Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Carbon Materials
2.2. Characterization of Carbons
2.3. Electrochemical Measurements
3. Results and Discussions
3.1. Characterization of Carbon Materials
3.2. Electrochemical Investigation of Energy Storage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, J.; Ma, Y.; Zhao, K.; Wang, Y.; Yang, B.; Cui, J.; Yan, X. High-Performance and Ultra-Stable Aqueous Supercapacitors Based on a Green and Low-Cost Water-In-Salt Electrolyte. ChemElectroChem 2019, 6, 5433–5438. [Google Scholar] [CrossRef]
- Lokhande, P.E.; Chavan, U.S.; Pandey, A. Materials and Fabrication Methods for Electrochemical Supercapacitors: Overview. Electrochem. Energy Rev. 2020, 3, 155–186. [Google Scholar] [CrossRef]
- Han, X.; Xiao, G.; Wang, Y.; Chen, X.; Duan, G.; Wu, Y.; Gong, X.; Wang, H. Design and Fabrication of Conductive Polymer Hydrogels and Their Applications in Flexible Supercapacitors. J. Mater. Chem. A 2020, 8, 23059–23095. [Google Scholar] [CrossRef]
- Yang, L.; Guo, X.; Jin, Z.; Guo, W.; Duan, G.; Liu, X.; Li, Y. Emergence of Melanin-Inspired Supercapacitors. Nano Today 2021, 37, 101075. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Hou, H.; Xu, W.; Duan, G.; He, S.; Liu, K.; Jiang, S. Recent Progress in Carbon-Based Materials for Supercapacitor Electrodes: A Review. J. Mater. Sci. 2020, 56, 173–200. [Google Scholar] [CrossRef]
- Xiao, J.; Han, J.; Zhang, C.; Ling, G.; Kang, F.; Yang, Q.H. Dimensionality, Function and Performance of Carbon Materials in Energy Storage Devices. Adv. Energy Mater. 2022, 12, 2100775. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, J.; Deng, H.; Du, Y.; Shi, X. Chitin Derived Nitrogen-Doped Porous Carbons with Ultrahigh Specific Surface Area and Tailored Hierarchical Porosity for High Performance Supercapacitors. J. Bioresour. Bioprod. 2021, 6, 142–151. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; He, S.; Du, H.; Liu, K.; Zhang, C.; Jiang, S. Facile Electrodeposition of NiCo2O4 Nanosheets on Porous Carbonized Wood for Wood-Derived Asymmetric Supercapacitors. Polymers 2022, 14, 2521. [Google Scholar] [CrossRef]
- Li, H.; Cao, L.; Zhang, H.; Tian, Z.; Zhang, Q.; Yang, F.; Yang, H.; He, S.; Jiang, S. Intertwined Carbon Networks Derived from Polyimide/Cellulose Composite as Porous Electrode for Symmetrical Supercapacitor. J. Colloid Interface Sci. 2022, 609, 179–187. [Google Scholar] [CrossRef]
- Ge, X.; Gu, C.; Wang, X.; Tu, J. Deep Eutectic Solvents (DESs)-Derived Advanced Functional Materials for Energy and Environmental Applications: Challenges, Opportunities, and Future Vision. J. Mater. Chem. A 2017, 5, 8209–8229. [Google Scholar] [CrossRef]
- Jagirani, M.S.; Soylak, M. Deep Eutectic Solvents-Based Adsorbents in Environmental Analysis. TrAC Trends Anal. Chem. 2022, 157, 116762. [Google Scholar] [CrossRef]
- Rodríguez-Álvarez, M.J.; García-Garrido, S.E.; Perrone, S.; García-Álvarez, J.; Capriati, V. Deep Eutectic Solvents and Heterogeneous Catalysis with Metallic Nanoparticles: A Powerful Partnership in Sustainable Synthesis. Curr. Opin. Green Sustain. Chem. 2022, 39, 100723. [Google Scholar] [CrossRef]
