Recent Research Progress on All-Solid-State Mg Batteries
Abstract
:1. Introduction
Li | Na | K | Mg | Ca | Zn | Al | |
---|---|---|---|---|---|---|---|
Standard redox potential (E vs. SHE) | −3.04 | −2.71 | −2.93 | −2.37 | −2.87 | −0.76 | −1.66 |
Volumetric capacity (mAh/cm3) | 2062 | 1128 | 591 | 3883 | 2073 | 5851 | 8046 |
Specific capacity (mAh/g) | 3861 | 1166 | 685 | 2205 | 1337 | 820 | 2980 |
Abundance (%) | 0.002 | 2.7 | 2.4 | 2.08 | 5 | 0.008 | 8.2 |
Ionic radius (Å) | 0.76 | 1.02 | 1.38 | 0.72 | 1.00 | 0.74 | 0.535 |
Relative atomic mass | 6.94 | 22.98 | 39.1 | 24.31 | 40.08 | 65.39 | 26.98 |
Mass to charge | 6.94 | 22.98 | 39.1 | 12.16 | 20.04 | 32.7 | 8.99 |
2. Solid Electrolytes for Mg Battery
2.1. Inorganic Electrolyte
2.1.1. Oxides
2.1.2. Chalcogenides
2.1.3. Hydrides
2.1.4. MOF (Metal–Organic Framework)
2.2. Organic Electrolyte
2.2.1. Solid Polymer Electrolytes
2.2.2. Polymer Electrolytes with Plasticizers (Gel-Polymer Electrolytes)
2.2.3. Organic Crystal Electrolytes
2.3. Organic–Inorganic Composite Electrolytes
2.3.1. Solid Polymer Electrolytes with Fillers
2.3.2. Solid Polymer Electrolytes including Plasticizers and Fillers
3. All-Solid-State Mg Battery
3.1. Inorganic Electrolyte
3.2. MOF
3.3. Organic Electrolyte
Gel Polymer Electrolyte
3.4. Organic–Inorganic Composite Electrolytes
4. Challenges
- (1)
- Inorganic electrolytes
- (2)
- Study on Mg salts
- (3)
- Mechanical properties of solid electrolytes
- (4)
- Construction of all-solid-state Mg battery
- (5)
- Energy density
- (6)
- Cathode materials
Author Contributions
Funding
Conflicts of Interest
References
- Winter, M.; Barnett, N.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lu, J.; Chen, Z.W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, D.; Tan, H.; Zhang, X.; Rui, X.; Yu, Y. 3D porous V2O5 architectures for high-rate lithium storage. J. Energy Chem. 2020, 40, 15–21. [Google Scholar] [CrossRef]
- Zeng, J.; Peng, C.; Wang, R.; Cao, C.; Wang, X.; Liu, J. Micro-sized FeS2@FeSO4 core-shell composite for advanced lithium storage. J. Alloys Compd. 2020, 814, 151922. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Whittingham, M.S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 2014, 114, 11414–11443. [Google Scholar] [CrossRef]
- Xu, W.; Wnag, J.L.; Ding, F.; Chen, X.L.; Nasybutin, E.; Zhang, Y.H.; Zhang, J.G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, J.; Song, X.; Jin, Z. Recent progress in constructing halogenated interfaces for highly stable lithium metal anodes. Energy Storage Mater. 2023, 54, 732–775. [Google Scholar] [CrossRef]
- Sarkar, S.; Thangadurai, V. Critical current densities for high-performance all-solid-state Li-metal batteries: Fundamentals mechanisms, interfaces materials and applications. ACS Energy Lett. 2022, 7, 1492–1527. [Google Scholar] [CrossRef]
- Feng, Z.; Kotobuki, M.; Song, S.; Lai, M.O.; Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 2018, 389, 198–213. [Google Scholar] [CrossRef]
- Hebie, S.; Mgo, H.P.K.; Lepretre, J.-C.; Iojoiu, C.; Cointeaux, L.; Berthelot, R.; Alloin, F. Electrolyte based on easily synthesized, low cost triphenolate-borohydride salt for high performance Mg(TFSI)2-glyme rechargeable magnesium batteries. ACS Appl. Mater. Interfaces 2017, 9, 28377–28385. [Google Scholar] [CrossRef]
- Wei, C.; Tan, L.; Zhang, Y.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y. Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries. Energy Storage Mater. 2022, 48, 447–457. [Google Scholar] [CrossRef]
- Jackle, M.; Helmbrecht, K.; Smits, M.; Stottmeister, D.; Gross, A. Self-diffusion barriers: Possible descriptors for dendrite growth in batteries. Energy Environ. Sci. 2018, 11, 3400–3407. [Google Scholar] [CrossRef]
- Kotobuki, M. Recent progress of ceramic electrolytes for post Li and Na batteries. Funct. Mater. Lett. 2021, 14, 2130003. [Google Scholar] [CrossRef]
- Shuai, H.; Xu, J.; Huang, K. Progress in retrospect of electrolytes for secondary magnesium batteries. Coord. Chem. Rev. 2020, 422, 213478. [Google Scholar] [CrossRef]
- Chen, C.; Wang, K.; He, H.; Hanc, E.; Kotobuki, M.; Lu, L. Processing and properties of garnet-type Li7La3Zr2O12 ceramic electrolytes. Small 2022, 19, 2205550. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Fu, K.; Kammampata, S.P.; McOwen, D.W.; Samson, A.J.; Zhang, L.; Hits, G.T.; Nolan, A.M.; Wachman, E.D.; Mo, Y.; et al. Garnet-type solid-state electrolytes: Materials, interfaces and batteries. Chem. Rev. 2020, 120, 4257–4300. [Google Scholar] [CrossRef] [PubMed]
- Miao, G.; CHongyang, Y.; Tengfei, Z.; Xuebin, Y. Solid state electrolytes for rechargeable magnesium-ion batteries: From structure to mechanism. Small 2022, 18, 2106981. [Google Scholar]
- Stefania, F.; Marisa, F.; Belen, B.G.A.; Matteo, B.; Segio, B.; Michele, P.; Claudio, G. Solid-state post Li metal ion batteries: A sustainable forthcoming reality? Adv. Energy Mater. 2021, 11, 2100785. [Google Scholar]
- Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on Sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682. [Google Scholar] [CrossRef]
- Yan, B.; Wang, Z.; Ren, H.; Lu, X.; Qu, Y.; Liu, W.; Jiang, K.; Kotobuki, M. Interfacial modification of Na3Zr2Si2PO12 solid electrolyte by femtosecond laser etching. Ionics 2023, 29, 865–870. [Google Scholar] [CrossRef]
- Nakayama, M.; Nakano, K.; Harada, M.; Tanibata, N.; Takeda, H.; Noda, Y.; Kobatashi, R.; Karasuyama, M.; Takeuchi, I.; Kotobuki, M. Na superionic conductor-type LiZr2(PO 4)3 as a promising solid electrolyte for use in all-solid-state Li metal batteries. Chem. Comm. 2022, 58, 9328. [Google Scholar] [CrossRef] [PubMed]
- Kotobuki, M.; Yanagiya, S. Li-ion conductivity of NASICON-type Li1+2xZr2-xCax(PO4)3 solid electrolyte prepared by spark plasma sintering. J. Alloys Compd. 2021, 862, 158641. [Google Scholar] [CrossRef]
- Kotobuki, M.; Koishi, M. Preparation of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte via a sol-gel method using various Ti Sources. J. Asian Ceram. Soc. 2020, 8, 891–897. [Google Scholar] [CrossRef]
- Kotobuki, M.; Koishi, M. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol-gel route using various Al sources. Ceram. Int. 2013, 39, 4645–4649. [Google Scholar] [CrossRef]
- Hayamizu, K.; Haishi, T. Ceramic-glass pellet thickness and Li diffusion in NASICON-type LAGP (Li1.5Al0.5Ge1.5(PO4)3) studied by pulsed field gradient NMR spectroscopy. Solid State Ion. 2022, 380, 115924. [Google Scholar] [CrossRef]
- Yan, B.; QU, Y.; Ren, H.; Lu, X.; Wang, Z.; Liu, W.; Wang, Y.; Kotobuki, M.; Jiang, K. A solid-liquid composite electrolyte with a vertical microporous Li1.5Al0.5Ge1.5(PO4)3 skeleton that prepared by femtosecond laser structuring and filled with ionic liquid. Mater. Chem. Phys. 2022, 287, 126265. [Google Scholar] [CrossRef]
- Lee, W.; Tamura, S.; Imanaka, N. Synthesis and characterization of divalent ion conductors with NASICON-type structures. J. Asian Ceram. Soc. 2019, 7, 221–227. [Google Scholar] [CrossRef]
- Shao, Y.J.; Zhong, G.M.; Lu, Y.X.; Liu, L.L.; Zhao, C.L.; Zhang, Q.Q. A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity. Energy Storage Mater. 2019, 23, 514–521. [Google Scholar] [CrossRef]
