A Review of Nb2CTx MXene: Synthesis, Properties and Applications
Abstract
:1. Introduction
2. Synthesis
2.1. Synthesis of Nb2AlC
2.2. Synthesis of Nb2CTx
2.3. Delamination of Nb2CTx
3. Structure and Properties of Nb2CTx
3.1. Structure of Nb2CTx
3.2. Properties of Nb2CTx
4. Applications
4.1. Secondary Batteries
4.1.1. Lithium Ion Battery
4.1.2. Sodium Ion Battery
4.1.3. Potassium Ion Battery
4.1.4. Lithium Sulfur Battery
4.2. Supercapacitors
4.3. Electrocatalytic Hydrogen Evolution
4.4. Photocatalytic H2 Evolution
4.5. Sensors
4.6. Other Applications
4.6.1. Electromagnetic Interference (EMI) Shielding and Microwave Absorption (MA)
4.6.2. Photodetector
4.6.3. Perovskite Solar Cells (PVSCs)
5. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yi, S.; Wang, L.; Zhang, X.; Li, C.; Liu, W.; Wang, K.; Sun, X.; Xu, Y.; Yang, Z.; Cao, Y.; et al. Cationic intermediates assisted self-assembly two-dimensional Ti3C2Tx/rGO hybrid nanoflakes for advanced lithium-ion capacitors. Sci. Bull. 2021, 66, 914–924. [Google Scholar] [CrossRef]
- Yang, K.; Luo, M.; Zhang, D.; Liu, C.; Li, Z.; Wang, L.; Chen, W.; Zhou, X. Ti3C2Tx/carbon nanotube/porous carbon film for flexible supercapacitor. Chem. Eng. J. 2022, 427, 132002. [Google Scholar] [CrossRef]
- Fan, Z.; Yang, Y.; Ma, H.; Wang, Y.; Xie, Z.; Liu, Y. High-volumetric capacitance and high-rate performance in liquid-mediated densified holey MXene film. Carbon 2022, 186, 150–159. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, S.; Ying, H.; Yang, W.; Wang, J.; Guo, R.; Han, W. Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries. Nano Res. 2020, 14, 1218–1227. [Google Scholar] [CrossRef]
- You, Q.; Guo, Z.; Zhang, R.; Chang, Z.; Ge, M.; Mei, Q.; Dong, W.F. Simultaneous Recognition of Dopamine and Uric Acid in the Presence of Ascorbic Acid via an Intercalated MXene/PPy Nanocomposite. Sensors 2021, 21, 3069. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhao, C.; Niu, D.; Zhu, J.; Wei, D.; Wang, C.; Wang, L.; Yang, L. Ultrathin N-doped Ti3C2-MXene decorated with NiCo2S4 nanosheets as advanced electrodes for supercapacitors. Appl. Surf. Sci. 2021, 539, 148272. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, P.; Nia, A.S.; Feng, X. Emerging 2D Materials Produced via Electrochemistry. Adv. Mater. 2020, 32, e1907857. [Google Scholar] [CrossRef]
- Liu, M.; Li, J.; Bian, R.; Wang, X.; Ji, Y.; Zhang, X.; Tian, J.; Shi, F.; Cui, H. ZnO@Ti3C2 MXene interfacial Schottky junction for boosting spatial charge separation in photocatalytic degradation. J. Alloys Compd. 2022, 905, 164025. [Google Scholar] [CrossRef]
- Liu, M.; Ji, J.; Song, P.; Wang, J.; Wang, Q. Sensing performance of α-Fe2O3/ Ti3C2Tx MXene nanocomposites to NH3 at room temperature. J. Alloys Compd. 2022, 898, 162812. [Google Scholar] [CrossRef]
- Yun, T.; Kim, H.; Iqbal, A.; Cho, Y.S.; Lee, G.S.; Kim, M.K.; Kim, S.J.; Kim, D.; Gogotsi, Y.; Kim, S.O.; et al. Electromagnetic Shielding of Monolayer MXene Assemblies. Adv. Mater. 2020, 32, e1906769. [Google Scholar] [CrossRef]
- Su, T.; Peng, R.; Hood, Z.D.; Naguib, M.; Ivanov, I.N.; Keum, J.K.; Qin, Z.; Guo, Z.; Wu, Z. One-Step Synthesis of Nb2O5/C/Nb2C (MXene) Composites and Their Use as Photocatalysts for Hydrogen Evolution. ChemSusChem 2018, 11, 688–699. [Google Scholar] [CrossRef]
- Ren, X.; Huo, M.; Wang, M.; Lin, H.; Zhang, X.; Yin, J.; Chen, Y.; Chen, H. Highly Catalytic Niobium Carbide (MXene) Promotes Hematopoietic Recovery after Radiation by Free Radical Scavenging. ACS Nano 2019, 13, 6438–6454. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Hu, T.; Wang, Z.; Yang, J.; Dai, R.; Wang, W.; Cui, C.; Liang, Y.; Zhang, C.; Li, C.; et al. Understanding charge storage in Nb2CTx MXene as an anode material for lithium ion batteries. Phys. Chem. Chem. Phys. 2021, 23, 23173–23183. [Google Scholar] [CrossRef]
- Zhao, J.; Wen, J.; Xiao, J.; Ma, X.; Gao, J.; Bai, L.; Gao, H.; Zhang, X.; Zhang, Z. Nb2CTx MXene: High capacity and ultra-long cycle capability for lithium-ion battery by regulation of functional groups. J. Energy Chem. 2021, 53, 387–395. [Google Scholar] [CrossRef]