- Shao, J.; Ni, Y.; Yan, L. Oxidation of Furfural to Maleic Acid and Fumaric Acid in Deep Eutectic Solvent (DES) under Vanadium Pentoxide Catalysis. J. Bioresour. Bioprod. 2021, 6, 39–44. [Google Scholar] [CrossRef]
- Abbott, A.P. Deep Eutectic Solvents and Their Application in Electrochemistry. Curr. Opin. Green Sustain. Chem. 2022, 36, 100649. [Google Scholar] [CrossRef]
- Carrasco-Huertas, G.; Jiménez-Riobóo, R.J.; Gutiérrez, M.C.; Ferrer, M.L.; Del Monte, F. Carbon and Carbon Composites Obtained Using Deep Eutectic Solvents and Aqueous Dilutions Thereof. Chem. Commun. 2020, 56, 3592–3604. [Google Scholar] [CrossRef]
- Carriazo, D.; Serrano, M.C.; Gutiérrez, M.C.; Ferrer, M.L.; del Monte, F. Deep-Eutectic Solvents Playing Multiple Roles in the Synthesis of Polymers and Related Materials. Chem. Soc. Rev. 2012, 41, 4996–5014. [Google Scholar] [CrossRef]
- Duan, G.; Zhao, L.; Zhang, C.; Chen, L.; Zhang, Q.; Liu, K.; Wang, F. Pyrolysis of Zinc Salt-Treated Flax Fiber: Hierarchically Porous Carbon Electrode for Supercapacitor. Diam. Relat. Mater. 2022, 129, 109339. [Google Scholar] [CrossRef]
- Shao, J.; Ma, F.; Wu, G.; Dai, C.; Geng, W.; Song, S.; Wan, J. In-Situ MgO (CaCO3) Templating Coupled with KOH Activation Strategy for High Yield Preparation of Various Porous Carbons as Supercapacitor Electrode Materials. Chem. Eng. J. 2017, 321, 301–313. [Google Scholar] [CrossRef]
- Tian, D.; Xu, Z.; Zhang, D.; Zhou, Y.; Sun, Z. Multifaceted Roles of FeCl2 on Pore Formation of Polyester Fabric Wastes-Based Activated Carbon. Colloids Surf. A Physicochem. Eng. Asp. 2020, 598, 124756. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Dong, C.; Ding, X.Y.; Xia, Y.K. A Generalized ZnCl2 Activation Method to Produce Nitrogen-Containing Nanoporous Carbon Materials for Supercapacitor Applications. J. Alloys Compd. 2015, 636, 275–281. [Google Scholar] [CrossRef]
- Bian, S.W.; Baltrusaitis, J.; Galhotra, P.; Grassian, V.H. A Template-Free, Thermal Decomposition Method to Synthesize Mesoporous MgO with a Nanocrystalline Framework and Its Application in Carbon Dioxide Adsorption. J. Mater. Chem. 2010, 20, 8705–8710. [Google Scholar] [CrossRef]
- Wang, C.; O’Connell, M.J.; Chan, C.K. Facile One-Pot Synthesis of Highly Porous Carbon Foams for High-Performance Supercapacitors Using Template-Free Direct Pyrolysis. ACS Appl. Mater. Interfaces 2015, 7, 8952–8960. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. [Google Scholar] [CrossRef] [PubMed]
- Vaquero, S.; Díaz, R.; Anderson, M.; Palma, J.; Marcilla, R. Insights into the Influence of Pore Size Distribution and Surface Functionalities in the Behaviour of Carbon Supercapacitors. Electrochim. Acta 2012, 86, 241–247. [Google Scholar] [CrossRef]
- Aradilla, D.; Gentile, P.; Ruiz, V.; Gómez-Romero, P.; Wimberg, J.; Iliev, B.; Schubert, T.J.S.; Sadki, S.; Bidan, G. SiNWs-Based Electrochemical Double Layer Micro-Supercapacitors with Wide Voltage Window (4V) and Long Cycling Stability Using a Protic Ionic Liquid Electrolyte. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 015004. [Google Scholar] [CrossRef] [Green Version]
