Spinel-Structured, Multi-Component Transition Metal Oxide (Ni,Co,Mn)Fe2O4−x as Long-Life Lithium-Ion Battery Anode Material
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, S.S.; Wei, T.R.; Sun, J.Q.; Liu, Q.; Ma, D.; Liu, W.X.; Zhang, S.S.; Luo, J.; Liu, X.J. Atomically dispersed metal-based catalysts for Zn–CO2 batteries. Small Struct. 2022, 3, 2200086. [Google Scholar] [CrossRef]
- Salian, A.; Mandal, S. Entropy stabilized multicomponent oxides with diverse functionality—A review. Crit. Rev. Solid State Mat. Sci. 2021, 47, 142–193. [Google Scholar] [CrossRef]
- Tomboc, G.M.; Zhang, X.; Choi, S.; Kim, D.; Lee, L.Y.S.; Lee, K. Stabilization, characterization, and electrochemical applications of high-entropy oxides: Critical assessment of crystal phase–properties relationship. Adv. Funct. Mater. 2022, 32, 2205142. [Google Scholar] [CrossRef]
- Chen, Z.; Danilov, D.L.; Eichel, R.A.; Notten, P.H.L. Porous electrode modeling and its applications to Li-ion batteries. Adv. Energy Mater. 2022, 12, 202201506. [Google Scholar] [CrossRef]
- Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499. [Google Scholar] [CrossRef]
- Choi, Y.S.; Choi, W.; Yoon, W.S.; Kim, J.M. Unveriling the genesis and effectiveness of negative fading in nanostructured iron oxide anode materials for lithium-ion batteries. ACS Nano 2022, 16, 631–642. [Google Scholar] [CrossRef]
- Roy, K.; Banerjee, A.; Ogale, S. Search for new anode materials for high performance Li-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 20326–20348. [Google Scholar] [CrossRef]
- Sharma, A.; Rajkamal, A.; Kobi, S.; Kumar, B.S.; Paidi, A.K.; Chatterjee, A.; Mukhopadhyay, A. Addressing the high-voltage structural and electrochemical instability of Ni-containing layered transition metal (TM) oxide cathodes by “Blocking” the “TM-migration” pathway in the Lattice. ACS Appl. Mater. Interfaces 2021, 13, 25836–25849. [Google Scholar] [CrossRef]
- Shen, Y.; Jiang, Y.; Yang, Z.; Dong, J.; Yang, W.; An, Q.; Mai, L. Electronic structure modulation in MoO2/MoP heterostructure to induce fast electronic/ionic diffusion kinetics for lithium storage. Adv. Sci. 2022, 9, e2104504. [Google Scholar] [CrossRef]
- Lin, J.; Zeng, C.; Lin, X.; Xu, C.; Xu, X.; Luo, Y. Metal-organic framework-derived hierarchical MnO/Co with oxygen vacancies toward elevated-temperature Li-ion Battery. ACS Nano 2021, 15, 4594–4607. [Google Scholar] [CrossRef]
- Aghamohammadi, H.; Eslami-Farsani, R. Synthesis and electrochemical performance of TiNb2O7 nanoparticles grown on electrochemically prepared graphene as anode materials for Li-ion batteries. J. Power Sources 2022, 535, 231418. [Google Scholar] [CrossRef]