- Xin, Y.; Yu, Y.-X. Possibility of bare and functionalized niobium carbide MXenes for electrode materials of supercapacitors and field emitters. Mater. Des. 2017, 130, 512–520. [Google Scholar] [CrossRef]
- Cui, C.; Guo, R.; Xiao, H.; Ren, E.; Song, Q.; Xiang, C.; Lai, X.; Lan, J.; Jiang, S. Bi2WO6/Nb2CTx MXene hybrid nanosheets with enhanced visible-light-driven photocatalytic activity for organic pollutants degradation. Appl. Surf. Sci. 2020, 505, 144595. [Google Scholar] [CrossRef]
- Gao, G.; O’Mullane, A.P.; Du, A. 2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction. ACS Catal. 2016, 7, 494–500. [Google Scholar] [CrossRef]
- Bi, M.; Miao, Y.; Li, W.; Yao, J. Niobium carbide MXene-optics fiber-sensor for high sensitivity humidity detection. Appl. Phys. Lett. 2022, 120, 021103. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, M.S.; Lee, J.-H.; Ryu, J.-H.; Do, V.; Lee, B.G.; Kim, W.; Cho, W.I. A Li–In alloy anode and Nb2CTx artificial solid-electrolyte interphase for practical Li metal batteries. J. Mater. Chem. A 2022, 10, 4157–4169. [Google Scholar] [CrossRef]
- Mashtalir, O.; Lukatskaya, M.R.; Zhao, M.Q.; Barsoum, M.W.; Gogotsi, Y. Amine-Assisted Delamination of Nb2C MXene for Li-Ion Energy Storage Devices. Adv. Mater. 2015, 27, 3501–3506. [Google Scholar] [CrossRef]
- Mao, T.; Zhou, F.; Han, K.; Xie, Y.; Wang, J.; Wang, L. Self-standing reduced graphene oxide/Nb2C MXene paper electrode with three-dimensional open structure for high-rate potassium ion storage. J. Phys. Chem. Solids 2022, 169, 110838. [Google Scholar] [CrossRef]
- Li, K.; Zhao, J.; Zhussupbekova, A.; Shuck, C.E.; Hughes, L.; Dong, Y.; Barwich, S.; Vaesen, S.; Shvets, I.V.; Mobius, M.; et al. 4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage. Nat. Commun. 2022, 13, 6884. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zheng, X.; Lu, Q.; Li, Y.; Xiao, F.; Tang, B.; Wang, S.; Yu, D.Y.W.; Rogach, A.L. Electrocatalytic enhancement mechanism of cobalt single atoms anchored on different MXene substrates in oxygen and hydrogen evolution reactions. EcoMat 2022, 5, e12293. [Google Scholar] [CrossRef]
- Jiang, B.; Yang, T.; Wang, T.; Chen, C.; Yang, M.; Yang, X.; Zhang, J.; Kou, Z. Edge stimulated hydrogen evolution reaction on monodispersed MXene quantum dots. Chem. Eng. J. 2022, 442, 136119. [Google Scholar] [CrossRef]
- Peng, C.; Xie, X.; Xu, W.; Zhou, T.; Wei, P.; Jia, J.; Zhang, K.; Cao, Y.; Wang, H.; Peng, F.; et al. Engineering highly active Ag/Nb2O5@Nb2CTx (MXene) photocatalysts via steering charge kinetics strategy. Chem. Eng. J. 2021, 421, 128766. [Google Scholar] [CrossRef]
- Huang, J.; Tao, J.; Liu, G.; Lu, L.; Tang, H.; Qiao, G. In situ construction of 1D CdS/2D Nb2CTx MXene Schottky heterojunction for enhanced photocatalytic hydrogen production activity. Appl. Surf. Sci. 2022, 573, 151491. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, J.; Yi, S.; Wan, X.; Tang, J. Biodegradable and photostable Nb2C MXene quantum dots as promising nanofluorophores for metal ions sensing and fluorescence imaging. Sens. Actuators B Chem. 2020, 309, 127735. [Google Scholar] [CrossRef]
- Wang, S.; Liu, B.; Duan, Z.; Zhao, Q.; Zhang, Y.; Xie, G.; Jiang, Y.; Li, S.; Tai, H. PANI nanofibers-supported Nb2CTx nanosheets-enabled selective NH3 detection driven by TENG at room temperature. Sens. Actuators B Chem. 2021, 327, 128923. [Google Scholar] [CrossRef]
- Bi, M.; Miao, Y.; Li, W.; Fei, C.; Zhang, K. Ultrasensitive BOD Detection of Fiber Integrated With Nb2CTx MXene for Water Pollution. J. Light. Technol. 2022, 40, 2173–2180. [Google Scholar] [CrossRef]
- Qamar, S.; Fatima, K.; Ullah, N.; Akhter, Z.; Waseem, A.; Sultan, M. Recent progress in use of MXene in perovskite solar cells: For interfacial modification, work-function tuning and additive engineering. Nanoscale 2022, 14, 13018–13039. [Google Scholar] [CrossRef]
- Liu, Z.; El-Demellawi, J.K.; Bakr, O.M.; Ooi, B.S.; Alshareef, H.N. Plasmonic Nb2CTx MXene-MAPbI3 Heterostructure for Self-Powered Visible-NIR Photodiodes. ACS Nano 2022, 16, 7904–7914. [Google Scholar] [CrossRef]