- Abbas, Q.; Gollas, B.; Presser, V. Reduced Faradaic Contributions and Fast Charging of Nanoporous Carbon Electrodes in a Concentrated Sodium Nitrate Aqueous Electrolyte for Supercapacitors. Energy Technol. 2019, 7, 1900430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gezović, A.; Mišurović, J.; Milovanović, B.; Etinski, M.; Krstić, J.; Grudić, V.; Dominko, R.; Mentus, S.; Vujković, M.J. High Al-Ion Storage of Vine Shoots-Derived Activated Carbon: New Concept for Affordable and Sustainable Supercapacitors. J. Power Sources 2022, 538, 231561. [Google Scholar] [CrossRef]
- Icaza, J.C.; Guduru, R.K. Effect of Ion Charges on the Electric Double Layer Capacitance of Activated Carbon in Aqueous Electrolyte Systems. J. Power Sources 2016, 336, 360–366. [Google Scholar] [CrossRef]
- Cheary, R.W.; Coelho, A. Fundamental Parameters Approach to X-ray Line-Profile Fitting. J. Appl. Crystallogr. 1992, 25, 109–121. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, T.; Khan, A.U.; Liu, G. Block Copolymer–Based Porous Carbon Fibers. Sci. Adv. 2019, 5, eaau6852. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Dokko, K.; Watanabe, M. Direct Synthesis of Nitrogen-Doped Carbon Materials from Protic Ionic Liquids and Protic Salts: Structural and Physicochemical Correlations between Precursor and Carbon. Chem. Mater. 2014, 26, 2915–2926. [Google Scholar] [CrossRef]
- Xu, Z.; Yuan, Z.; Zhang, D.; Chen, W.; Huang, Y.; Zhang, T.; Tian, D.; Deng, H.; Zhou, Y.; Sun, Z. Highly Mesoporous Activated Carbon Synthesized by Pyrolysis of Waste Polyester Textiles and MgCl2: Physiochemical Characteristics and Pore-Forming Mechanism. J. Clean. Prod. 2018, 192, 453–461. [Google Scholar] [CrossRef]
- Biniak, S.; Trykowski, G.; Walczyk, M.; Richert, M. Thermo-Chemical Modification of Low-Dimensional Carbons: An Infrared Study. J. Appl. Spectrosc. 2016, 83, 580–585. [Google Scholar] [CrossRef]
- Figueiredo, J.L.; Pereira, M.F.R.; Freitas, M.M.A.; Órfão, J.J.M. Modification of the Surface Chemistry of Activated Carbons. Carbon N. Y. 1999, 37, 1379–1389. [Google Scholar] [CrossRef]
- Yang, W.; Du, Z.; Ma, Z.; Wang, G.; Bai, H.; Shao, G. Facile Synthesis of Nitrogen-Doped Hierarchical Porous Lamellar Carbon for High-Performance Supercapacitors. RSC Adv. 2016, 6, 3942–3950. [Google Scholar] [CrossRef]
- Cymann-Sachajdak, A.; Graczyk-Zajac, M.; Trykowski, G.; Wilamowska-Zawłocka, M. Understanding the Capacitance of Thin Composite Films Based on Conducting Polymer and Carbon Nanostructures in Aqueous Electrolytes. Electrochim. Acta 2021, 383, 138356. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Gao, J.; Zhang, Y.; Lu, Q.; Liu, M. Hollow Porous Carbon Spheres with Hierarchical Nanoarchitecture for Application of the High Performance Supercapacitors. Electrochim. Acta 2016, 211, 183–192. [Google Scholar] [CrossRef]