- Ikeda, S.; Takahashi, M.; Ishikawa, J.; Ito, K. Solid electrolytes with multivalent cation conduction. 1. Conducting species in MgZrPO4 system. Solid State Ion. 1987, 23, 125–129. [Google Scholar] [CrossRef]
- Nakano, K.; Noda, Y.; Tanibata, N.; Nakayama, M.; Kajihara, K.; Kanamura, K. Computational investigation of the Mg-ion conductivity and phase stability of MgZr4(PO4)6. RSC Adv. 2019, 9, 12590–12595. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, J.; Morota, K.; Kuwata, N.; Nakamura, Y.; Maekawa, H.; Hattori, T.; Imanaka, N.; Okazaki, Y.; Adachi, G.-Y. High temperature 31P NMR study on Mg2+ ion conductors. Solid State Comm. 2001, 120, 295–298. [Google Scholar] [CrossRef]
- Anuar, N.K.; Adnan, S.B.R.S.; Jaafar, M.H.; Mohamed, N.S. Studies on structural and electrical properties of Mg0.5+y(Zr2-yFey)2(PO4)3 ceramic electrolytes. Ionics 2016, 22, 1125–1133. [Google Scholar] [CrossRef]
- Tamura, S.; Yamane, M.; Hoshino, Y.; Imanaka, N. Highly conducting divalent Mg2+ cation solid electrolytes with well-ordered three-dimensional network structure. J. Solid State Chem. 2016, 235, 7–11. [Google Scholar] [CrossRef]
- Anuar, N.K.; Mohamed, N.S. Structural and electrical properties of novel Mg0.9+0.5yZn0.4AlyZr1.6-y(PO4)3 ceramic electrolytes synthesized via nitrate sol-gel method. J. Sol-Gel Sci. Technol. 2016, 80, 249–258. [Google Scholar] [CrossRef]
- Halim, Z.A.; Adnan, S.B.R.S.; Mohamed, N.S. Effect of sintering temperature on the structural, electrical and electrochemical properties of novel Mg0.5Si2(PO4)3 ceramic electrolytes. Ceram. Int. 2016, 42, 4452–4461. [Google Scholar] [CrossRef]
- Su, J.; Tsuruoka, T.; Tsujita, T.; Nishitani, Y.; Nakura, K.; Terabe, K. Aromic layer deposition of a magnesium phosphate solid electrolyte. Chem. Mater. 2019, 31, 5566–5575. [Google Scholar] [CrossRef]
- Takeda, H.; Nakano, K.; Tanibata, N.; Nakayama, M. Novel Mg-ion conductive oxide of μ-cordierite Mg0.6Al1.2Si1.8O6. Sci. Technol. Adv. Mater. 2020, 21, 131–138. [Google Scholar] [CrossRef]
- Omote, A.; Yotsuhashi, S.; Zenitani, Y.; Yamada, Y. High ion conductivity in MgHf(WO4)3 solids with ordered structure: 1-D alignments of Mg2+ and Hf4+ ions. J. Am. Ceram. Soc. 2011, 94, 2285–2288. [Google Scholar] [CrossRef]
- Fujii, Y.; Kobayashi, M.; Miura, A.; Rosero-Navarro, N.C.; Li, M.; Sun, J.; Kotobuki, M.; Tadanaga, K. Fe-P-S electrodes for all-solid-state lithium secondary batteries using sulfide-based solid electrolytes. J. Power Sources 2020, 449, 227576. [Google Scholar] [CrossRef]
- Yamanaka, T.; Hayashi, A.; Yamauchi, A.; Tatsumisago, M. Preparation of magnesium ion conducting MgS-P2S5-MgI2 glasses by a mechanochemical technique. Solid State Ion. 2014, 262, 601–603. [Google Scholar] [CrossRef]
- Canepa, P.; Bo, S.-H.; Gautam, G.S.; Key, B.; Richards, W.D.; Shi, T.; Tian, Y.; Wang, Y.; Li, J.; Ceder, G. High magnesium mobility in ternary spinel chalcogenides. Nat. Comm. 2017, 8, 1759. [Google Scholar] [CrossRef] [PubMed]
- Koishi, M.; Kotobuki, M. Preparation of Y-doped Li7La3Zr2O12 by co-precipitation method. Ionics 2022, 28, 2065–2072. [Google Scholar] [CrossRef]
- Wang, L.-P.; Zhao-Karger, Z.; Klein, F.; Chable, J.; Braun, T.; Schuer, A.R.; Wang, C.-R.; Guo, Y.-G.; Fichtner, M. MgSc2Se4-magnesium solid ionic conductor for all-solid-state Mg batteries? ChemSusChem 2019, 12, 2286–2293. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Solomatin, N.; Kauffmann, Y.; Kraytsberg, A.; Ein-Eli, Y. Revealing and excluding the root cause of the electronic conductivity in Mg-ion MgSc2Se4 solid electrolyte. Appl. Mater. Today 2021, 23, 100998. [Google Scholar] [CrossRef]
- Kundu, S.; Solomatin, N.; Kraytsberg, A.; Ein-Eli, Y. MgSc2Se4 solid electrolyte for rechargeable Mg batteries: An electric field-assisted all-solid-state synthesis. Energy Technol. 2022, 10, 2200896. [Google Scholar] [CrossRef]
- Clemenceau, T.; Andriamady, N.; Kumar, M.K.; Bardran, A.; Avila, V.; Dhal, K.; Hopkins, M.; Vendrell, X.; Marshall, D.; Raj, R. Flash sintering of Li-ion conducting ceramic in a few seconds at 850 °C. Scr. Mater. 2019, 172, 1–5. [Google Scholar] [CrossRef]
- Yan, B.; Kang, L.; Kotobuki, M.; He, L.; Liu, B.; Jiang, K. Boron group element doping of Li1.5Al0.5Ge1.5(PO4)3 based on microwave sintering. J. Solid State Electrochem. 2021, 25, 527–534. [Google Scholar] [CrossRef]
- Wang, C.; Ping, W.; Bai, Q.; Cui, H.; Hensleigh, R.; Wang, R.; Brozena, A.H.; Xu, Z.; Dai, J.; Pei, Y.; et al. A general method to synthesize and sinter bulk ceramics in seconds. Science 2020, 368, 521–526. [Google Scholar] [CrossRef]
- Anuar, N.K.; Adnan, S.B.R.S.; Mohamed, N.S. Characterization of Mg0.5Zr2(PO4)3 for potential use as electrolyte in solid state magnesium batteries. Ceram. Int. 2014, 40, 13719–13727. [Google Scholar] [CrossRef]
- Mohammed, A.; Kale, G.M. Novel sol-gel synthesis of MgZr4P6O24 composite solid electrolyte and newer insight into the Mg2+-ion conducting properties using impedance spectroscopy. J. Phys. Chem. C 2016, 120, 17909–17915. [Google Scholar]
- Imanaka, N.; Okazaki, Y.; Adachi, G.-Y. Divalent magnesium ion conducting characteristics in phosphate based solid electrolyte composites. J. Mater. Chem. C 2000, 10, 1431–1435. [Google Scholar] [CrossRef]
- Imanaka, N.; Okazaki, Y.; Adachi, G. Optimization of divalent magnesium ion conduction in phosphate based polycrystalline solid electrolytes. Ionics 2001, 7, 440–446. [Google Scholar] [CrossRef]
- Liang, B.; Kreshishian, V.; Liu, S.; Yi, E.; Jia, D.; Zhou, Y.; Kieffer, J.; Ye, B.; Kaine, R.M. Processing liquid-feed flame spray pyrolysis synthesized Mg0.5Ce0.2Zr1.8(PO4)3 nanopowders to free standing thin films and pellets as potential electrolytes in all-solid-state Mg batteries. Electrochim. Acta 2018, 272, 144–153. [Google Scholar] [CrossRef]
- Kajihara, K.; Nagano, H.; Tsujita, T.; Munakata, H.; Kanamura, K. High-temperature conductivity measurements of magnesium-ion-conducting solid oxide Mg0.5-x(Zr1-xNbx)2(PO4)3 (x = 0.15) using Mg metal electrodes. J. Electrochem. Soc. 2017, 164, A2183–A2185. [Google Scholar] [CrossRef]
- Mustafa, M.; Rani, M.S.A.; Adnan, S.B.R.S.; Salleh, F.M.; Mohamed, N.S. Characteristics of new Mg0.5(Zr1-xSnx)2(PO4)3 NASICON structured compound as solid electrolytes. Ceram. Int. 2020, 46, 28145–28155. [Google Scholar] [CrossRef]
- Imanaka, N.; Okazaki, Y.; Adachi, G. Divalent magnesium ionic conduction in Mg1-2x(Zr1-xNbx)4P6O24 (x = 0-0.4) solid solutions. Electrochem. Solid State Lett. 2000, 3, 327–329. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, C.; Wang, Y.; Yi, E.; Wang, W.; Kieffer, J.; Laine, R.M. Processing combustion synthesized Mg0.5Zr2(PO4)3 nanopowders to thin films as potential solid electrolytes. Electrochem. Comm. 2020, 116, 106753. [Google Scholar] [CrossRef]
- Halim, Z.A.; Adnan, S.B.R.S.; Salleh, F.M.; Mohamed, N.S. Effects of Mg2+ interstitial ion on the properties of Mg0.5+x/2Si2-xAlx(PO4)3 ceramic electrolytes. J. Magnes. Alloy 2017, 5, 439–447. [Google Scholar] [CrossRef]
- Sulaiman, M.; Su, N.C.; Mohamed, N.S. Sol-gel synthesis and characterization of β-MgSO4: Mg(NO3)2-MgO composite solid electrolyte. Ionics 2017, 23, 443–452. [Google Scholar] [CrossRef]
- Matsuo, M.; Oguchi, H.; Sato, T.; Takamura, H.; Tsuchida, E.; Ikeshoji, T.; Orimo, S.-I. Sodium and magnesium ionic conduction in comlex hydrides. J. Alloys Compd. 2013, 580, S98–S101. [Google Scholar] [CrossRef]