- Yin, J.; Pan, S.; Guo, X.; Gao, Y.; Zhu, D.; Yang, Q.; Gao, J.; Zhang, C.; Chen, Y. Nb2C MXene-Functionalized Scaffolds Enables Osteosarcoma Phototherapy and Angiogenesis/Osteogenesis of Bone Defects. Nanomicro Lett. 2021, 13, 30. [Google Scholar] [CrossRef]
- Rajavel, K.; Hu, Y.; Zhu, P.; Sun, R.; Wong, C. MXene/metal oxides-Ag ternary nanostructures for electromagnetic interference shielding. Chem. Eng. J. 2020, 399, 125791. [Google Scholar] [CrossRef]
- Yan, Y.; Han, H.; Dai, Y.; Zhu, H.; Liu, W.; Tang, X.; Gan, W.; Li, H. Nb2CTx MXene Nanosheets for Dye Adsorption. ACS Appl. Nano Mater. 2021, 4, 11763–11769. [Google Scholar] [CrossRef]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Shi, S.; Yu, H. Work Function Adjustment of Nb2CTx Nanoflakes as Hole and Electron Transport Layers in Organic Solar Cells by Controlling Surface Functional Groups. ACS Energy Lett. 2021, 6, 3464–3472. [Google Scholar] [CrossRef]
- Wang, Y.C.; Liang, Z.H.; Peng, G.H.; Xu, J.G. Synthesis of Nb2AlC Material by High Temperature Solid State Reaction Method. Key Eng. Mater. 2015, 655, 240–243. [Google Scholar] [CrossRef]
- Stumpf, M.; Biggemann, J.; Fey, T.; Kakimoto, K.I.; Greil, P. Nb2AlC particle reinforced ZrO2-matrix composites. J. Ceram. Sci. Tech. 2018, 9, 271–278. [Google Scholar]
- Stumpf, M.; Biggemann, J.; Fey, T.; Kakimoto, K.-i.; Greil, P. Thermochemical calculations of the oxidation behavior of Nb2AlC MAX phase in ZrO2–matrix composites. Ceram. Int. 2018, 44, 15747–15753. [Google Scholar] [CrossRef]
- Stumpf, M.; Fey, T.; Kakimoto, K.-I.; Greil, P. Nb2AlC-particle induced accelerated crack healing in ZrO2–matrix composites. Ceram. Int. 2018, 44, 19352–19361. [Google Scholar] [CrossRef]
- Yeh, C.L.; Kuo, C.W. An investigation on formation of Nb2AlC by combustion synthesis of Nb2O5–Al–Al4C3 powder compacts. J. Alloys Compd. 2010, 496, 566–571. [Google Scholar] [CrossRef]
- Levashov, E.A.; Mukasyan, A.S.; Rogachev, A.S.; Shtansky, D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev. 2016, 62, 203–239. [Google Scholar] [CrossRef]
- Kovalev, I.D.; Miloserdov, P.A.; Gorshkov, V.A.; Kovalev, D.Y. Synthesis of Nb2AlC MAX Phase by SHS Metallurgy. Russ. J. Non-Ferr. Met. 2020, 61, 126–131. [Google Scholar] [CrossRef]
- Afanasyev, N.I.; Lepakova, O.K.; Kitler, V.D. Non-isothermal synthesis of materials based on the MAX phases in the Ti-Si-C and Nb-Al-C systems. J. Phys. Conf. Ser. 2020, 1459, 012008. [Google Scholar] [CrossRef]
- Zhou, W.; Li, K.; Zhu, J.; Tian, S. Rapid synthesis of highly pure Nb2AlC using the spark plasma sintering technique. J. Phys. Chem. Solids 2018, 120, 218–222. [Google Scholar] [CrossRef]
- Zhao, J.; Wen, J.; Bai, L.; Xiao, J.; Zheng, R.; Shan, X.; Li, L.; Gao, H.; Zhang, X. One-step synthesis of few-layer niobium carbide MXene as a promising anode material for high-rate lithium ion batteries. Dalton Trans. 2019, 48, 14433–14439. [Google Scholar] [CrossRef]
- Zaheer, A.; Zahra, S.A.; Iqbal, M.Z.; Mahmood, A.; Khan, S.A.; Rizwan, S. Nickel-adsorbed two-dimensional Nb2C MXene for enhanced energy storage applications. RSC Adv. 2022, 12, 4624–4634. [Google Scholar] [CrossRef]
- Feng, Y.; He, M.; Liu, X.; Wang, W.; Yu, A.; Wan, L.; Zhai, J. Alternate-Layered MXene Composite Film-Based Triboelectric Nanogenerator with Enhanced Electrical Performance. Nanoscale Res. Lett. 2021, 16, 81. [Google Scholar] [CrossRef]
- Pandey, R.P.; Rasheed, P.A.; Gomez, T.; Rasool, K.; Ponraj, J.; Prenger, K.; Naguib, M.; Mahmoud, K.A. Effect of Sheet Size and Atomic Structure on the Antibacterial Activity of Nb-MXene Nanosheets. ACS Appl. Nano Mater. 2020, 3, 11372–11382. [Google Scholar] [CrossRef]
- Jiang, Y.; Tian, M.; Wang, H.; Wei, C.; Sun, Z.; Rummeli, M.H.; Strasser, P.; Sun, J.; Yang, R. Mildly Oxidized MXene (Ti3C2, Nb2C, and V2C) Electrocatalyst via a Generic Strategy Enables Longevous Li-O2 Battery under a High Rate. ACS Nano 2021, 15, 19640–19650. [Google Scholar] [CrossRef]
- Xiao, J.; Zhao, J.; Ma, X.; Li, L.; Su, H.; Zhang, X.; Gao, H. One-step synthesis Nb2CTx MXene with excellent lithium-ion storage capacity. J. Alloys Compd. 2021, 889, 161542. [Google Scholar] [CrossRef]
