsorption and reaction (SILAR) as solid lubricant. Surf. Coat. Technol. 2018, 344, 522–527. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, D.; Shi, K.; Michaud, X.; Zhitomirsky, I. Asymmetric supercapacitor based on MnO2 and Fe2O3 nanotube active materials and graphene current collectors. Nano-Struct. Nano-Objects 2018, 15, 98–106. [Google Scholar] [CrossRef]
- Jana, M.L.; Saha, S.J.; Samanta, P.N.; Murmu, N.C.; Kim, N.H.; Kuila, T.; Lee, J.H. A successive ionic layer adsorption and reaction (SILAR) method to fabricate a layer-by-layer (LbL) MnO2-reduced graphene oxide assembly for supercapacitor application. J. Power Sources 2017, 340, 380–392. [Google Scholar] [CrossRef]
- Das, M.R.; Mukherjee, A.; Maiti, P.; Das, S.; Mitra, P. Studies on multifunctional properties of SILAR synthesized CuO thin films for enhanced supercapacitor, photocatalytic and ethanol sensing applications. J. Electron. Mater. 2019, 48, 2718–2730. [Google Scholar] [CrossRef]
- Jadhav, P.R.; Shinde, V.V.; Navathe, G.J.; Karanjkar, M.M.; Patil, P.S. Manganese oxide thin films deposited by SILAR method for supercapacitor application. AIP Conf. Proc. 2013, 1536, 679–680. [Google Scholar]
- Hung, S.-C.; Chou, Y.-R.; Dong, C.-D.; Tsai, K.-C.; Yang, W.-D. Enhanced Activity of Hierarchical Nanostructural Birnessite-MnO2-Based Materials Deposited onto Nickel Foam for Efficient Supercapacitor Electrodes. Nanomaterials 2020, 10, 1933. [Google Scholar] [CrossRef]
- Ji, C.; Ren, H.; Yan, S. Control of manganese dioxide crystallographic structure in the redox reaction between graphene and permanganate ions and their electrochemical performance. RSC Adv. 2015, 5, 21978–21987. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, J.H.; Ma, Q.X.; Zhao, Y.; Liu, Y.C.; He, H. Heterogeneous reaction of SO2 on manganese oxides: The effect of crystal structure and relative humidity. Sci. Rep. 2017, 7, 4550. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Dionysiou, D.D. A comparative study on physicochemical properties and photocatalytic behavior of macroporous TiO2-P25 composite films and microporous TiO2 films coated on stainless steel substrate. Appl. Catal. A Gen. 2007, 317, 129–137. [Google Scholar] [CrossRef]
- Chodankar, N.R.; Dubal, D.P.; Gund, G.S.; Lokhande, C.D. Flexible all-solid-state MnO2 thin films based symmetric supercapacitors. Electrochim. Acta 2015, 165, 338–347. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, B.; Lu, Y.; Xia, R.; Yu, T.; Gao, M. An aqueous symmetrical supercapacitor with high bulk pseudocapacitance induced by phase transformation of MnO2. J. Alloys Compd. 2021, 876, 160148. [Google Scholar] [CrossRef]
- Xiao, K.; Li, J.-W.; Chen, G.-F.; Liu, Z.-Q.; Li, N.; Su, Y.-Z. Amorphous MnO2 supported on 3D-Ni nanodendrites for large areal capacitance supercapacitors. Electrochim. Acta 2014, 149, 341–348. [Google Scholar] [CrossRef]
- Li, S.H.; Qi, L.; Lu, L.H.; Wang, H.Y. Facile preparation and performance of mesoporous manganese oxide for supercapacitors utilizing neutral aqueous electrolytes. RSC Adv. 2012, 2, 3298–3308. [Google Scholar] [CrossRef]
- Wang, J.G.; Yang, Y.; Huang, Z.H.; Kang, F.Y. Rational synthesis of MnO2/conducting polypyrrole@carbon nanofiber triaxial nano-cables for high-performance supercapacitors. J. Mater. Chem. 2012, 22, 16943–16949. [Google Scholar] [CrossRef]
- Palaniyandy, N.D.; Nkosi, F.P.; Raju, K.; Ozoemena, K.I. Conversion of electrolytic MnO2 to Mn3O4 nanowires for high-performance anode materials for lithium-ion batteries. J. Electroanal. Chem. 2019, 15, 79–92. [Google Scholar] [CrossRef]
- Le, T.H.; Yang, Y.; Yu, L.; Huang, Z.H.; Kang, F.Y. In-situ growth of MnO2 crystals under nanopore-constraint in carbon nanofibers and their electrochemical performance. Sci. Rep. 2016, 6, 37368. [Google Scholar] [CrossRef]