- Higashi, S.; Miwa, K.; Aoki, M.; Takechi, K. A novel inorganic solid state ion conductor for rechargeable Mg batteries. Chem. Comm. 2014, 50, 1320. [Google Scholar] [CrossRef] [PubMed]
- Ruyet, R.L.; Berthelot, R.; Salager, E.; Florian, P.; Fleutot, B.; Janot, R. Investigation of Mg(BH4)(NH2)-based composite materials with enhanced Mg2+ ionic conductivity. J. Phys. Chem. C 2019, 123, 10756–10763. [Google Scholar] [CrossRef]
- Roedern, E.; Kuhnel, R.-S.; Remhof, A.; Battaglia, C. Magnesium ethylenediamine borohydride as solid-state electrolyte for magnesium batteries. Sci. Rep. 2017, 7, 46189. [Google Scholar] [CrossRef] [PubMed]
- Kisu, K.; Kim, S.; Inukai, M.; Oguchi, H.; Takagi, S.; Orimo, S.-I. Magnesium borohydride ammonia borane as a magnesium ionic conductor. ACS Appl. Energy Mater. 2020, 3, 3174–3179. [Google Scholar] [CrossRef]
- Luo, X.; Rawal, A.; Cazorla, C.; Aguey-Zinsou, K.F. Facile self-forming superionic conductors based on complex borohydride surface oxidation. Adv. Sus. Syst. 2020, 4, 1900113. [Google Scholar] [CrossRef]
- Wang, Q.; Li, H.; Zhang, R.; Liu, Z.; Deng, H.; Cen, W.; Yan, Y.; Chen, Y. Oxygen vacancies boosted fast Mg2+ migration in solids at room temperature. Energy Storage Mater. 2022, 51, 630–637. [Google Scholar] [CrossRef]
- Yan, Y.; Grinderslev, J.B.; Burankova, T.; Wei, S.; Embs, J.P.; Skibsted, J.; Jensen, T.R. Fast room-temperature Mg2+ conductivity in Mg(BH4)2∙1.6NH3-Al2O3 nanocomposites. J. Phys. Chem. Lett. 2022, 13, 2211–2216. [Google Scholar] [CrossRef]
- Yan, Y.; Grinderslev, J.B.; Jorgensen, M.; Skov, L.N.; Skibsted, J.; Jensen, T.R. Ammine magnesium borohydride nanocomposites for all-solid-state magnesium batteries. ACS Appl. Energy Mater. 2020, 3, 9264–9270. [Google Scholar] [CrossRef]
- Skov, L.N.; Grinderslev, J.B.; Rosenkranz, A.; Lee, Y.-S.; Jensen, T.R. Towards solid-state magnesium batteries: Ligand-assisted superionic conductivity. Batter. Supercaps 2022, 5, e202200163. [Google Scholar] [CrossRef]
- Ruyet, R.L.; Fleutot, B.; Berthelot, R.; Benabed, Y.; Hatier, G.; Filinchuk, Y.; Janot, R. Mg3(BH4)4(NH2)2 as inorganic solid electrolyte with high Mg2+ ionic conductivity. ACS Appl. Energy Mater. 2020, 3, 6093–6097. [Google Scholar] [CrossRef]
- Pang, Y.; Nie, Z.; Xu, F.; Sun, L.; Yang, J.; Sun, D.; Fang, F.; Zheng, S. Borohydride ammoniate solid electrolyte design for all-solid-state Mg batteries. Energy Environ. Mater. 2022, e12527. [Google Scholar] [CrossRef]
- Rouhani, F.; Rafizadeh-Masuleh, F.; Morsali, A. Highly electroconductive metal-organic framework: Tunable by metal ion sorption quantity. J. Am. Chem. Soc. 2019, 141, 11173–11182. [Google Scholar] [CrossRef]
- Yanai, N.; Uemura, T.; Horike, S.; Shimomura, S.; Kiragawa, S. Inclusion and dynamics of a polymer-Li salt complex in coordination nanochannels. Chem. Comm. 2011, 47, 1722–1724. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.K.; Farkas, A.; Varzi, A.; Jacob, T. Mixed metal-organic frameworks as efficient semi-solid electrolytes for magnesium-ion batteries. Batter. Supecaps 2022, 5, e202200260. [Google Scholar] [CrossRef]
- Wei, Z.; Maile, R.; Riegger, L.M.; Rohnke, M.; Muller-Buschbaum, K.; Janek, J. Ionic liquid-incorporated metal-organic framework with high magnesium ion conductivity for quasi-solid-state magnesium batteries. Batter. Supecaps 2022, 5, e202200318. [Google Scholar] [CrossRef]
- Zheng, Y.; Guo, J.; Ning, D.; Hunag, Y.; Lei, W.; Li, J.; Li, J.; Schuck, G.; Shen, J.; Guo, Y.; et al. Design of metal-organic frameworks for improving pseudo-solid-state magnesium-ion electrolytes: Open metal sites, isoreticular expansion and framework topology. J. Mater. Sci. Technol. 2023, 144, 15–27. [Google Scholar] [CrossRef]
- Luo, J.; Li, Y.; Zhang, H.; Wang, A.; Lo, W.-S.; Dong, Q.; Wong, N.; Povinelli, C.; Shao, Y.; Chereddy, S.; et al. A metal-organic framework thin film for selective Mg2+ transport. Angew. Chem. Int. Ed. 2019, 58, 15313–15317. [Google Scholar] [CrossRef] [PubMed]
- Aubrey, M.L.; Ameloot, R.; Wiers, B.M.; Long, J.R. Metal-organic frameworks as solid magnesium electrolytes. Energy Environ. Sci. 2014, 7, 667–671. [Google Scholar] [CrossRef]
- Park, S.S.; Tukchinsky, Y.; Dinca, M. Single-ion Li+, Na+ and Mg2+ solid electrolytes supported by a mesoporous anionic Cu-azolate metal-organic framework. J. Am. Chem. Soc. 2017, 139, 13260–13263. [Google Scholar] [CrossRef]
- Miner, E.M.; Park, S.S.; Dinca, M. High Li+ and Mg2+ conductivity in a Cu-azolate metal-organic framework. J. Am. Chem. Soc. 2019, 141, 4422–4427. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Yamada, T.; Jing, Y.; Toyao, T.; Shimizu, K.-I.; Sadakiyo, M. Super Mg2+ conductivity around 10-3 S cm-1 observed in a porous metal-organic framework. J. Am. Chem. Soc. 2022, 144, 8669–8675. [Google Scholar]
- Walke, P.; Venturini, J.; Spranger, R.j.; Wullen, L.; Nilges, T. Fast Magnesium Conductiong Electrospun Solid Polymer Electrolyte. Battery Supercap. 2022, 5, e202200285. [Google Scholar] [CrossRef]
- Reddy, M.J.; Chu, P.P. Ion pair formation and its effect in PEO:Mg solid polymer electrolyte system. J. Power Sources 2002, 109, 340–346. [Google Scholar] [CrossRef]
- Basha, S.K.S.; Rao, M.C. Spectroscopic and electrochemical properties of PVP based polymer electrolyte films. Polym. Bull. 2018, 75, 3641–3666. [Google Scholar] [CrossRef]
- Basha, S.K.S.; Sundari, G.S.; Kumar, K.V.; Rao, M.C. Preparation and dielectric properties of PVP-based polymer electrolyte films for solid-state battery application. Polym. Bull. 2018, 75, 925–945. [Google Scholar] [CrossRef]
- Rathore, M.; Dalvi, A. Electrical characterization of PVA-MgSO4 and PVA-Li2SO4 polymer salt composite electrolytes. Mater. Today Proc. 2019, 10, 106–111. [Google Scholar] [CrossRef]
- Kalagi, S.S. Activation energy dependence on doping concentration in PVA-MgCl2 composites. Mater. Today Proc. 2023, 72, 2691–2696. [Google Scholar]
- Komal, B.; Yadav, M.; Kumar, M.; Tiwari, T.; Srivastava, N. Modifying potato starch by glutaraldehyde and MgCl2 for developing an economical and environment-friendly electrolyte system. e-Polymers 2019, 19, 453–461. [Google Scholar] [CrossRef]
- Tamilosai, R.; Palanisamy, P.N.; Selvasekarapandian, S.; Maheshwari, T. Solium alginate incorporated with magnesium nitrate as a novel solid biopolymer electrolyte for magnesium-ion batteries. J. Mater. Sci. Mater. Electron. 2021, 32, 22270–22285. [Google Scholar] [CrossRef]
- Ismayl, J.K.; Hegde, S.; Vasachar, R.; Sanjeev, G. Novel solid biopolymer electrolyte based on methyl cellulose with enhanced ion transport properties. J. Appl. Polym. Sci. 2022, 139, 51826. [Google Scholar]
- Buvaneshwari, P.; Mathavan, T.; Selvasekarapandian, S.; Krishna, M.V.; Naachiyar, R.M. Preparation and characterization of biopolymer electrolyte based on gellan gum with magnesium perchlorate for magnesium battery. Ionics 2022, 28, 3843–3854. [Google Scholar] [CrossRef]
- Rajapaksha, H.G.N.; Perera, K.S.; Vidanapathirana, K.P. Characterization of a natural rubber based solid polymer electrolyte to be used for a magnesium rechargeable cell. Polym. Bull. 2022, 79, 4879–4890. [Google Scholar] [CrossRef]
- Priya, S.S.; Karthika, M.; Selvasekarapandian, S.; Manjuladevi, R. Preparation and characterization of polymer electrolyte based on biopolymer I-Carrageenen with magnesium nitrate. Solid State Ion. 2018, 327, 136–149. [Google Scholar] [CrossRef]