- Liang, J.; Deng, W.; Zhou, X.; Liang, S.; Hu, Z.; He, B.; Shao, G.; Liu, Z. High Li-ion conductivity artificial interface enabled by Li-grafted graphene oxide for stable Li metal pouch cell. ACS Appl. Mater. Interfaces 2021, 13, 29500–29510. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Wang, M.; Peng, Z.; Liu, Z.; Fan, H.; Zhang, Y. Ultrafast Li(+) diffusion kinetics enhanced by cross-stacked nanosheets loaded with Co3O4@NiO nanoparticles: Constructing superstructure to enhance Li-ion half/full batteries. J. Colloid Interface Sci. 2021, 585, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Darbar, D.; Anilkumar, M.R.; Rajagopalan, V.; Bhattacharya, I.; Elim, H.I.; Ramakrishnappa, T.; Ezema, F.I.; Jose, R.; Reddy, M.V. Studies on spinel cobaltites, MCo2O4 (M = Mn, Zn, Fe, Ni and Co) and their functional properties. Ceram. Int. 2018, 44, 4630–4639. [Google Scholar] [CrossRef]
- Reddy, M.V.; Yao Quan, C.; Adams, S. Mg, Cu, Zn doped Fe2O3 as an electrode material for Li-ion batteries. Mater. Lett. 2018, 212, 186–192. [Google Scholar] [CrossRef]
- Barqi, J.; Masoudpanah, S.M.; Hasheminiasari, M.; Liu, X. Nanoribbon-like NiCo2O4/reduced graphene oxide nanocomposite for high-performance hybrid supercapacitor. J. Alloys Compd. 2022, 930, 167509. [Google Scholar] [CrossRef]
- Li, T.; Li, X.; Wang, Z.; Guo, H.; Li, Y. A novel NiCo2O4 anode morphology for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 11970–11975. [Google Scholar] [CrossRef]
- Reddy, M.V.; Xu, Y.; Rajarajan, V.; Ouyang, T.; Chowdari, B.V.R. Template free facile molten synthesis and energy storage studies on MCo2O4 (M = Mg, Mn) as anode for Li-ion batteries. ACS Sustain. Chem. Eng. 2015, 3, 3035–3042. [Google Scholar] [CrossRef]
- Grzesik, Z.; Smoła, G.; Miszczak, M.; Stygar, M.; Dąbrowa, J.; Zajusz, M.; Świerczek, K.; Danielewski, M. Defect structure and transport properties of (Co,Cr,Fe,Mn,Ni)3O4 spinel-structured high entropy oxide. J. Eur. Ceram. Soc. 2020, 40, 835–839. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X.; Huang, Y.; Du, F.; Zeng, Y. Entropy stabilization effect and oxygen vacancies enabling spinel oxide highly reversible lithium-ion storage. ACS Appl. Mater. Interfaces 2021, 13, 58674–58681. [Google Scholar] [CrossRef]
- Dąbrowa, J.; Stygar, M.; Mikuła, A.; Knapik, A.; Mroczka, K.; Tejchman, W.; Danielewski, M.; Martin, M. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure. Mater. Lett. 2018, 216, 32–36. [Google Scholar] [CrossRef]
- Huang, C.Y.; Huang, C.W.; Wu, M.C.; Patra, J.; Xuyen Nguyen, T.; Chang, M.T.; Clemens, O.; Ting, J.M.; Li, J.; Chang, J.K. Atomic-scale investigation of lithiation/delithiation mechanism in high-entropy spinel oxide with superior electrochemical performance. Chem. Eng. J. 2021, 420, 129838. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Tsai, C.C.; Patra, J.; Clemens, O.; Chang, J.K.; Ting, J.M. Co-free high entropy spinel oxide anode with controlled morphology and crystallinity for outstanding charge/discharge performance in lithium-ion batteries. Chem. Eng. J. 2022, 430, 132658. [Google Scholar] [CrossRef]
- Patra, J.; Nguyen, T.X.; Tsai, C.C.; Clemens, O.; Li, J.; Pal, P.; Chan, W.K.; Lee, C.H.; Chen, H.Y.T.; Ting, J.M.; et al. Effects of elemental modulation on phase purity and electrochemical properties of Co-free high-entropy spinel oxide anodes for lithium-ion batteries. Adv. Funct. Mater. 2022, 32, 2110992. [Google Scholar] [CrossRef]