- Lu, H.; Li, J.; Lu, Y.; Chen, Y.A.; Xie, T.; Zhou, X.; Li, Q.; Pan, F. ZrO2@Nb2CTx composite as the efficient catalyst for Mg/MgH2 based reversible hydrogen storage material. Int. J. Hydrogen Energy 2022, 47, 38282–38294. [Google Scholar] [CrossRef]
- Peng, C.; Wei, P.; Chen, X.; Zhang, Y.; Zhu, F.; Cao, Y.; Wang, H.; Yu, H.; Peng, F. A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced exfoliation and improved adsorption performance. Ceram. Int. 2018, 44, 18886–18893. [Google Scholar] [CrossRef]
- Dong, H.; Xiao, P.; Jin, N.; Wang, B.; Liu, Y.; Lin, Z. Molten Salt Derived Nb2CTx MXene Anode for Li-ion Batteries. ChemElectroChem 2021, 8, 957–962. [Google Scholar] [CrossRef]
- Li, Y.; Shao, H.; Lin, Z.; Lu, J.; Liu, L.; Duployer, B.; Persson, P.O.A.; Eklund, P.; Hultman, L.; Li, M.; et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Pang, S.Y.; Guo, F.; Wong, M.C.; Hao, J. Fluoride-Free 2D Niobium Carbide MXenes as Stable and Biocompatible Nanoplatforms for Electrochemical Biosensors with Ultrahigh Sensitivity. Adv. Sci. 2020, 7, 2001546. [Google Scholar] [CrossRef]
- Li, J.; Zeng, F.; El-Demellawi, J.K.; Lin, Q.; Xi, S.; Wu, J.; Tang, J.; Zhang, X.; Liu, X.; Tu, S. Nb2CTx MXene Cathode for High-Capacity Rechargeable Aluminum Batteries with Prolonged Cycle Lifetime. ACS Appl. Mater. Interfaces 2022, 14, 45254–45262. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, J.; Li, X.; Fang, Z.; Sun, R.; Yang, G.; Hou, W. Surface modification and in situ carbon intercalation of two-dimensional niobium carbide as promising electrode materials for potassium-ion batteries. Chem. Eng. J. 2022, 431, 133838. [Google Scholar] [CrossRef]
- Nasrin, K.; Sudharshan, V.; Arunkumar, M.; Sathish, M. 2D/2D Nanoarchitectured Nb2C/Ti3C2 MXene Heterointerface for High-Energy Supercapacitors with Sustainable Life Cycle. ACS Appl. Mater. Interfaces 2022, 14, 21038–21049. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Dall’Agnese, Y.; Guo, J.; Huang, H.; Liang, X.; Xu, S. Flexible freestanding all-MXene hybrid films with enhanced capacitive performance for powering a flex sensor. J. Mater. Chem. A 2020, 8, 16649–16660. [Google Scholar] [CrossRef]
- Zhao, Q.; Jiang, Y.; Duan, Z.; Yuan, Z.; Zha, J.; Wu, Z.; Huang, Q.; Zhou, Z.; Li, H.; He, F.; et al. A Nb2CTx/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing. Chem. Eng. J. 2022, 438, 135588. [Google Scholar] [CrossRef]
- Pang, S.Y.; Wong, Y.T.; Yuan, S.; Liu, Y.; Tsang, M.K.; Yang, Z.; Huang, H.; Wong, W.T.; Hao, J. Universal Strategy for HF-Free Facile and Rapid Synthesis of Two-dimensional MXenes as Multifunctional Energy Materials. J. Am. Chem. Soc. 2019, 141, 9610–9616. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zschiesche, H.; Antonietti, M.; Gibilaro, M.; Chamelot, P.; Massot, L.; Rozier, P.; Taberna, P.L.; Simon, P. In Situ Synthesis of MXene with Tunable Morphology by Electrochemical Etching of MAX Phase Prepared in Molten Salt. Adv. Energy Mater. 2022, 13, 2203825. [Google Scholar] [CrossRef]
- Huang, J.; Wang, M.; Zhang, X.; Tao, J.; Lu, L.; Qiao, G.; Liu, G. Anchoring of 2D CdS on Nb2CTx MXene nanosheets for boosting photocatalytic H2 evolution. J. Alloys Compd. 2022, 923, 166256. [Google Scholar] [CrossRef]
- Griffith, K.J.; Hope, M.A.; Reeves, P.J.; Anayee, M.; Gogotsi, Y.; Grey, C.P. Bulk and Surface Chemistry of the Niobium MAX and MXene Phases from Multinuclear Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 2020, 142, 18924–18935. [Google Scholar] [CrossRef]
- Li, Z.; Yu, L.; Milligan, C.; Ma, T.; Zhou, L.; Cui, Y.; Qi, Z.; Libretto, N.; Xu, B.; Luo, J.; et al. Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nat. Commun. 2018, 9, 5258. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Gao, L.; Liu, X.; Fu, Y.; Ma, C.; Ge, Y.; Cao, R.; Zhang, X.; Al-Hartomy, O.A.; et al. MXene-based mixed-dimensional Schottky heterojunction towards self-powered flexible high-performance photodetector. Mater. Today Energy 2021, 21, 100479. [Google Scholar] [CrossRef]
- Yang, Y.; Ting, C.S. Electronic structures and electron–phonon superconductivity of Nb2C-based MXenes. J. Phys. D-Appl. Phys. 2020, 53, 485301. [Google Scholar] [CrossRef]