- Ali, N.I.; Abidin, S.Z.Z.; Majid, S.R.; Jaafar, N.K. Role of Mg(NO3)2 as defective agent in ameliorating the electrical conductivity, structural and electrochemical properties of agarose-based polymer electrolytes. Polymers 2021, 13, 3357. [Google Scholar] [CrossRef] [PubMed]
- Mahalakshmi, M.; Selvanayagam, S.; Selvasekarapandian, S.; Chandra, M.V.L.; Sangeetha, P.; Manjuladevi, R. Magnesium ion-conducting solid polymer electrolyte based on cellulose acetate with magnesium nitrate (Mg(NO3)2•6H2O) for electrochemical studies. Ionics 2020, 26, 4553–4565. [Google Scholar] [CrossRef]
- Sangeetha, P.; Selvakumari, T.M.; Selvasekarapandian, S.; Srikumar, S.R.; Manjukadevi, R.; Mahalakshmi, M. Preparation and characterization of biopolymer K-carrageenan with MgCl2 and its application to electrochemical devices. Ionics 2020, 26, 233–244. [Google Scholar] [CrossRef]
- Aziz, S.B.; Al-Zangana, S.; Woo, H.J.; Kadir, M.F.Z.; Abdullah, O.G. The compatibility of chitosan with divalent salts over monovalent salts for the preparation of solid polymer. Results Phys. 2018, 11, 826–836. [Google Scholar] [CrossRef]
- Sangeetha, P.; Selvakumari, T.M.; Selvasekarapandian, S.; Mahalakshmi, M. Characterization of solid biopolymer electrolytes based on kappa-carrageenan with magnesium nitrate hexahydrate and its application to electrochemical devices. Polym. Plast. Technol. Mater. 2021, 60, 1317–1330. [Google Scholar]
- Ismayil, J.K.; Hegde, S.; Sanjeev, G.; Murari, M.S. An insight into the suitability of magnesium ion-conducting biodegradable methyl cellulose solid polymer electrolyte film in energy storage devices. J. Mater. Sci. 2023, 58, 5389–5412. [Google Scholar]
- Priya, S.S.; Karthika, M.; Selvasekarapandian, S.; Manjuladevi, R.; Monisha, S. Study of biopolymer I-carrageenan with magnesium perchlorate. Ionics 2018, 24, 3861–3875. [Google Scholar] [CrossRef]
- Helen, P.A.; Perumal, P.; Sivaraj, P.; Diana, M.I.; Selvin, P.C. Mg-ion conducting electrolytes based on chitosan biopolymer host for the rechargeable Mg batteries. Mater. Today Proc. 2022, 50, 2668–2670. [Google Scholar] [CrossRef]
- Kiruthika, S.; Malathi, M.; Selvasekarapandian, S.; Tamilarasan, K.; Moniha, V.; Manjuladevi, R. Eco-friendly biopolymer electrolyte, pectin with magnesium nitrate salt, for application in electrochemical devices. J. Solid State Electrochem. 2019, 23, 2181–2193. [Google Scholar] [CrossRef]
- Kiruthika, S.; Malathi, M.; Selvasekarapandian, S.; Tamilarasan, K.; Maheshwari, T. Conducting biopolymer electrolyte based on pectin with magnesium chloride salt for magnesium battery application. Polym. Bull. 2020, 77, 6299–6317. [Google Scholar] [CrossRef]
- Kayama, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yoneyama, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Rathika, R.; Suthanthiraraj, S.A. Ionic interactions and dielectric relaxation of PEO/PVDF-Mg[(CF3SO2)2N2] blend electrolytes for magnesium ion rechargeable batteries. Macromol. Res. 2016, 24, 422–428. [Google Scholar] [CrossRef]
- Shenbagavalli, S.; Muthuvinayagam, M.; Revathy, M.S. Electrical properties of Mg2+ ion-conductive PEO:P(PVdF-HFP) based solid blend polymer electrolytes. Polymer 2022, 256, 125242. [Google Scholar] [CrossRef]
- Manjuladevi, R.; Thamilselvan, M.; Selvasekarapandian, S.; Mangalam, R.; Premalatha, M.; Monisha, S. Mg-ion conducting blend polymer electrolyte based on poly(vinyl alcohol)-poly(acrylonitrile) with magnesium perchlorate. Solid State Ion. 2017, 308, 90–100. [Google Scholar] [CrossRef]
- Ponmani, S.; Prabhu, M.R. Development and study of solid polymer electrolytes based on PVdF-HFP/PVAc:Mg(ClO4)2 for Mg ion batteries. J. Mater. Sci. Mater. Electron. 2018, 29, 15086–15096. [Google Scholar] [CrossRef]
- Polu, A.R.; Kumar, R.; Rhee, H.-W. Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries. Ionics 2015, 21, 125–132. [Google Scholar] [CrossRef]
- Manjuladevi, R.; Thamilselvan, M.; Selavasekarapandian, S.; Selvin, P.C.; Mangalam, R.; Monisha, S. Preparation and characterization of blend polymer electrolyte film based on poly(vinyl alcohol)-poly(aceylonitrile)/MgCl2 for energy storage devices. Ionics 2018, 24, 1083–1095. [Google Scholar] [CrossRef]
- Ponraj, T.; Ramalingam, A.; Selvasekarapandian, S.; Srikumar, S.R.; Manjuladevi, R. Mg-ion conducting triblock copolymer electrolyte based on poly(VdCl-co-AN-co-MMA) with magnesium nitrate. Ionics 2020, 26, 789–800. [Google Scholar] [CrossRef]
- Hiraoka, K.; Inoue, M.; Takahashi, K.; Hayamizu, K.; Watanabe, M.; Seki, S. Analysis of ionic transport and electrode interfacial reaction, and NMR one-dimensional imaging of ther-based polymer electrolytes. J. Electrochem. Soc. 2021, 168, 060501. [Google Scholar] [CrossRef]
- Park, B.; Andersson, R.; Pate, S.G.; Liu, J.; O’brien, C.P.; Hernandez, G.; Mindemark, J.; Schaefer, J.L. Ion coordination and transport in magnesium polymer electrolytes based on polyester-co-polycarbonate. Energy Mater. Adv. 2021, 2021, 9895403. [Google Scholar] [CrossRef]
- Manjuladevi, R.; Selvasekarapandian, S.; Thamilselvan, M.; Mangalam, R.; Monisha, S.; Selvin, P.C. A study on blend polymwe electrolyte based on poly(vinyl alcohol)-poly(acrylonitrile) with magnesium nitrate for magnesium battery. Ionics 2018, 24, 3493–3506. [Google Scholar] [CrossRef]
- Ponmani, S.; Kalaiselvimary, J.; Prabhu, M.R. Structural, electrical, and electrochemical properties of poly(vinylidene fluoride-co-hexaflouropropylene)/poly(vinyl acetate)-based polymer blend electrolytes for rechargeable magnesium ion batteries. J. Solid State Electrochem. 2018, 22, 2605–2615. [Google Scholar] [CrossRef]
- Nayak, P.; Ismayil; Cyriac, V.; Hegde, S.; Sanjeev, G.; Murari, M.S.; Sudhakar, Y.N. Magnesium ion conducting free-standing biopolymer blend electrolyte films for electrochemical device application. J. Non-Cryst. Solids 2022, 592, 121741. [Google Scholar] [CrossRef]
- Suvarnna, K.; Kirubavathy, S.J.; Selvasekarapandian, S.; Krishna, M.V.; Ramaswamy, M. Corn silk extract-based solid-state biopolymer electrolyte and its application to electrochemical storage devices. Ionics 2022, 28, 1767–1782. [Google Scholar] [CrossRef]
- Kanakaraj, T.M.; Bhajantri, R.F.; Chavan, C.; Cyriac, V.; Bulla, S.S.; Ismayil. Investigation on the structural and ion transport properties of magnesium salt doped HPMC-PVA based polymer blend for energy storage applications. J. Non-Cryst. Solids 2023, 603, 122276. [Google Scholar]
- Koduru, H.K.; Marinov, Y.G.; Kaleemulla, S.; Rafailov, P.M.; Hadjichristov, G.B.; Scaramuzza, N. Fabrication and characterization of magnesium-ion-conducting flexible polymer electrolyte membranes based on a nanocomposite of poly(ethylene oxide) and potate starch nanocrystals. J. Solid State Electrochem. 2021, 25, 2409–2428. [Google Scholar] [CrossRef]
- Kotobuki, M.; Kanamura, K. Fabrication of all-solid-state battery using Li5La3Ta2O12 Ceramic electrolyte. Ceram. Int. 2013, 39, 6481–6487. [Google Scholar] [CrossRef]
- Aziz, A.A.; Tominaga, Y. Effect of Li salt addition on electrochemical properties of poly(ethylene carbonate)-Mg salt electrolytes. Polym. J. 2019, 51, 61–67. [Google Scholar] [CrossRef]