- Mohamed, H.S.H.; Li, C.F.; Wu, L.; Shi, W.H.; Dong, W.D.; Liu, J.; Hu, Z.Y.; Chen, L.H.; Li, Y.; Su, B.L. Growing ordered CuO nanorods on 2D Cu/g-C3N4 nanosheets as stable freestanding anode for outstanding lithium storage. Chem. Eng. J. 2021, 407, 126941. [Google Scholar] [CrossRef]
- Han, Y.; Sang, Z.; Liu, D.; Zhang, T.; Feng, J.; Si, W.; Dou, S.X.; Liang, J.; Hou, F. Lithiophilic and conductive V2O3/VN nanosheets as regulating layer for high-rate, high-areal capacity and dendrite-free lithium metal anodes. Chem. Eng. J. 2021, 420, 129787. [Google Scholar] [CrossRef]
- Alli, U.; McCarthy, K.; Baragau, I.A.; Power, N.P.; Morgan, D.J.; Dunn, S.; Killian, S.; Kennedy, T.; Kellici, S. In-situ continuous hydrothermal synthesis of TiO2 nanoparticles on conductive N-doped MXene nanosheets for binder-free Li-ion battery anodes. Chem. Eng. J. 2022, 430, 132976. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, H.; Chen, G.; Zhang, J. Hierarchical 3D N-CNT/Sb2MoO6 for dendrite-free lithium metal battery. Chem. Eng. J. 2021, 420, 129614. [Google Scholar] [CrossRef]
- Yan, Z.C.; Chen, Q.; Zhang, H.; Kim, K.B.; Wang, W.M. The effects of Al2Au phase and oxide film on dealloying performances of Al50Au50 ribbon. Intermetallics 2022, 147, 107611. [Google Scholar] [CrossRef]
- Xia, Q.; He, S.Y.; Zhang, W.; Xiang, Q.C.; Qu, Y.D.; Ren, Y.L.; Qiu, K.Q. Degradation efficiency of Mg65Cu25−xAgxY10 nanoporous dealloyed ribbons on pesticide wastewater. Trans. Nonferrous Met. Soc. China 2022, 32, 1472–1484. [Google Scholar] [CrossRef]
- Luo, C.; Wang, Z.G.; Chen, Y.X.; Zhao, Y.M.; Han, Q.Q.; Qin, C.L.; Wang, Z.F. Eutectic-derived bimodal porous Ni@NiO nanowire networks for high-performance Li-ion battery anodes. Int. J. Energy Res. 2022, 46, 24654–24666. [Google Scholar] [CrossRef]
- Tan, F.Q.; Yu, B.; Bai, Q.G.; Zhang, Z.H. Potentiostatic dealloying fabrication and electrochemical actuation performance of bulk nanoporous palladium. Metals 2022, 12, 2153. [Google Scholar] [CrossRef]
- Lu, C.; Wang, J.; Cao, D.; Guo, F.; Hao, X.; Li, D.; Shi, W. Synthesis of magnetically recyclable g-C3N4/NiFe2O4 S-scheme heterojunction photocatalyst with promoted visible-light-response photo-Fenton degradation of tetracycline. Mater. Res. Bull. 2023, 158, 112064. [Google Scholar] [CrossRef]
- Du, W.; Zheng, Y.; Liu, X.; Cheng, J.; Reddy, R.C.K.; Zeb, A.; Lin, X.; Luo, Y. Oxygen-enriched vacancy spinel MFe2O4/carbon (M= Ni, Mn, Co) derived from metal-organic frameworks toward boosting lithium storage. Chem. Eng. J. 2023, 451, 138626. [Google Scholar] [CrossRef]
- Liu, X.; Xing, Y.; Xu, K.; Zhang, H.; Gong, M.; Jia, Q.; Zhang, S.; Lei, W. Kinetically accelerated lithium storage in high-entropy (LiMgCoNiCuZn)O enabled by oxygen vacancies. Small 2022, 18, e2200524. [Google Scholar] [CrossRef] [PubMed]