- Zhu, J.; Chroneos, A.; Schwingenschlögl, U. Nb-based MXenes for Li-ion battery applications. Phys. Status Solidi–Rapid. Res. Lett. 2015, 9, 726–729. [Google Scholar] [CrossRef]
- Seredych, M.; Shuck, C.E.; Pinto, D.; Alhabeb, M.; Precetti, E.; Deysher, G.; Anasori, B.; Kurra, N.; Gogotsi, Y. High-Temperature Behavior and Surface Chemistry of Carbide MXenes Studied by Thermal Analysis. Chem. Mater. 2019, 31, 3324–3332. [Google Scholar] [CrossRef]
- Babar, Z.U.D.; Anwar, M.S.; Mumtaz, M.; Iqbal, M.; Zheng, R.-K.; Akinwande, D.; Rizwan, S. Peculiar magnetic behaviour and Meissner effect in two-dimensional layered Nb2C MXene. 2D Mater. 2020, 7, 035012. [Google Scholar] [CrossRef]
- Din Babar, Z.U.; Fatheema, J.; Arif, N.; Anwar, M.S.; Gul, S.; Iqbal, M.; Rizwan, S. Magnetic phase transition from paramagnetic in Nb2AlC-MAX to superconductivity-like diamagnetic in Nb2C-MXene: An experimental and computational analysis. RSC Adv. 2020, 10, 25669–25678. [Google Scholar] [CrossRef]
- Xu, G.; Wang, J.; Zhang, X.; Yang, Z. First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes. Chin. Phys. B 2022, 31, 037304. [Google Scholar] [CrossRef]
- Halim, J.; Persson, I.; Moon, E.J.; Kuhne, P.; Darakchieva, V.; Persson, P.O.A.; Eklund, P.; Rosen, J.; Barsoum, M.W. Electronic and optical characterization of 2D Ti2C and Nb2C (MXene) thin films. J. Phys. Condens. Matter 2019, 31, 165301. [Google Scholar] [CrossRef] [PubMed]
- Palisaitis, J.; Persson, I.; Halim, J.; Rosen, J.; Persson, P.O.A. On the Structural Stability of MXene and the Role of Transition Metal Adatoms. Nanoscale 2018, 10, 10850–10855. [Google Scholar] [CrossRef] [PubMed]
- Echols, I.J.; Holta, D.E.; Kotasthane, V.S.; Tan, Z.; Radovic, M.; Lutkenhaus, J.L.; Green, M.J. Oxidative Stability of Nbn+1CnTz MXenes. J. Phys. Chem. C 2021, 125, 13990–13996. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, L.; Li, D.; Cao, J.; Han, W. Carbon-Reinforced Nb2CTx MXene/MoS2 Nanosheets as a Superior Rate and High-Capacity Anode for Sodium-Ion Batteries. ACS Nano 2021, 15, 7439–7450. [Google Scholar] [CrossRef]
- Qi, X.; Xu, W.; Tang, J.; Xu, Y.; Gao, Y.; Li, L.; Sasaki, S.-I.; Tamiaki, H.; Wang, X. Chlorophyll derivative intercalation into Nb2C MXene for lithium-ion energy storage. J. Mater. Sci. 2022, 57, 9971–9979. [Google Scholar] [CrossRef]
- Xu, H.; Fan, J.; Pang, D.; Zheng, Y.; Chen, G.; Du, F.; Gogotsi, Y.; Dall’Agnese, Y.; Gao, Y. Synergy of ferric vanadate and MXene for high performance Li- and Na-ion batteries. Chem. Eng. J. 2022, 436, 135012. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, Y.; Zheng, J.; Rong, J.; Li, H.; Niu, L. Exploring MXene-based materials for next-generation rechargeable batteries. J. Phys. Energy 2021, 3, 032009. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, D.; Qu, D.; Li, J.; Xie, Z.; Zhang, X.; Chen, H.; Tang, H. Porous oxygen-deficient TiNb2O7 spheres wrapped by MXene as high-rate and durable anodes for liquid and all-solid-state lithium-ion batteries. Chem. Eng. J. 2022, 438, 135328. [Google Scholar] [CrossRef]
- Eglitis, R.I. Theoretical prediction of the 5 V rechargeable Li ion battery using Li2CoMn3O8 as a cathode. Phys. Scripta 2015, 90, 094012. [Google Scholar] [CrossRef]
- Li, M.-P.; Zhang, C.-B.; Li, Y.-D.; Zhang, D.-T.; Chang, C.-G.; Liu, M.-C. Insert organic molecules into Nb2C layers through hydrogen bonds towards high-rate lithium ion storage. Ionics 2022, 28, 5099–5108. [Google Scholar] [CrossRef]
- Wu, J.; Guan, Y.; Li, K.; Xie, Q.; Wang, Z.; Zhu, H.; Zhang, Q.; Li, X.; Yuan, G.; Cong, Y. 2D porous Nb4N5@Nb2C heterojunctions for high-performance Li-ion batteries. 2D Mater. 2021, 9, 015029. [Google Scholar] [CrossRef]
- Li, A.; Wang, X.; Chen, J.; Dong, C.; Wang, D.; Mao, Z. Surface-Termination Groups’ Tuning to Improve the Lithium-Ion-Storage Performance of Ti3C2Tx MXene. Coatings 2022, 12, 1005. [Google Scholar] [CrossRef]
- Peng, R.; Han, K.; Tang, K. MXene Surface Functional Groups Regulation: Enhancing Area Capacitance of Divalent Zinc Ion Micro-Supercapacitor. J. Electrochem. Soc. 2022, 169, 060523. [Google Scholar] [CrossRef]