- Perumal, P.; Abhilash, K.P.; Sivaraj, P.; Selvin, P.C. Study on Mg-ion conducting solid biopolymer electrlytes based on tamarind seed polysaccharide for magnesium ion batteries. Mater. Res. Bull. 2019, 118, 110490. [Google Scholar] [CrossRef]
- Aziz, A.A.; Yominaga, Y. Magnesium ion-conductive polye(ethylene carbonate) electrolytes. Ionics 2018, 24, 3475–3481. [Google Scholar] [CrossRef]
- Viviani, M.; Meereboer, N.L.; Saeaswati, N.L.P.A.; Loos, K.; Portale, G. Lithium and magnesium polymeric electrolytes prepared using poly(glycidyl ether)-based polymers with short grafted chains. Polym. Chem. 2020, 11, 2070–2079. [Google Scholar] [CrossRef]
- Sarangika, H.N.M.; Dissanayake, M.A.K.L.; Senadeera, G.K.R.; Rathnayake, R.R.D.V.; Pitawala, H.M.J.C. Polyethylene oxide and ionic liquid-based solid polymer electrolyte for rechargeable magnesium batteries. Ionics 2017, 23, 2829–2835. [Google Scholar] [CrossRef]
- Ge, X.; Song, F.; Du, A.; Zhang, Y.; Xie, B.; Huang, L.; Zhao, J.; Dong, S.; Zhou, X.; Cui, G. Robust self-standing single-ion polymer electrolytes enabling high-safety magnesium batteries at elevated temperature. Adv. Energy Mater. 2022, 12, 2201464. [Google Scholar] [CrossRef]
- Gupta, A.; Jain, A.; Tripathi, S.K. Structural and electrochemical studies of bromide derived ionic liquid-based gel polymer electrolyte for energy storage. J. Energy Storage 2020, 32, 101723. [Google Scholar] [CrossRef]
- Hambali, D.; Zainol, N.H.; Othman, L.; Isa, K.B.M.; Osman, Z. Magnesium ion-conducting gel polymer electrolytes based on poly(vinylidene chloride-co-acrylonitrile) (PVdC-co-AN): A comparative study between magnesium trifluoromethanesulfonate (MgTf2) and magnesium bis(trifluoromethanesulfonimide) (Mg(TFSI)2). Ionics 2019, 25, 1187–1198. [Google Scholar] [CrossRef]
- Maheshwaran, C.; Mishra, K.; Kanchan, D.K.; Kumar, D. Mg2+ conducting polymer gel electrolytes: Physical and electrochemical investigations. Ionics 2020, 26, 2969–2980. [Google Scholar] [CrossRef]
- Kotobuki, M.; Yan, B.; Lu, L. Recent progress on cathode materials for rechargeable magnesium batteries. Energy Storage Mater. 2023, 54, 227–253. [Google Scholar] [CrossRef]
- Doe, R.E.; Han, R.; Hwang, J.; Gmitter, A.J.; Shterenberg, I.; Yoo, H.D.; Pour, N.; Aurbach, D. Novel electrolyte solutions comprisingly fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Comm. 2014, 50, 243–245. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, X.; Liu, F.; Fan, L.-Z. Porous polymer electrolytes for long-cycle stable quasi-solid-state magnesium batteries. J. Energy Chem. 2021, 59, 608–614. [Google Scholar] [CrossRef]
- Merrill, L.C.; Ford, H.O.; Scaefer, J.L. Application of single-ion conducting gel polymer electrolytes in magnesium batteries. ACS Appl. Energy Mater. 2019, 2, 6355–6363. [Google Scholar] [CrossRef]
- Sheha, E.; Liu, F.; Wang, T.; Farrag, M.; Liu, J.; Yacout, N.; Kebebe, M.A.; Sharma, N.; Fan, L.-Z. Dual polymer/liquid electrolyte with BaTiO3 electrode for magnesium batteries. ACS Appl. Energy Mater. 2020, 3, 5882–5892. [Google Scholar] [CrossRef]
- Maheshwaran, C.; Kanchan, D.K.; Gohel, K.; Mishra, K.; Kumar, D. Effect of Mg(CF3SO3)2 concentration on structural and electrochemical properties of ionic liquid incorporated polymer electrolyte membranes. J. Solid State Electrochem. 2020, 24, 655–665. [Google Scholar] [CrossRef]
- Hambali, D.; Osman, Z.; Othman, L.; Isa, K.B.M.; Harudin, N. Magnesium (II) bis(trifluoromethanesulfonimide) doped PVdC-co-AN gel polymer electrolytes for rechargeable batteries. J. Polym. Res. 2020, 27, 159. [Google Scholar] [CrossRef]
- Gupta, A.; Jain, A.; Tripathi, S.K. Structural, electrical and electrochemical studies of ionic liquid-based polymer gel electrolyte using magnesium salt for supercapacitor application. J. Polym. Res. 2021, 28, 235. [Google Scholar] [CrossRef]
- Aziz, A.; Yoshimoto, N.; Yamabuki, K.; Tominaga, Y. Ion-conductive, thermal and electrochemical properties of poly(ethylene carbonate)-Mg electrolytes with glyme solution. Chem. Lett. 2018, 47, 1258–1261. [Google Scholar] [CrossRef]
- Sharma, J.; Hashmi, S.A. Plastic crystal-incorporated magnesium ion conducting gel polymer electrolyte for battery application. Bull. Mater. Sci. 2018, 41, 147. [Google Scholar] [CrossRef]
- Ponraj, T.; Tamalingam, A.; Selvasekarapandian, S.; Srikumar, S.R.; Manjuladevi, R. Plasticized solid polymer electrolyte based on triblock copolymer polyvinylidene chloride-co-acrylonitrile-co-methyl methacrylate for magnesium ion batteries. Polym. Bull. 2021, 78, 35–57. [Google Scholar] [CrossRef]
- Tominaga, Y.; Kato, S.; Nishimura, N. Preparation and electrochemical characterization of magnesium gel electrolytes based on crosslinked poly(tetrahydrofuran). Polymer 2021, 224, 123743. [Google Scholar] [CrossRef]
- Hamsan, M.H.; Aziz, S.B.; Kadir, M.F.Z.; Brza, M.A.; Karim, W.O. The study of EDLC device fabricated from plasticized magnesium ion conducting chitosan based polymer electrolyte. Polym. Test. 2020, 90, 106714. [Google Scholar] [CrossRef]
- Ponmami, S.; Prabhu, M.R. Sulfonate based ionic liquid incorporated polymer electrolytes for Magnesium secondary battery. Polym. Plast. Technol. Eng. 2019, 58, 978–991. [Google Scholar]
- Nishino, H.; Liu, C.; Kanehashi, S.; Mayumi, K.; Tominaga, Y.; Shimomura, T.; Ito, K. Ionics transport and mechanical properties of slide-ring gel swollen with Mg-ion electrolytes. Ionics 2020, 26, 255–261. [Google Scholar] [CrossRef]
- Singh, R.; Janakiraman, S.; Khalifa, M.; Anandhan, S.; Ghosh, S.; Venimadhav, A.; Biswas, K. An electroactive β-phase polyvinylidene fluoride as gel polymer electrolyte for magnesium-ion battery application. J. Electroanal. Chem. 2019, 851, 113417. [Google Scholar] [CrossRef]
- Bhatt, P.J.; Pathak, N.; Mishra, K.; Kanchan, D.K.; Kumar, D. Effect of different cations on ion-transport behavior in polymer gel electrolytes intended for application in flexible electrochemical devices. J. Electron. Mater. 2022, 51, 1371–1384. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Meng, Z.; Xiu, Y.; Dasari, B.; Zhao-Karger, Z.; Fichtner, M. Designing gel polymer electrolytes with synergetic properties for rechargeable magnesium batteries. Energy Storage Mater. 2022, 48, 155–163. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Z.; Muchakayala, R.; Song, S. High-performance Mg-ion conducting poly(vinyl alcohol) membranes: Preparation, characterization and application in supercapacitors. J. Membr. Sci. 2018, 555, 280–289. [Google Scholar] [CrossRef]
- Singh, R.; Janakiraman, S.; Agrawal, A.; Ghosh, S.; Venimadhav, A.; Biswas, K. An amorphous poly(vinylidene fluoride-co-hexafluoropropylene) based gel polymer electrolyte for magnesium ion battery. J. Electroanal. Chem. 2020, 858, 113788. [Google Scholar] [CrossRef]
- Singh, R.; Janakiraman, S.; Khalifa, M.; Anandhan, S.; Ghosh, S.; Venimadhav, A.; Biswas, K. A high thermally stable polyacrylonitrile (PAN)-based gel polymer electrolyte for rechargeable Mg-ion battery. J. Mater. Sci. Mater. Electron. 2020, 31, 22912–22925. [Google Scholar] [CrossRef]
- Maheshwaran, C.; Kanchan, D.K.; Mishra, K.; Kumar, D.; Gohel, K. Flexible, magnesium-ion conducting polymer electrolyte membrane: Mechanical, structural, thermal, and electrochemical impedance spectroscopic properties. J. Mater. Sci. Mater. Electron. 2020, 31, 15013–15027. [Google Scholar] [CrossRef]