- Viet Thieu, Q.Q.; Kidanu, W.G.; Nguyen, H.D.; Thi Nguyen, T.L.; Phung Le, M.L.; Nguyen, V.H.; Nguyen, D.Q.; Tran, N.T.; Nguyen, X.V.; Kim, I.T.; et al. Spinel Ni-ferrite advanced high-capacity anode for Li-ion batteries prepared via coprecipitation route. Ceram. Int. 2022, 48, 31470–31477. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, S.; Duan, C.; Mao, J.; Dong, Y.; Dong, K.; Wang, Z.; Luo, S.; Liu, Y.; Qi, X. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. J. Alloys Compd. 2020, 844, 156158. [Google Scholar] [CrossRef]
- Xiao, B.; Wu, G.; Wang, T.; Wei, Z.; Sui, Y.; Shen, B.; Qi, J.; Wei, F.; Zheng, J. High-entropy oxides as advanced anode materials for long-life lithium-ion Batteries. Nano Energy 2022, 95, 106962. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Patra, J.; Chang, J.-K.; Ting, J.-M. High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance. J. Mater. Chem. A 2020, 8, 18963–18973. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, Y.; Sun, C.; Ni, Q.; Wang, C.; Jin, H. High entropy spinel-structure oxide for electrochemical application. Chem. Eng. J. 2022, 431, 133448. [Google Scholar] [CrossRef]
- Luo, X.F.; Patra, J.; Chuang, W.T.; Nguyen, T.X.; Ting, J.M.; Li, J.; Pao, C.W.; Chang, J.K. Charge-discharge mechanism of high-entropy Co-free spinel oxide toward Li+ storage examined using operando quick-scanning X-ray absorption spectroscopy. Adv. Sci. 2022, 9, e2201219. [Google Scholar] [CrossRef]
- Ghosh, S.; de Donder, T.; Gunnarsson, K.; Kumar, V.K.; Martha, S.K.; Svedlindh, P.; Kessler, V.G.; Seisenbaeva, G.A.; Pol, V.G. Investigating the stable operating voltage for the MnFe2O4 Li-ion battery anode. Sustain. Energy Fuels 2021, 5, 1904–1913. [Google Scholar] [CrossRef]
- Zhu, L.; Han, T.; Ding, Y.; Long, J.; Lin, X.; Liu, J. A metal–organic-framework derived NiFe2O4@NiCo-LDH nanocube as high-performance lithium-ion battery anode under different temperatures. Appl. Surf. Sci. 2022, 599, 153953. [Google Scholar] [CrossRef]
- Yang, C.; Peng, C.; Chen, P.; Ma, C.; Guo, K.; Cheng, Y. Insights into electrochemical performances of NiFe2O4 for lithium-ion anode materials. J. Alloys Compd. 2022, 896, 163079. [Google Scholar] [CrossRef]
- Tan, S.; Zhao, Q.; Geng, Y.; Yin, J.; Zhou, C.; Zhang, P.; Chu, X.; Xu, S.; Lu, M.; Wang, L.; et al. Enhanced lithium storage capacitance of layered CoFe2O4&V2CT hybrid anode material synthesized by in-situ hydrothermal method. J. Alloys Compd. 2022, 918, 165778. [Google Scholar] [CrossRef]
- Mozdzierz, M.; Swierczek, K.; Dabrowa, J.; Gajewska, M.; Hanc, A.; Feng, Z.; Cieslak, J.; Kadziolka-Gawel, M.; Plotek, J.; Marzec, M.; et al. High-entropy Sn0.8(Co0.2Mg0.2Mn0.2Ni0.2Zn0.2)2.2O4 conversion-alloying anode material for Li-ion cells: Altered lithium storage mechanism, activation of Mg, and origins of the improved cycling stability. ACS Appl. Mater. Interfaces 2022, 14, 42057–42070. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.F.; Fei, P.Y.; Xiong, H.Q.; Qin, C.L.; Zhao, W.M.; Liu, X.Z. CoFe2O4 nanoplates synthesized by dealloying method as high performance Li-ion battery anodes. Electrochim. Acta 2017, 252, 295–305. [Google Scholar] [CrossRef]