- Guo, W.; Guo, X.; Yang, L.; Wang, T.; Zhang, M.; Duan, G.; Liu, X.; Li, Y. Synthetic Melanin Facilitates MnO Supercapacitors with High Specific Capacitance and Wide Operation Potential Window. Polymer 2021, 235, 124276. [Google Scholar] [CrossRef]
- Cao, L.; Li, H.; Liu, X.; Liu, S.; Zhang, L.; Xu, W.; Yang, H.; Hou, H.; He, S.; Zhao, Y.; et al. Nitrogen, Sulfur Co-Doped Hierarchical Carbon Encapsulated in Graphene with “Sphere-in-Layer” Interconnection for High-Performance Supercapacitor. J. Colloid Interface Sci. 2021, 599, 443–452. [Google Scholar] [CrossRef]
- Wang, F.; Chen, L.; Li, H.; Duan, G.; He, S.; Zhang, L.; Zhang, G.; Zhou, Z.; Jiang, S. N-Doped Honeycomb-like Porous Carbon towards High-Performance Supercapacitor. Chin. Chem. Lett. 2020, 31, 1986–1990. [Google Scholar] [CrossRef]
- Pholauyphon, W.; Bulakhe, R.N.; Manyam, J.; In, I.; Paoprasert, P. High-Performance Supercapacitors Using Carbon Dots/Titanium Dioxide Composite Electrodes and Carbon Dot-Added Sulfuric Acid Electrolyte. J. Electroanal. Chem. 2022, 910, 116177. [Google Scholar] [CrossRef]
- Tiwari, P.; Jaiswal, J.; Chandra, R. Hierarchal Growth of MoS2@CNT Heterostructure for All Solid State Symmetric Supercapacitor: Insights into the Surface Science and Storage Mechanism. Electrochim. Acta 2019, 324, 134767. [Google Scholar] [CrossRef]
- Oh, Y.J.; Yoo, J.J.; Kim, Y.I.; Yoon, J.K.; Yoon, H.N.; Kim, J.H.; Park, S. Bin Oxygen Functional Groups and Electrochemical Capacitive Behavior of Incompletely Reduced Graphene Oxides as a Thin-Film Electrode of Supercapacitor. Electrochim. Acta 2014, 116, 118–128. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.F.; Wang, Q.; Chen, X.Y.; Zhang, Z.J. Nitrogen and Oxygen Functionalized Hollow Carbon Materials: The Capacitive Enhancement by Simply Incorporating Novel Redox Additives into H2SO4 Electrolyte. J. Power Sources 2016, 320, 140–152. [Google Scholar] [CrossRef]
- Luo, H.; Zheng, L.; Lei, L.; Zhang, D.; Wu, J.; Yang, J. Supercapacitive Behavior of Mesoporous Carbon CMK-3 in Calcium Nitrate Aqueous Electrolyte. Korean J. Chem. Eng. 2014, 31, 712–718. [Google Scholar] [CrossRef]
- Zou, K.; Tan, H.; Wang, L.; Qian, Y.; Deng, Y.; Chen, G. Biomass Waste-Derived Nitrogen-Rich Hierarchical Porous Carbon Offering Superior Capacitive Behavior in an Environmentally Friendly Aqueous MgSO4 Electrolyte. J. Colloid Interface Sci. 2019, 537, 475–485. [Google Scholar] [CrossRef]
- Vujković, M.J.; Etinski, M.; Vasić, B.; Kuzmanović, B.; Bajuk-Bogdanović, D.; Dominko, R.; Mentus, S. Polyaniline as a Charge Storage Material in an Aqueous Aluminum-Based Electrolyte: Can Aluminum Ions Play the Role of Protons? J. Power Sources 2021, 482, 228937. [Google Scholar] [CrossRef]
- Suo, L.; Borodin, O.; Wang, Y.; Rong, X.; Sun, W.; Fan, X.; Xu, S.; Schroeder, M.A.; Cresce, A.V.; Wang, F.; et al. “Water-in-Salt” Electrolyte Makes Aqueous Sodium-Ion Battery Safe, Green, and Long-Lasting. Adv. Energy Mater. 2017, 7, 1701189. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, X.; Sun, J.; Liu, Y.; Hou, L. Recent Progress in “Water-in-Salt” Electrolytes Toward Non-Lithium Based Rechargeable Batteries. Front. Chem. 2020, 8, 595. [Google Scholar] [CrossRef]