- Abdulwahid, R.T.; Aziz, S.B.; Brza, M.A.; Kadir, M.F.Z.; Karim, W.O.; Hamsan, H.M.; Asnawi, A.S.F.M.; Abdullah, R.M.; Nofal, M.M.; Dannoun, E.M.A. Electrochemical performance of polymer blend electrolytes based on chitosan: Dextran: Impedance, dielectric properties, and energy storage study. J. Mater. Sci. Mater. Electron. 2021, 32, 14846–14862. [Google Scholar] [CrossRef]
- Ota, T.; Uchiyama, S.; Tsukada, K.; Moriya, M. Room-temperature Mg-ion conduction through molecular crystal Mg{N(SO2CF3)2}2(CH3OC5H9)2. Front. Energy Res. 2021, 9, 640777. [Google Scholar] [CrossRef]
- Mori, S.; Obora, T.; Namaki, M.; Kondo, M.; Moriya, M. Organic crystalline solid electrolytes with high Mg-ion conductivity composed of nonflammable ionic liquid analogs and Mg(TFSA)2. Inorg. Chem. 2022, 61, 7358–7364. [Google Scholar] [CrossRef] [PubMed]
- Jayanthi, S.; Kalapriya, K. Structural, transport, morphological, and thermal studies of nano barium titanate-incorporated magnesium ion conducting solid polymer electrolytes. Polym. Polym. Compos. 2021, 29, S1158–S1167. [Google Scholar]
- Wang, Y.; Wang, Z.; Zheng, F.; Sun, J.; Oh, J.A.S.; WU, T.; Chen, G.; Huang, Q.; Kotobuki, M.; Lu, L. Ferroelectric engineered electrode-composite polymer electrolyte interfaces for all-solid-state sodium metal battery. Adv. Sci. 2022, 9, 2105849. [Google Scholar] [CrossRef] [PubMed]
- Jeyabanu, K.; Sundaramahalingam, K.; Devendran, P.; Manikandan, A.; Nallamuthu, N. Effect of electrical conductivity studied for CuS nanofillers mixed magnesium ion based PVA-PVP blend polymer solid electrolytes. Phys. B Condenced Matter. 2019, 572, 129–138. [Google Scholar] [CrossRef]
- Jayalakshmi, K.; Ismayil; Hedge, S.; Ravindrachary, V.; Sanjeev, G.; Mazumdar, N.; Sindhoora, K.M.; Masti, K.; Jayalakshmi, S.P.; Murari, M.S. Methyl cellulose-based solid polymer electrolytes with dispersed zinc oxide nanoparticles: A promising candidate for battery applications. J. Phys. Chem. Solids 2023, 173, 111119. [Google Scholar] [CrossRef]
- Nidhi, S.P.; Kumar, R. Synthesis and characterization of magnesium ion conductive in PVDF based nanocomposite polymer electrolytes disperse with MgO. J. Alloys Compd. 2019, 789, 6–14. [Google Scholar] [CrossRef]
- Polu, A.; Kumar, R. Preparation and characterization of PEG-Mg(CH3COO)2-CeO2 composite polymer electrolytes for battery application. Bull. Mater. Sci. 2014, 37, 309–314. [Google Scholar] [CrossRef]
- Sarojini, S.; Padmapriya, L. Effect of size of the filler on the electrical conductivity of magnesium ion conducting polymer electrolyte. Mater. Today Proc. 2022, 68, 454–462. [Google Scholar] [CrossRef]
- Helen, P.A.; Selvin, P.C.; Lashmi, D.; Diana, M.I. Amelioration of ionic conductivity (303K) with the supplement of MnO2 filler in the chitosan biopolymer electrolyte for magnesium batteries. Polym. Bull. 2023, 80, 7715–7740. [Google Scholar] [CrossRef]
- Maheshwaran, C.; Kanchan, D.K.; Mishra, K.; Kumar, D.; Gohel, K. Effect of active MgO nano-particles dispersion in small amount within magnesium-ion conducting polymer electrolyte matrix. Nano-Struct. Nano-Objects 2020, 24, 100587. [Google Scholar] [CrossRef]
- Nidhi, S.P.; Kumar, R. Effect of Al2O3 on electrical properties of polymer electrolyte for electrochemical device application. Mater. Today Proc. 2021, 46, 2175–2178. [Google Scholar] [CrossRef]
- Nidhi, S.P.; Kumar, R. Effect of nanoparticles on electrical properties of PVDF-based Mg2+ ion conducting polymer electrolytes. Bull. Mater. Sci. 2021, 44, 140. [Google Scholar] [CrossRef]
- Sundar, M.; Selladurai, S. Effect of fillers on magnesium-poly(ethylene oxide) solid polymer electrolyte. Ionics 2006, 12, 281–286. [Google Scholar] [CrossRef]
- Ponmani, S.; Selvakumar, K.; Prabhu, M.R. The effect of the geikeilite (MgTiO3) nanofiller concentration in PVdF-HFP/PVAc-based polymer blend electrolytes for magnesium ion battery. Ionics 2020, 26, 2353–2369. [Google Scholar] [CrossRef]
- Helen, P.A.; Ajith, K.; Diana, M.I.; Lakshmi, D.; Selvin, P.C. Chitosan based biopolymer electrolyte reinforced with V2O5 filler for magnesium batteries: An inclusive investigation. J. Mater. Sci. Mater. Electron. 2022, 33, 3925–3937. [Google Scholar] [CrossRef]
- Mallikarjun, A.; Sangeetha, M.; Mettu, M.R.; Reddy, J.M.; Kumar, S.J.; Sreekanth, T.; Rao, V.S. Impedance spectroscopy and electrochemical cell studies of Mg2+ ion conducting with dispersed ZrO2 nano filler in PVDF-HFP based nano composite solid polymer electrolytes. Mater. Today Proc. 2022, 62, 5204–5208. [Google Scholar] [CrossRef]
- Patel, N.S.; Kumar, R. PVDF-HFP based nanocomposite polymer electrolytes for energy storage devices dispersed with various nano-fillers. AIP Conf. Proc. 2020, 2220, 080044. [Google Scholar]
- Dannoun, E.M.A.; Aziz, S.B.; Brza, M.A.; Nofal, M.M.; Asnawi, A.S.F.M.; Yusof, Y.M.; Al-Zangana, S.; Hamsan, M.H.; Kadir, M.F.Z.; Woo, H.J. The study of plasticized solid polymer blend electrolytes based on natural polymers and their application for energy storage EDLC devices. Polymers 2020, 12, 2531. [Google Scholar] [CrossRef]
- Sharma, J.; Hashmi, S. Magnesium ion-conducting gel polymer electrolyte nanocomposites: Effect of active and passive nanofillers. Polym. Compos. 2019, 40, 1295–1306. [Google Scholar] [CrossRef]
- Song, S.; Kotobuki, M.; Zheng, F.; Li, Q.; Xu, C.; Wang, Y.; Li, W.D.Z.; Hu, N.; Lu, L. Communication-A composite polymer electrolyte for safer Mg batteries. J. Electrochem. Soc. 2017, 164, A741–A743. [Google Scholar] [CrossRef]
- Aziz, S.B.; Dannoun, E.M.A.; Hamsan, M.H.; Abdulwahid, R.T.; Mishra, K.; Nofal, M.M.; Kadir, M.F.Z. Improving EDLC device performance constructed from plasticized magnesium ion conducting chitosan based polymer electrolytes via metal complex dispersion. Membranes 2021, 11, 289. [Google Scholar] [CrossRef] [PubMed]
- Deivanayagam, R.; Cheng, M.; Wang, M.; Vasudevan, V.; Foroozan, T.; Medhekar, N.V.; Shahbazian-Yassar, R. Composite polymer electrolyte for highly cyclable room-temperature solid-state magnesium batteries. ACS Appl. Energy Mater. 2019, 2, 7980–7990. [Google Scholar] [CrossRef]
- Sun, J.; Zou, Y.; Gao, S.; Shao, L.; Chen, C. Robust strategy of quasi-solid-state electrolytes to boost the stability and compatibility of Mg ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 54711–54719. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Truck, J.; Hacker, J.; Schlosser, A.; Kuster, K.; Starke, U.; Reinders, L.; Buchmeiser, M.R. A design concept for halogen-free Mg2+/Li+-dual salt-containing gel-polymer-electrolytes for rechargeable magnesium batteries. Energy Storage Mater. 2022, 49, 509–517. [Google Scholar] [CrossRef]
- Luo, W.; Allen, M.; Raji, V.; Ji, X. An organic pigment as a high-performance cathode for sodium-ion batteries. Adv. Energy Mater. 2014, 4, 1400554. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, W.; Cater, M.; Zhou, L.; Dai, J.; Fu, K.; Lacey, S.; Li, T.; Wan, J.; Han, J.; et al. Organic electrode for non-aqueous potassium-ion batteries. Nano Energy 2015, 18, 205–211. [Google Scholar] [CrossRef]
- Chen, Y.; Parent, L.R.; Shao, Y.; Wang, C.; Sprenkle, V.L.; Li, G.; Liu, J. Facile synthesis of chevrel phase nanocubes and their applications for multivalent energy storage. Chem. Mater. 2014, 26, 4904–4907. [Google Scholar] [CrossRef]