- He, G.G.; Wen, Y.; Ma, C.; Li, X.Y.; Gao, L.M.; Sun, Z.B. Photocatalytic hydrogen evolution of nanoporous CoFe2O4 and NiFe2O4 for water splitting. Int. J. Hydrog. Energy 2021, 46, 5369–5377. [Google Scholar] [CrossRef]
- Xie, T.; Zhang, Z.Y.; Zheng, H.Y.; Xu, K.D.; Hu, Z.; Lei, Y. Enhanced photothermal catalytic performance of dry reforming of methane over Ni/mesoporous TiO2 composite catalyst. Chem. Eng. J. 2022, 429, 132507. [Google Scholar] [CrossRef]
- Yao, L.H.; Zhao, J.G.; Pan, Q.L.; Li, X.Y.; Xing, B.Y.; Jiang, S.; Song, J.; Pang, M.J. Tailoring NiO@NiFe2O4/CNTs triphase hybrids towards high-performance anode for lithium-ion batteries. J. Alloys Compd. 2022, 912, 165209. [Google Scholar] [CrossRef]
- Li, R.R.; Long, Z.W.; Wu, C.Q.; Dai, H.; Li, W.; Bai, L.; Qiao, H.; Wang, K.L. Metal-organic frameworks-derived porous NiCo2O4/carbon composite nanofibers as anodes for Li/Na-ion batteries. J. Alloys Compd. 2023, 936, 168359. [Google Scholar] [CrossRef]
- Yang, X.; Huang, Y.N.; Wang, M.J.; Miao, Z.R.; Liu, H.Z.; Chen, Z.M.; Yang, Z.Y.; Yu, J. Double hollow Zn2SnO4/SnO2@N-doped carbon nanocubes as anode material for high-performance Li-ion batteries. Chem. Phys. Lett. 2023, 813, 140285. [Google Scholar] [CrossRef]
- Keppeler, M.; Srinivasan, M. Interfacial phenomena/capacities beyond conversion reaction occurring in nano-sized transition-metal-oxide-based negative electrodes in lithium-ion batteries: A Review. ChemElectroChem 2017, 4, 2727–2754. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, W.; Zhang, J.; Li, S.; Hu, R.; Yuan, B.; Chen, G. Tuning the electronic properties of NiO anode by in-situ introducing metallic Cu for high capacity and long life-span lithium-ion batteries. J. Alloys Compd. 2022, 918, 165693. [Google Scholar] [CrossRef]
- Chen, H.; Qiu, N.; Wu, B.; Yang, Z.; Sun, S.; Wang, Y. A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries. RSC Adv. 2020, 10, 9736–9744. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Wang, Z.; Li, Y.; Jin, C.; Dong, F.; Zhao, W.; Qin, C.; Wang, Z. Spinel-Structured, Multi-Component Transition Metal Oxide (Ni,Co,Mn)Fe2O4−x as Long-Life Lithium-Ion Battery Anode Material. Batteries 2023, 9, 54. https://doi.org/10.3390/batteries9010054
Dong L, Wang Z, Li Y, Jin C, Dong F, Zhao W, Qin C, Wang Z. Spinel-Structured, Multi-Component Transition Metal Oxide (Ni,Co,Mn)Fe2O4−x as Long-Life Lithium-Ion Battery Anode Material. Batteries. 2023; 9(1):54. https://doi.org/10.3390/batteries9010054
Chicago/Turabian StyleDong, Lishan, Zigang Wang, Yongyan Li, Chao Jin, Fangbing Dong, Weimin Zhao, Chunling Qin, and Zhifeng Wang. 2023. "Spinel-Structured, Multi-Component Transition Metal Oxide (Ni,Co,Mn)Fe2O4−x as Long-Life Lithium-Ion Battery Anode Material" Batteries 9, no. 1: 54. https://doi.org/10.3390/batteries9010054
APA StyleDong, L., Wang, Z., Li, Y., Jin, C., Dong, F., Zhao, W., Qin, C., & Wang, Z. (2023). Spinel-Structured, Multi-Component Transition Metal Oxide (Ni,Co,Mn)Fe2O4−x as Long-Life Lithium-Ion Battery Anode Material. Batteries, 9(1), 54. https://doi.org/10.3390/batteries9010054