- Jurewicz, K.; Frackowiak, E.; Béguin, F. Towards the Mechanism of Electrochemical Hydrogen Storage in Nanostructured Carbon Materials. Appl. Phys. A Mater. Sci. Process. 2004, 78, 981–987. [Google Scholar] [CrossRef]
- Wang, S.; Cao, K.; Xu, L.; Zhao, D.; Tong, Y. Carbon Nanotubes/Reduced Graphene Oxide Composites as Electrode Materials for Supercapacitors. Appl. Phys. A Mater. Sci. Process. 2022, 128, 1–10. [Google Scholar] [CrossRef]
- Xiang, C.; Li, M.; Zhi, M.; Manivannan, A.; Wu, N. A Reduced Graphene Oxide/Co3O4 Composite for Supercapacitor Electrode. J. Power Sources 2013, 226, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Yan, B.; Feng, L.; Zhang, Q.; Zhang, C.; Yang, W.; Han, J.; Jiang, S.; He, S. Potassium Citrate Assisted Synthesis of Hierarchical Porous Carbon Materials for High Performance Supercapacitors. Diam. Relat. Mater. 2022, 128, 109247. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Y.; Ding, Y.; Fan, B. Preparation of N/O Co-Doped Porous Carbon by a One-Step Activation Method for Supercapacitor Electrode Materials. RSC Adv. 2022, 12, 20866–20875. [Google Scholar] [CrossRef]
Method | Textural Parameter, Abbreviation, Unit | Carbunw | Carbw |
---|---|---|---|
Brunauer–Emmet–Teller | Specific surface area, SSABET, m2 g−1 | 4.8 | 146 |
t-plot, (Lippens and de Boer) | Specific surface area, SSAt-plot, m2 g−1 | 4.8 | 138 |
Mesopores, (Dollimore–Heal) | Specific mesopore volume, Vmeso-DH, cm3 g−1 | 0.010 | 0.109 |
Median mesopore diameter, Dmeso-DH, nm | 14.1 | 20.7 | |
Mesopores surface area, Smeso-DH, m2 g−1 | 4.1 | 50.4 | |
Mesopores, t-plot (Lippens–de Boer) | Mesopores surface area, Smeso-t-plot, m2 g−1 | 2.9 | 42.6 |
Micropores, t-plot (Lippens–de Boer) | Micropore volume, Vmic-t-plot, cm3 g−1 | 0.004 | 0.056 |
Micropores, (Horvath–Kawazoe) | Micropore volume, Vmic-HK, cm3 g−1 | - | 0.060 |
Median pore diameter, Dmic-HK, nm | - | 0.9 | |
Gurevitsch’s rule at p/p0 = 0.98 | Total pore volume, Vtot, cm3 g−1 | 0.015 | 0.212 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdolšek, N.; Janković, B.; Milović, M.; Brković, S.; Krstić, J.; Perović, I.; Vujković, M. Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions. Batteries 2022, 8, 284. https://doi.org/10.3390/batteries8120284
Zdolšek N, Janković B, Milović M, Brković S, Krstić J, Perović I, Vujković M. Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions. Batteries. 2022; 8(12):284. https://doi.org/10.3390/batteries8120284
Chicago/Turabian StyleZdolšek, Nikola, Bojan Janković, Miloš Milović, Snežana Brković, Jugoslav Krstić, Ivana Perović, and Milica Vujković. 2022. "Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions" Batteries 8, no. 12: 284. https://doi.org/10.3390/batteries8120284
APA StyleZdolšek, N., Janković, B., Milović, M., Brković, S., Krstić, J., Perović, I., & Vujković, M. (2022). Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions. Batteries, 8(12), 284. https://doi.org/10.3390/batteries8120284