- Mao, M.; Lin, Z.; Tong, Y.; Yue, J.; Zhao, C.; Lu, J.; Zhang, Q.; Gu, L.; Suo, L.; Hu, Y.S.; et al. Iodine vapor transport-triggered preferential growth of chevrel Mo6S8 nanosheets for advanced multivalent batteries. ACS Nano 2020, 14, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
Electrolyte | σtotal (S cm−1) | Temperature (°C) | Activation Energy (eV) | Electrochemical Window (V) | Ref. |
---|---|---|---|---|---|
Oxides | |||||
MgZr4(PO4)6 | 2.9 × 10−5 | 400 | 0.868 | - | [30] |
6.1 × 10−3 | 800 | ||||
Mg0.5Zr2(PO4)3 | 1.1 × 10−6 | 30 | 0.0977 | ~2.5 | [50] |
7.1 × 10−5 | 500 | ||||
MgZr4(PO4)6 | 7.23 × 10−3 | 725 | 0.84 | - | [51] |
MgZr4(PO4)6 + Zr2O(PO4)2 | 6.9 × 10−3 | 800 | 1.41 | - | [52] |
Mg0.7(Zr0.85Nb0.15)4(PO4)6 | 5.71 × 10−3 | 800 | 0.95 | - | [32] |
Mg1.4Zr4P6O24.4 + 0.4Zr2O(PO4)2 | 6.89 × 10−3 | 800 | 1.41 | - | |
Mg1.1(Zr0.85Nb0.15)4P6O24 + 0.4Zr2O(PO4)2 | 9.53 × 10−3 | 800 | 1.28 | - | |
Mg1.1Zr3.4Nb0.6P6O24.4 + Zr2O(PO4)2 | 9.53 × 10−3 | 800 | 1.26 | - | [53] |
Mg0.9Zr1.2Fe0.8(PO4)3 | 1.25 × 10−5 | RT | 0.14 | - | [33] |
7.2 × 10−5 | 500 | ||||
Mg0.5Ce0.2Zr1.8(PO4)3 | 3.8 × 10−7 | 200 | 0.307 | - | [54] |
Mg1.05Zn0.4Al0.3Zr1.3(PO4)3 | 3.97 × 10−4 | RT | 0.039 | - | [35] |
5.82 × 10−4 | 500 | ||||
Mg0.35(Zr0.85Nb0.15)2(PO4)3 | 1.1 × 10−6 | 350 | 1.18 | - | [55] |
Mg0.5ZrSn(PO4)3 | 2.47 × 10−5 | 500 | 0.79 | - | [56] |
Mg0.7Zr3.4Nb0.6(PO4)6 | 7.7 × 10−4 | 600 | 0.954 | - | [57] |
3.7 × 10−3 | 750 | ||||
Mg0.6Zr1.8Fe0.2(PO4)3 thin film | 1.8 × 10−7 | 25 | 0.141 < 175 °C 0.511 > 175 °C | - | [58] |
2.3 × 10−6 | 200 | ||||
Mg0.625Si1.75Al0.25(PO4)3 | 1.54 × 10−4 | RT | - | 2.51 | [59] |
Mg0.5Si2(PO4)3 | 1.83 × 10−5 | - | ~3.21 | [36] | |
Mg0.105Hf0.95Nb(PO4)3 | 1.2 × 10−4 | 600 | 0.639 | - | [34] |
Mg2.4P2O5.4 ALD | 1.6 × 10−7 | 500 | 1.37 | - | [37] |
Mg0.6Al1.2Si1.8O6 | 2.3 × 10−6 | 500 | 1.32 | - | [38] |
MgSO4-Mg(NO3)2-MgO | 2.2 × 10−6 | RT | 0.17 | - | [60] |
MgHf(WO4)3 | 2.5 × 10−4 | 600 | 0.835 | - | [39] |
Chalcogenides | |||||
80(0.6MgS 0.4P2S5) 20MgI2 | 2.1 × 10−7 | 200 | - | - | [41] |
MgSc2Se4 | 9.2 × 10−5 | RT | - | - | [44] |
MgSc2Se4 | ~1 × 10−4 | 25 | 0.38 | [42] | |
MgSc2Se4 | 8 × 10−5 | RT | - | - | [45] |
MgSc2Se4 | 1.78 × 10−5 | RT | - | - | [46] |
Electrolyte | σtotal (S cm−1) | Temperature (°C) | Activation Energy (eV) | Electrochemical Window (V) | Ref. |
---|---|---|---|---|---|
Mg(BH4)2 | 1 × 10−9 | 150 | - | - | [62] |
Mg(BH4)(NH2) | 1 × 10−6 | 150 | - | 3 | |
Mg(en)1(BH4)2 | 5 × 10−8 | 30 | 1.6 | 1.2 | [64] |
6 × 10−5 | 70 | ||||
Mg(BH4)(NH2) glass ceramics | 3 × 10−6 | 100 | 1.3 | - | [63] |
Mg(BH4)2 1.6NH3-75 wt.% MgO | 1.2 × 10−5 | RT | 1.12 | 1.2 | [69] |
Oxidized Mg(BH4)2 | 7.89 × 10−6 | RT | - | - | [66] |
Mg(BH4)2 1.5THF-75 wt.% MgO | 9.8 × 10−7 | 30 | 1.4 | 1.2 | [70] |
1.7 × 10−4 | 70 | ||||
Mg(BH4)2(NH3BH3)2 | 1.3 × 10−5 | 30 | 1.47 | 1.2 | [65] |
Mg3(BH4)4(NH2)2 | 4.1 × 10−5 | 100 | 0.84 | 1.48 | [71] |
Amorphous Mg(BH4)2 2NH3 | 5 × 10−4 | 75 | 1.99 | 1.4 | [72] |
Mg(BH4)2 1.5NH3-60 wt.% YSZ | 3 × 10−4 | 50 | - | 1.3 | [67] |
Mg(BH4)2 1.5NH3-60 wt.% TiO2 | 1.12 × 10−3 | 50 | 0.87 | - | |
Mg(BH4)2 1.6NH3-67 wt.% Al2O3 | 2.5 × 10−5 | 22 | 0.56 | 1.2 | [68] |
MOF | Liquid Electrolyte | σtotal (S cm−1) | Temperature (°C) | Activation Energy (eV) | Ref. |
---|---|---|---|---|---|
Mg2(dobpdc) | Mg(TFSI)2/triglyme | 1.3 × 10−4 | RT | 0.11~0.19 | [79] |
Mg(OPhCF3)2 + Mg(TFSI)2/triglyme | 2.5 × 10−4 | RT | |||
MIT-20 | MgBr2/PC | 8.8 × 10−7 | RT | 0.37 | [80] |
Cu4(ttpm)2∙0.6CuCl2 | MgCl2/THF | 1.2 × 10−5 | RT | 0.32 | [81] |
MgBr2/THF | 1.3 × 10−4 | RT | 0.24 | ||
MOF-74 | Mg(TFSI)2/MgCl2/DME | 3.17 × 10−6 | RT | 0.53 | [78] |
Mgbp3dc | α-Mg3(HCOO)6/DMF | 3.8 × 10−5 | RT | 0.669 | [75] |
UiO-66 | Mg(TFSI)2/[EMIM][TFSI] | 5.8 × 10−5 | RT | 0.67 | [76] |
MOF-177 | Mg(TFSI)2/diglyme | 1.6 × 10−5 | RT | 0.33 | [77] |
MIL-101 | Mg(TFSI)2 + MeCN vapor | 1.9 × 10−3 | 25 | 0.18 | [82] |
Polymer | Mg Salt | Solvent | σtotal (S cm−1) | Temp. (°C) | Ea (eV) | Window (V vs. Mg/Mg2+) | t+ | Ref. |
---|---|---|---|---|---|---|---|---|
PEO | Mg(TFSI)2 | ACN | 1.8 × 10−6 | 0 | 0.68 | - | - | [83] |
1.6 × 10−4 | 50 | |||||||
PEO | Mg(ClO4)2 | methanol | 1.42 × 10−6 | RT | - | - | - | [84] |
PVP | MgCl2 | DI water | 1.42 × 10−5 | RT | - | - | - | [85] |
PVP | MgSO4 | DI water | 1.05 × 10−5 | RT | - | - | - | [86] |
PVA | MgSO4 | DI water | 1 × 10−9 | 27 | 0.37 | - | - | [87] |
PVA | MgCl2 | DI water | 5 × 10−7 | 35 | - | - | - | [88] |
Potato starch | MgCl2 | methanol | 3.2 × 10−2 | RT | 0.002 | 4.6 | - | [89] |
Sodium alginate | Mg(NO3)2 | DI water | 4.58 × 10−3 | RT | - | 3.5 | 0.31 | [90] |
MC | Mg(NO3)2 | DI water | 1.02 × 10−4 | RT | - | 3.23 | - | [91] |
Gellan gum | Mg(ClO4)2 | DI water | 1.06 × 10−2 | RT | - | 2.86 | 0.33 | [92] |
Natural rubber | Mg(Tf)2 | THF | 4.9 × 10−3 | 30 | - | 2.5 | - | [93] |
I-Carrangeenan | Mg(NO3)2 | DI water | 6.1 × 10−4 | 30 | 0.17 | - | - | [94] |
Agarose | Mg(NO3)2 | DMSO | 1.48 × 10−5 | RT | 0.044 | 3.57 | - | [95] |
CA | Mg(NO3)2 | DMF | 9.19 × 10−4 | RT | - | 3.65 | 0.35 | [96] |
K-Carrageenan | MgCl2 | DI water | 4.76 × 10−3 | 30 | - | 1.94 | 0.26 | [97] |
Chitosan | Mg(Tf)2 | 1% acetic acid aq. | 9.58 × 10−5 | RT | 0.36 | - | - | [98] |
K-Carrageenan | Mg(NO3)2 | DI water | 7.05 × 10−4 | RT | - | 4.42 | 0.32 | [99] |
Methyl cellulose | Mg(CH3COO)2 | DI water | 2.6 × 10−5 | RT | - | 3.47 | - | [100] |
I-carrageenan | Mg(ClO4)2 | DI water | 2.18 × 10−3 | RT | 0.05 | - | 0.313 | [101] |
Chitosan | MgCl2 | 1% acetic acid aq | 4.6 × 10−4 | - | - | - | - | [102] |
Pectin | Mg(NO3)2 | DI water | 7.7 × 10−4 | RT | - | 3.8 | 0.29 | [103] |
Pectin | MgCl2 | DI water | 1.14 × 10−3 | RT | - | 2.05 | 0.301 | [104] |
PEO-PVDF | MgTFSI | DMF | 1.2 × 10−5 | 25 | - | - | - | [105] |
PEO/PVDF-HFP | MgBr2 | DMF | 3.9 × 10−4 | RT | 0.26 | 1.86 | - | [106] |
PVA-PAN | Mg(ClO4)2 | DMF | 2.94 × 10−4 | RT | 0.21 | 3.65 | 0.27 | [107] |
PVDF-HFP + PVAc | Mg(ClO4)2 | THF | 1.60 × 10−5 | 30 | 0.33 | 3.5 | - | [109] |
PVP-PVA | Mg(NO3)2 | DI water | 3.8 × 10−5 | 30 | 0.475 | - | - | [110] |
PVA-PAN | MgCl2 | DMF | 1.01 × 10−3 | RT | 0.07 | 3.66 | - | [111] |
Poly(VdCl-co-AN-co-MMA) | Mg(NO3)2 | THF | 1.6 × 10−4 | RT | 0.19 | 3.2 | 0.36 | [112] |
PEO/PO | Mg(TFSI)2 | ACN | 1.5 × 10−5 | 30 | - | - | - | [113] |
PCL-PTMC | Mg(TFSI)2 | ACN | 2.52 × 10−8 | 25 | - | - | - | [114] |
PVA-PAN | Mg(NO3)2 | DMF | 1.71 × 10−3 | RT | 0.36 | 3.4 | 0.30 | [115] |
PVDF-HFP + PVAc | Mg(ClO4)2 | THF | 3.85 × 10−5 | 30 | 3.37 | 3.68 | - | [116] |
CS + MC | MgCl2 | 1% acetic acid aq | 2.75 × 10−3 | 30 | - | 3.86 | - | [117] |
Corn silk + PVA | MgCl2 | DI water | 1.28 × 10−3 | RT | - | 2.11 | 0.32 | [118] |
Methyl cellulose-PVA | Mg(NO3)2 | Not mention | 3.25 × 10−4 | 27 | - | 2.62 | - | [119] |
PEO-Starch | MgBr2 | methanol | 7.8 × 10−9 | RT | - | - | - | [120] |
PEC | Mg(TFSI)2 | ACN | 2.3 × 10−6 | 80 | - | 2.0 | - | [122] |
Polysaccharide | Mg(ClO4)2 | DI water | 5.66 × 10−4 | RT | 0.09 | 3.93 | 0.43 | [123] |
PEC | Mg(ClO4)2 | ACN | 5.2 × 10−5 | 90 | - | - | - | [124] |
PAGE | Mg(TFSI)2 | THF | 4.1 × 10−4 | 90 | - | - | - | [125] |
Polymer | Mg Salt | Plasticizer | σtotal (S cm−1) | Temp. (°C) | Ea (eV) | Window (V vs. Mg/Mg2+) | Transference Number | Ref. |