- Wang, K.; Jin, H.; Li, H.; Mao, Z.; Tang, L.; Huang, D.; Liao, J.-H.; Zhang, J. Role of surface functional groups to superconductivity in Nb2C-MXene: Experiments and density functional theory calculations. Surf. Interfaces 2022, 29, 101711. [Google Scholar] [CrossRef]
- Ma, P.; Fang, D.; Liu, Y.; Shang, Y.; Shi, Y.; Yang, H.Y. MXene-Based Materials for Electrochemical Sodium-Ion Storage. Adv. Sci. 2021, 8, e2003185. [Google Scholar] [CrossRef]
- Aslam, M.K.; AlGarni, T.S.; Javed, M.S.; Shah, S.S.A.; Hussain, S.; Xu, M. 2D MXene Materials for Sodium Ion Batteries: A review on Energy Storage. J. Energy Storage 2021, 37, 102478. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, F.; Ming, F.; Alshareef, H.N. Sodium-ion battery anodes: Status and future trends. EnergyChem 2019, 1, 100012. [Google Scholar] [CrossRef]
- Lei, Y.-J.; Yan, Z.-C.; Lai, W.-H.; Chou, S.-L.; Wang, Y.-X.; Liu, H.-K.; Dou, S.-X. Tailoring MXene-Based Materials for Sodium-Ion Storage: Synthesis, Mechanisms, and Applications. Electrochem. Energy Rev. 2020, 3, 766–792. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, H.; Chen, G.; Zhang, J. Sandwich-like N-doped carbon nanotube@Nb2C MXene composite for high performance alkali ion batteries. Ceram. Int. 2021, 47, 20610–20616. [Google Scholar] [CrossRef]
- Xiao, J.; Wu, B.; Bai, L.; Ma, X.; Lu, H.; Yao, J.; Zhang, C.; Gao, H. Ag Nanoparticles decorated few-layer Nb2CTx nanosheets architectures with superior lithium/sodium-ion storage. Electrochim. Acta 2022, 402, 139566. [Google Scholar] [CrossRef]
- Gao, H.; Guo, X.; Wang, S.; Zhang, F.; Liu, H.; Wang, G. Antimony-based nanomaterials for high-performance potassium-ion batteries. EcoMat 2020, 2, e12027. [Google Scholar] [CrossRef]
- Aslam, M.K.; Xu, M. A Mini-Review: MXene composites for sodium/potassium-ion batteries. Nanoscale 2020, 12, 15993–16007. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Wang, Y.; Yang, W.; Wang, F.; Yang, D.; Zhang, Y.; Liang, F.; Li, X.; Zhang, Y.; Zhao, J. Application of MXenes in lithium-sulfur batteries. Sci. China-Technol. Sci. 2022, 65, 2259–2273. [Google Scholar] [CrossRef]
- Tian, J.; Ji, G.; Han, X.; Xing, F.; Gao, Q. Advanced Nanostructured MXene-Based Materials for High Energy Density Lithium-Sulfur Batteries. Int. J. Mol. Sci. 2022, 23, 6329. [Google Scholar] [CrossRef]
- Chen, D.; Wen, K.; Lv, W.; Wei, Z.; He, W. Separator Modification and Functionalization for Inhibiting the Shuttle Effect in Lithium-Sulfur Batteries. Phys. Status Solidi–Rapid. Res. Lett. 2018, 12, 1800249. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, Z.; Meng, X.; Wang, R. MXene-engineered lithium–sulfur batteries. J. Mater. Chem. A 2019, 7, 22730–22743. [Google Scholar] [CrossRef]
- Song, C.; Zhang, W.; Jin, Q.; Zhang, Y.; Wang, X.; Bakenov, Z. In-situ constructed accordion-like Nb2C/Nb2O5 heterostructure as efficient catalyzer towards high-performance lithium-sulfur batteries. J. Power Sources 2022, 520, 230902. [Google Scholar] [CrossRef]
- Zong, H.; Hu, L.; Gong, S.; Yu, K.; Zhu, Z. Flower-petal-like Nb2C MXene combined with MoS2 as bifunctional catalysts towards enhanced lithium-sulfur batteries and hydrogen evolution. Electrochim. Acta 2022, 404, 139781. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.; Hou, Y.; Zhang, Z.; Lu, Y.; Huang, Z.; Liang, G.; Li, M.; Yang, Q.; Ma, J.; et al. Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule 2021, 5, 2993–3005. [Google Scholar] [CrossRef]
- Shi, C.; Liu, Z.; Tian, Z.; Li, D.; Chen, Y.; Guo, L.; Wang, Y. Regulated layer spacing and functional surface group of MXene film by hexamethylenetetramine for high-performance supercapacitors. Appl. Surf. Sci. 2022, 596, 153632. [Google Scholar] [CrossRef]
- Mohamed, S.G.; Hussain, I.; Sayed, M.S.; Shim, J.-J. One-step development of octahedron-like CuCo2O4@Carbon fibers for high-performance supercapacitors electrodes. J. Alloys Compd. 2020, 842, 155639. [Google Scholar] [CrossRef]
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sust. Energ. Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614. [Google Scholar] [CrossRef]
- Lu, M.; Han, W.; Li, H.; Zhang, W.; Zhang, B. There is plenty of space in the MXene layers: The confinement and fillings. J. Energy Chem. 2020, 48, 344–363. [Google Scholar] [CrossRef]