- Bai, H.; Liang, S.; Wei, T.; Zhou, Q.; Shi, M.; Jiang, Z.; Feng, J.; Zhang, M.; Fan, Z. Enhanced pseudo-capacitance and rate performance of amorphous MnO2 for supercapacitor by high Na doping and structural water content. J. Power Sources 2022, 523, 231032. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, H.; Chen, P.; Bao, Y.; Jiang, X.; Chen, Y. Electrochemical performance of polyaniline-coated γ-MnO2 on carbon cloth as flexible electrode for supercapacitor. Electrochim. Acta 2022, 413, 140146. [Google Scholar] [CrossRef]
- Sayyed, S.G.; Pathan, H.M.; Shaikh, A.V.; Shaikh, S.F.; Al-Enizi, A.M. Investigation of electrochemical performance and stability of electrodeposited Mn3O4 thin films in different aqueous electrolytes for its application in flexible supercapacitors. J. Energy Storages 2021, 33, 102076. [Google Scholar] [CrossRef]
- Lin, T.; Lin, J.; Wei, X.; Lu, L.; Yin, X. Hydrothermal synthesis of nano-sized MnO2 supported on attapulgite electrode materials for supercapacitors. Int. J. Hydrogen Energy 2023, 48, 10765–10777. [Google Scholar] [CrossRef]
- Lin, Y.-Y.; Wang, T.-L.; Li, D.-H.; Yang, C.-H. High performance of chemically-modified graphene-based supercapacitor using an effective redox active binder. J. Energy Storage 2022, 55, 105693. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A. Graphene/reduced graphene oxide-carbon nanotubes composite electrodes: From capacitive to battery-type behaviour. Nanomaterials 2021, 11, 1240. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Jiang, R.; Chu, Y.-H.; Yang, W.-D. Facile fbrication of MnO2/graphene/Ni foam composites for high-performance supercapacitors. Nanomaterials 2021, 11, 2736. [Google Scholar] [CrossRef]
- Tomar, A.K.; Singh, G.; Sharma, R.K. Charge storage characteristics of mesoporous strontium titanate perovskite aqueous as well as flexible solid-state supercapacitor cell. J. Power Sources 2019, 426, 223–232. [Google Scholar] [CrossRef]
- Han, M.Y.; Brant, J.C.; Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 2010, 104, 056801. [Google Scholar] [CrossRef]
- Wu, J.; Liu, B.; Shen, F.; Chen, Y.; Li, D.; Liu, W.; Fan, J.; Chao, Z. MnO2 modified reduced graphene oxide for lithium–sulfur batteries with Improved high-rate cycling stability. Sci. Adv. Mater. 2019, 11, 1093–1099. [Google Scholar] [CrossRef]
- Kumar, A.; Sanger, A.; Kumar, A.; Kumar, Y.; Chandra, R. Sputtered synthesis of MnO2 nanorods as binder free electrode for high performance symmetric supercapacitors. Electrochim. Acta 2016, 222, 1761–1769. [Google Scholar] [CrossRef]
- Du, L.H.; Yang, P.H.; Yu, X.; Liu, P.Y.; Song, J.H.; Mai, W.J. Flexible supercapacitors based on carbon nanotube/MnO2 nanotube hybrid porous films for wearable electronic devices. J. Mater. Chem. A 2014, 2, 17561–17567. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.-D.; Chou, Y.-R.; Kuo, C.-C.; Kang, Y.-M. Controlling the Molar Ratios of Cation to Anion of Precursors for High Performance Capacitive Properties of MnO2 Hybridized Carbon-Based Materials Electrode. Batteries 2023, 9, 273. https://doi.org/10.3390/batteries9050273
Yang W-D, Chou Y-R, Kuo C-C, Kang Y-M. Controlling the Molar Ratios of Cation to Anion of Precursors for High Performance Capacitive Properties of MnO2 Hybridized Carbon-Based Materials Electrode. Batteries. 2023; 9(5):273. https://doi.org/10.3390/batteries9050273
Chicago/Turabian StyleYang, Wein-Duo, Yi-Rong Chou, Cheng-Ching Kuo, and Yu-Min Kang. 2023. "Controlling the Molar Ratios of Cation to Anion of Precursors for High Performance Capacitive Properties of MnO2 Hybridized Carbon-Based Materials Electrode" Batteries 9, no. 5: 273. https://doi.org/10.3390/batteries9050273
APA StyleYang, W. -D., Chou, Y. -R., Kuo, C. -C., & Kang, Y. -M. (2023). Controlling the Molar Ratios of Cation to Anion of Precursors for High Performance Capacitive Properties of MnO2 Hybridized Carbon-Based Materials Electrode. Batteries, 9(5), 273. https://doi.org/10.3390/batteries9050273