---|---|---|---|---|---|---|---|---|
P(PEGDMA)-P(STFSI) | DMSO | 8.8 × 10−4 | 30 | - | 1.5 | (1.0) | [134] | |
PVDF | Mg(SO3CF3)2 | TEGDME | 4.6 × 10−4 | 55 | 0.62 | 1.0 | 0.74 | [135] |
PEO | Mg(Tf)2 | PYR14TFSI | 3.7 × 10−4 | RT | - | - | 0.40 | [126] |
PEO | Mg(Tf)2 | EMIM-BF4 | 9.4 × 10−5 | RT | 0.26 | 4.0 | 0.22 | [136] |
PVdC-co-AN | Mg(TFSI)2 | EC + SN | 1.9 × 10−6 | RT | 0.04 | 3.8 | 0.59 | [129] |
PVdC-co-AN | Mg(TFSI)2 | SN | 1.6 × 10−6 | RT | 0.09 | 3.2 | - | [137] |
PVDF-HFP | Mg(ClO4)2 | EDiMIMBF4 | 8.4 × 10−3 | RT | 0.33 | - | - | [138] |
PVDF-HFP | Mg(ClO4)2 | EMIMBr, PC | 2.0 × 10−2 | RT | 0.02 | - | - | [128] |
PEC | Mg(TFSI)2 | TEGDME | 5.2 × 10−6 | 80 | - | - | - | [139] |
PECH-OH | MgCl2 | TEGDME | 6.2 × 10−5 | 30 | 0.25 | 3.2 | 0.79 | [127] |
PVDF-HFP | Mg(Tf)2 | SN + EMITf | 4 × 10−3 | 26 | 0.104 | 4.1 | - | [140] |
Poly(VdCl-co-An-co-MMA) | MgCl2 | SN | 1.4 × 10−3 | RT | 0.26 | 3.3 | 0.31 | [141] |
c-PTHF | Mg(TFSI)2 | TEGDME | 4.5 × 10−5 | 30 | - | - | - | [142] |
CS | Mg(CH3COO)2 | glycerol | 1.1 × 10−4 | RT | - | - | - | [143] |
k-carrageenan | Mg(NO3)2 | EC | 7.3 × 10−3 | 30 | - | 4.59 | 0.39 | [103] |
PVDF-HFP/PVAc | Mg(ClO4)2 | EMITF | 9.1 × 10−4 | 30 | 0.28 | 3.59 | - | [144] |
Hydroxy propyl | Mg(TFSI)2 | TEGDME | 1.73 × 10−3 | 25 | - | - | - | [145] |
PVDF-HFP | Mg(Tf)2 | EC-DEC | 2.4 × 10−4 | 70 | - | 5.0 | 0.42 | [130] |
PVDF | Mg(ClO4)2 | PC | 1.5 × 10−3 | RT | - | 5.0 | 0.47 | [146] |
PVDF-HFP | Mg(ClO4)2 | TEGDME | 9.8 × 10−4 | RT | - | 4.6 | - | [147] |
PTHF | MgBOR | 2.0 × 10−3 | 25 | - | 2.57 | 0.3 | [148] | |
PVA | Mg(Tf)2 | EMITf | 1.2 × 10−3 | RT | - | - | - | [149] |
PVDF-HFP | Mg(ClO4)2 | PC | 1.6 × 10−3 | RT | - | 5.5 | - | [150] |
PAN | Mg(ClO4)2 | PC | 3.3 × 10−3 | 30 | 0.1 | 4.6 | 0.6 | [151] |
PVDF-HFP | MgCl2-AlCl3 | TEGDME | 4.7 × 10−4 | 25 | - | 3.1 | - | [133] |
PEO | Mg(Tf)2 | PC-DEC | 3.0 × 10−5 | RT | 0.14 | 3.5 | 0.32 | [152] |
CS:Dextran | Mg(CH3COO)2 | Glycerol | 1.2 × 10−6 | RT | - | 1.5 | - | [153] |
Crystal | σtotal (S cm−1) | Temp. (°C) | Ea (eV) | Transference Number | Ref. |
---|---|---|---|---|---|
Mg(TFSA)2(CPME)2 | 2 × 10−7 | 30 | 0.72 | 0.74 | [154] |
[N1122][Mg(η2-TFSA)2(μ2-η1-η1-TFSA)] | 2.5 × 10−6 | 40 | 1.21 | 0.46 | [155] |
Polymer | Mg Salt | Filler | σtotal (S cm−1) | Temp. (°C) | Ea (eV) | Window (V vs. Mg/Mg2+) | Transference Number | Ref. |
---|---|---|---|---|---|---|---|---|
PVA/PVP | MgCl2 | CuS | 4.3 × 10−6 | RT | - | - | - | [158] |
MC | MgCl2 | ZnO | 1.2 × 10−4 | RT | - | - | - | [159] |
PVDF | Mg(NO3)2 | MgO | 1.0 × 10−4 | RT | 0.32 | - | - | [160] |
PEG | Mg(CH3COO)2 | CeO2 | 3.4 × 10−6 | RT | - | - | - | [161] |
PMMA | Mg(Tf)2 | TiO2 | 1.8 × 10−6 | RT | - | - | - | [162] |
CS | Mg(NO3)2 | MnO2 | 1.2 × 10−3 | 30 | - | 1.7 | - | [163] |
PVDF-HFP | Mg(Tf)2 | BaTiO3 | 4.1 × 10−4 | RT | - | - | - | [156] |
PEO | Mg(Tf)2 | MgO | 1.6 × 10−4 | 25 | 0.14 | - | - | [164] |
PVDF | Mg(NO3)2 | Al2O3 | 9.5 × 10−6 | RT | - | - | - | [165] |
PVDF | Mg(NO3)2 | ZnO | 5.2 × 10−5 | RT | 0.29 | - | - | [166] |
PEO | MgCl2 | B2O3 | 7.2 × 10−6 | 25 | - | - | - | [167] |
PVDF-HFP/PVAc | Mg(ClO4)2 | MgTiO3 | 5.8 × 10−3 | 30 | 0.25 | 4.0 | 0.34 | [168] |
CS | MgCl2 | V2O5 | 1.4 × 10−3 | RT | - | 1.7 | - | [169] |
PVDF-HFP | MgClO4 | ZrO2 | 6.6 × 10−2 | 30 | - | - | - | [170] |
PVDF-HFP | MgCl2 | ZnO | 1.3 × 10−5 | RT | - | - | - | [171] |
Polymer | Mg Salt | Plasticizer | Filler | σtotal (S cm−1) | Temp. (°C) | Ea (eV) | Window (V vs. Mg/Mg2+) | Transference Number | Ref. |
---|---|---|---|---|---|---|---|---|---|
CS/MC | Mg(CH3COO)2 | Glycerol | Ni | 1.0 × 10−4 | RT | - | 2.48 | - | [172] |
PEO | Mg(ClO4)2 | EMIMFSI | SiO2 | 5.4 × 10−4 | RT | 0.36 | 4.0 | - | [174] |
CS | Mg(CH3COO)2 | Glycerol | Ni | 1.1 × 10−5 | RT | - | 2.4 | - | [175] |
PVDF-HFP | Mg(Tf)2 | EC-PC | MgAl2O4 | 4.0 × 10−3 | RT | - | - | 0.66 | [173] |
PVDF-HFP | Mg(ClO4)2 | PTR14RFSI | TiO2 | 1.6 × 10−4 | 30 | 0.13 | - | 0.23 | [176] |
PVDF-HFP | Mf(TFSI)2 | TEGDME | SiO2 | 8.3 × 10−4 | RT | - | - | - | [177] |
PTHF | Mg(BH4)2-LiBH4 | diglyme | TiO2 | 4.2 × 10−4 | 40 | 0.003 | - | 0.5 | [178] |
Electrolyte | Cathode | Initial Capacity | Capacity Retention | Temp. (°C) | Note | Ref. |
---|---|---|---|---|---|---|
Borohydrides | ||||||
Mg(BH4)(NH2) | Pt | - | - | - | Mg plating on Pt | [62] |
Mg(BH4)(NH3BH3)2 | Mo | - | - | - | Mg plating on Mo | [65] |
0.4Mg(BH4)2•NH3-0.6Mg(BH4)2•2NH3@MgO | Mg | - | - | 60 | Stable Mg stripping/plating more than 100 cycles at 0.25 mA cm−2 | [69] |
Mg(en)1(BH4)2 | Pt | - | - | 60 | Stable Mg stripping/plating in 20 cycles at 10 mV s−1 | [64] |
Mg(BH4)2 1.5NH3-YSZ | Mg | - | - | 60 | Stable Mg stripping/plating in 300 cycles at 0.1 mA cm−2 | [67] |
Mg(BH4)∙2NH3 | TiS2 | 141 mAh/g at 0.05C | 31% at 25th cycle | 75 | 111 mAh/g at 0.2C, 72 mAh/g at 0.5C | [72] |
Mg(BH4)2∙1.5THF-MgO | TiS2 | 94 mAh/g at C/50 | 32% at 5th cycle | 55 | SS current collector was oxidized | [70] |
MOF | ||||||
Mg(TFSI)2/MgCl2/DME in MOF-74 | Mg | - | - | RT | Stable Mg stripping/plating in 100 cycles at 0.05 mA cm−2 | [78] |
Mgbp3dc in α-Mg3(HCOO)6/DMF | Mg | - | - | RT | Stable Mg stripping/plating in 8 cycles at 0.1 μA cm−2 | [75] |
Mg(TFSI)2/[EMIM][TFSI] in UiO-66 | PTCDA | 36 mAh/g at 1 mA/g | 61% at 3rd cycle | 60 | Stable Mg stripping/plating more than 200 cycles at 3.14 μA cm−2 | [76] |
GPE | ||||||
PVDF-TEGDME-Mg(Tf)2 | BaTiO3 | 557 mAh/g at 20 mA/g | 12% at 15th cycle | 55 |
| [135] |
PECH-OH-MgCl2-TEGDME | Mo6S8 | 73 mAh/g at 0.3 C | 84% at 100th cycle | 30 | Pouch cell data | [127] |
PVDF-HFP-Mg(Tf)2- SN + EMITf | MnO2 | 40 mAh/g at 38 μA cm−2 | 12.5% at 8th cycle | RT | [140] | |
PTHF-MgBOR | Mo6S8 | 68 mAh/g at 0.1 C | 74% at 100th cycle | 25 | Stable Mg stripping/plating more than 1000 cycles at 0.1 mA cm−2 | [148] |
PVDF/HFP-MgCl2/AlCl3-TEGDME | MoS2 | 121 mAh/g at 40 mA/g | 58% at 1700th cycle | 25 | Stable Mg stripping/plating more than 400 cycles at 1.0 mA cm−2 | [133] |
Filler | ||||||
PVDF-HFP/PVAc-Mg(ClO4)2-MgTiO3 | Mo6S8 | 120 mAh/g at 0.5 C | 87% at 30th cycle | RT | [168] | |
SPE + filler + plasticizer | ||||||
PVDF-HFP-Mg(TFSI)2-SiO2 | TiO2 | 129 mAh/g at 50 mA/g | 99% at 100th cycle | RT | Stable Mg stripping/plating more than 100 cycles at 0.2 mA cm−2 | [177] |
PTHF- Mg(BH4)2/LiBH4-Diglyme- TiO2 | TiS2 | 225 mAh/g at 0.5 C | 98% at 70th cycle | 22 | Stable Mg stripping/plating more than 100 cycles at 0.1 mA cm−2 | [178] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandeeswari, J.; Jenisha, G.; Walle, K.Z.; Kotobuki, M. Recent Research Progress on All-Solid-State Mg Batteries. Batteries 2023, 9, 570. https://doi.org/10.3390/batteries9120570
Pandeeswari J, Jenisha G, Walle KZ, Kotobuki M. Recent Research Progress on All-Solid-State Mg Batteries. Batteries. 2023; 9(12):570. https://doi.org/10.3390/batteries9120570
Chicago/Turabian StylePandeeswari, Jayaraman, Gunamony Jenisha, Kumlachew Zelalem Walle, and Masashi Kotobuki. 2023. "Recent Research Progress on All-Solid-State Mg Batteries" Batteries 9, no. 12: 570. https://doi.org/10.3390/batteries9120570
APA StylePandeeswari, J., Jenisha, G., Walle, K. Z., & Kotobuki, M. (2023). Recent Research Progress on All-Solid-State Mg Batteries. Batteries, 9(12), 570. https://doi.org/10.3390/batteries9120570