- Sun, Y.; Yi, R.; Zhao, Y.; Liu, C.; Yuan, Y.; Geng, X.; Li, W.; Feng, Z.; Mitrovic, I.; Yang, L.; et al. Improved pseudocapacitances of supercapacitors based on electrodes of nitrogen-doped Ti3C2Tx nanosheets with in-situ growth of carbon nanotubes. J. Alloys Compd. 2021, 859, 158347. [Google Scholar] [CrossRef]
- Xiao, J.; Wen, J.; Zhao, J.; Ma, X.; Gao, H.; Zhang, X. A safe etching route to synthesize highly crystalline Nb2CTx MXene for high performance asymmetric supercapacitor applications. Electrochim. Acta 2020, 337, 135803. [Google Scholar] [CrossRef]
- Shen, B.; Liao, X.; Zhang, X.; Ren, H.-T.; Lin, J.-H.; Lou, C.-W.; Li, T.-T. Synthesis of Nb2C MXene-based 2D layered structure electrode material for high-performance battery-type supercapacitors. Electrochim. Acta 2022, 413, 140144. [Google Scholar] [CrossRef]
- Liao, L.; Wu, B.; Kovalska, E.; Mazanek, V.; Vesely, M.; Marek, I.; Spejchalova, L.; Sofer, Z. The Role of Alkali Cation Intercalates on the Electrochemical Characteristics of Nb2CTx MXene for Energy Storage. Chemistry 2021, 27, 13235–13241. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Liu, Y.; Zhu, S.; Wu, D.; Wang, G.; Zhang, J.; Wang, Y.; Hou, L.; Yuan, C. Formation and operating mechanisms of single-crystalline perovskite NaNbO3 nanocubes/few-layered Nb2CTx MXene hybrids towards Li-ion capacitors. J. Mater. Chem. A 2021, 9, 20405–20416. [Google Scholar] [CrossRef]
- Zhao, W.; Jin, B.; Wang, L.; Ding, C.; Jiang, M.; Chen, T.; Bi, S.; Liu, S.; Zhao, Q. Ultrathin Ti3C2 nanowires derived from multi-layered bulks for high-performance hydrogen evolution reaction. Chin. Chem. Lett. 2022, 33, 557–561. [Google Scholar] [CrossRef]
- Kang, Z.; Khan, M.A.; Gong, Y.; Javed, R.; Xu, Y.; Ye, D.; Zhao, H.; Zhang, J. Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 6089–6108. [Google Scholar] [CrossRef]
- Cui, C.; Cheng, R.; Zhang, H.; Zhang, C.; Ma, Y.; Shi, C.; Fan, B.; Wang, H.; Wang, X. Ultrastable MXene@Pt/SWCNTs’ Nanocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2020, 30, 2000693. [Google Scholar] [CrossRef]
- Han, M.; Yang, J.; Jiang, J.; Jing, R.; Ren, S.; Yan, C. Efficient tuning the electronic structure of N-doped Ti-based MXene to enhance hydrogen evolution reaction. J. Colloid Interface Sci. 2021, 582, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Du, P.; Ma, X.; Wang, R.; Ma, J.; Wang, Y.; Fan, D.; Long, Y.; Deng, B.; Huang, K.; et al. Mechanochemical Synthesis of Pt/Nb2CTx MXene Composites for Enhanced Electrocatalytic Hydrogen Evolution. Materials 2021, 14, 2426. [Google Scholar] [CrossRef]
- Zhang, S.; Zhuo, H.; Li, S.; Bao, Z.; Deng, S.; Zhuang, G.; Zhong, X.; Wei, Z.; Yao, Z.; Wang, J.-G. Effects of surface functionalization of mxene-based nanocatalysts on hydrogen evolution reaction performance. Catal. Today 2021, 368, 187–195. [Google Scholar] [CrossRef]
- Makola, L.C.; Moeno, S.; Ouma, C.N.M.; Sharma, A.; Vo, D.-V.N.; Dlamini, L.N. Facile fabrication of a metal-free 2D–2D Nb2CTx@g-C3N4 MXene-based Schottky-heterojunction with the potential application in photocatalytic processes. J. Alloys Compd. 2022, 916, 165459. [Google Scholar] [CrossRef]
- Tayyab, M.; Liu, Y.; Liu, Z.; Pan, L.; Xu, Z.; Yue, W.; Zhou, L.; Lei, J.; Zhang, J. One-pot in-situ hydrothermal synthesis of ternary In2S3/Nb2O5/Nb2C Schottky/S-scheme integrated heterojunction for efficient photocatalytic hydrogen production. J. Colloid Interface Sci. 2022, 628, 500–512. [Google Scholar] [CrossRef]
- Xu, W.; Li, X.; Peng, C.; Yang, G.; Cao, Y.; Wang, H.; Peng, F.; Yu, H. One-pot synthesis of Ru/Nb2O5@Nb2C ternary photocatalysts for water splitting by harnessing hydrothermal redox reactions. Appl. Catal. B-Environ. 2022, 303, 120910. [Google Scholar] [CrossRef]
- Li, M.; Singh, R.; Soares, M.S.; Marques, C.; Zhang, B.; Kumar, S. Convex fiber-tapered seven core fiber-convex fiber (CTC) structure-based biosensor for creatinine detection in aquaculture. Opt. Express 2022, 30, 13898–13914. [Google Scholar] [CrossRef]
- Kumar, A.N.; Pal, K. Amine-functionalized stable Nb2CTx MXene toward room temperature ultrasensitive NO2 gas sensor. Mater. Adv. 2022, 3, 5151–5162. [Google Scholar] [CrossRef]
- Li, W.; Miao, Y.; Zheng, Y.; Zhang, K.; Yao, J. Nb2CTx MXene Integrated Tapered Microfiber Based on Light-Controlled Light for Ultra-Sensitive and Wide-Range Hemoglobin Detection. IEEE Sens. J. 2022, 22, 11456–11462. [Google Scholar] [CrossRef]
- Cui, C.; Guo, R.; Ren, E.; Xiao, H.; Zhou, M.; Lai, X.; Qin, Q.; Jiang, S.; Qin, W. MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave. Chem. Eng. J. 2021, 405, 126626. [Google Scholar] [CrossRef]
- Rajavel, K.; Yu, X.; Zhu, P.; Hu, Y.; Sun, R.; Wong, C. Investigation on the structural quality dependent electromagnetic interference shielding performance of few-layer and lamellar Nb2CTx MXene nanostructures. J. Alloys Compd. 2021, 877, 160235. [Google Scholar] [CrossRef]
- Jin, Z.; Fang, Y.; Wang, X.; Xu, G.; Liu, M.; Wei, S.; Zhou, C.; Zhang, Y.; Xu, Y. Ultra-efficient electromagnetic wave absorption with ethanol-thermally treated two-dimensional Nb2CTx nanosheets. J. Colloid Interface Sci. 2019, 537, 306–315. [Google Scholar] [CrossRef]
- Song, S.; Liu, J.; Zhou, C.; Jia, Q.; Luo, H.; Deng, L.; Wang, X. Nb2O5/Nb2CTx composites with different morphologies through oxidation of Nb2CTx MXene for high-performance microwave absorption. J. Alloys Compd. 2020, 843, 155713. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, C.; Sun, Y.; Yu, H. Amino-Functionalized Niobium-Carbide MXene Serving as Electron Transport Layer and Perovskite Additive for the Preparation of High-Performance and Stable Methylammonium-Free Perovskite Solar Cells. Adv. Funct. Mater. 2022, 32, 2113367. [Google Scholar] [CrossRef]
- Chu, K.; Li, X.; Li, Q.; Guo, Y.; Zhang, H. Synergistic Enhancement of Electrocatalytic Nitrogen Reduction Over Boron Nitride Quantum Dots Decorated Nb2CTx -MXene. Small 2021, 17, e2102363. [Google Scholar] [CrossRef]
- Xia, W.; Cheng, H.; Zhou, S.; Yu, N.; Hu, H. Synergy of copper Selenide/MXenes composite with enhanced solar-driven water evaporation and seawater desalination. J. Colloid Interface Sci. 2022, 625, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, W.; Liu, W.; Zhang, J.; Song, M.; Zhang, C.; Zhang, J.; Wang, D. Nb2CTx MXenes functionalized Co−NC enhancing electrochemical H2O2 production for organics degradation. Appl. Catal. B-Environ. 2022, 317, 121737. [Google Scholar] [CrossRef]
- Li, C.; Liang, L.; Liu, X.; Cao, N.; Shao, Q.; Zou, P.; Zang, X. A lean-zinc anode battery based on metal–organic framework-derived carbon. Carbon Energy 2022. [Google Scholar] [CrossRef]
Etching Solution | Temperature/°C | Time/h | References |
---|---|---|---|
50% HF | 25 | 240 | [14] |
40% HF | 60 | 90 | [46] |
48% HF | 55 | 48 | [57] |
50% HF | 55 | 72 | [58] |
48% HF | 80 | 24 | [59] |
50% HF | 30 | 24 | [60] |
40% HF | 50 | 72 | [61] |
Battery | Materials | Current Density | Cycles | Capacity (mAh/g) | References |
---|---|---|---|---|---|
LIB | Li-Nb2CTx-400 | 2 A/g | 2000 | 342 | [14] |
LIB | Nb2CTx-CNT | 2.5 C | 300 | 430 | [20] |
LIB | Chl@Nb2C | 0.5 A/g | 200 | 163 | [77] |
LIB | BA-Nb2C | 1 A/g | 500 | 261.7 | [82] |
LIB | Nb4N5@Nb2C | 2 A/g | 800 | 109.2 | [83] |
KIB | 3D-rGO/Nb2C | 0.5 A/g | 1000 | 139 | [21] |
KIB | Nb2C/ rGO | 2 A/g | 500 | 301.7 | [94] |
SIB | Nb2CTx@MoS2@C | 1 A/g | 2000 | 403 | [76] |
SIB | Ag-Nb2CTx | 0.05 A/g | 50 | 183 | [93] |
Li-S | Nb2C/Nb2O5 | 1.0 C | 500 | 621 | [100] |
Li-S | MoS2/Nb2C | 0.2 C | 200 | 919.2 | [101] |
AIB | Nb2CTx | 0.5 A/g | 500 | 80 | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, G.; Guo, F. A Review of Nb2CTx MXene: Synthesis, Properties and Applications. Batteries 2023, 9, 235. https://doi.org/10.3390/batteries9040235
Guan G, Guo F. A Review of Nb2CTx MXene: Synthesis, Properties and Applications. Batteries. 2023; 9(4):235. https://doi.org/10.3390/batteries9040235
Chicago/Turabian StyleGuan, Guozhen, and Fengmei Guo. 2023. "A Review of Nb2CTx MXene: Synthesis, Properties and Applications" Batteries 9, no. 4: 235. https://doi.org/10.3390/batteries9040235
APA StyleGuan, G., & Guo, F. (2023). A Review of Nb2CTx MXene: Synthesis, Properties and Applications. Batteries, 9(4), 235. https://doi.org/10.3390/batteries9040235