Influence of the Oxygen Surface Functionalities Introduced by Electrochemical Treatment on the Behavior of Graphite Felts as Electrodes in VRFBs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Impact of the Electrochemical Treatments on the Chemical Composition of the Felts
2.2. Electrochemical Performance of Modified Felts towards Vanadium Redox Processes
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sample | Elemental Composition (wt.%) | ||
---|---|---|---|
C | H | O | |
GF | 99.86 | 0.01 | 0.05 |
GF-Eox-H2SO4 | 98.29 | 0.10 | 0.93 |
GF-Ered-H2SO4 | 97.54 | 0.40 | 1.08 |
GF-Eox-HNO3 | 96.00 | 0.25 | 3.09 |
GF-Ered-HNO3 | 98.11 | 0.08 | 1.14 |
Sample | Csp2 (%) | Csp3 (%) | C-OH (%) | C=O (%) | COOH (%) | π-π* (%) | C (at. %) | O (at. %) |
---|---|---|---|---|---|---|---|---|
GF | 56.8 | 24.0 | 6.7 | 2.4 | 2.2 | 5.4 | 97.4 | 2.4 |
GF-Eox-H2SO4 | 34.1 | 26.0 | 10.2 | 4.7 | 7.9 | 1.6 | 84.5 | 15.0 |
GF-Ered-H2SO4 | 38.9 | 26.9 | 10.7 | 3.4 | 5.2 | 2.6 | 87.6 | 12.0 |
GF-Eox-HNO3 | 21.9 | 22.8 | 10.9 | 18.4 | 5.1 | 0.7 | 79.9 | 20.0 |
GF-Ered-HNO3 | 46.8 | 22.3 | 8.5 | 1.0 | 8.5 | 2.2 | 89.3 | 10.2 |
Equivalent Circuit | R1 (Ω) | Q2/R2 | Q3/R3 | ||||
---|---|---|---|---|---|---|---|
Sample | R2(Ω) | Q2(F·sn−1) | n2 | R3(Ω) | Q3(F·sn−1) | n3 | |
GF | 0.84 | 0.74 | 7.78 × 10−3 | 0.69 | 10.27 | 7.49 × 10−3 | 0.86 |
GF-Eox-H2SO4 | 0.95 | 0.29 | 0.049 | 0.66 | 3.48 | 0.262 | 0.70 |
GF-Ered-H2SO4 | 0.96 | 0.19 | 0.052 | 0.70 | 2.57 | 0.232 | 0.63 |
GF-Eox-HNO3 | 1.07 | 0.51 | 0.023 | 0.62 | 6.95 | 0.293 | 0.65 |
GF-Ered-HNO3 | 0.99 | 0.09 | 0.167 | 0.69 | 4.06 | 0.393 | 0.70 |
Equivalent Circuit | R1 (Ω) | Q2/R2 | Q3/R3 | ||||
---|---|---|---|---|---|---|---|
Sample | R2(Ω) | Q2(F·sn−1) | n2 | R3(Ω) | Q3(F·sn−1) | n3 | |
GF | 0.98 | 0.78 | 2.65 × 10−3 | 0.75 | 7.42 | 3.35 × 10−3 | 0.88 |
GF-Eox-H2SO4 | 0.91 | 0.83 | 0.33 | 0.40 | 0.34 | 0.17 | 0.99 |
GF-Ered-H2SO4 | 0.95 | 0.58 | 0.17 | 0.51 | 0.47 | 0.12 | 0.87 |
GF-Eox-HNO3 | 1.05 | 0.47 | 0.68 | 0.37 | 1.07 | 0.17 | 0.81 |
GF-Ered-HNO3 | 1.00 | 0.27 | 0.51 | 0.52 | 0.81 | 0.30 | 0.92 |
References
- European Union Energy Roadmap 2050. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/2012_energy_roadmap_2050_en_0.pdf (accessed on 10 May 2022).
- Fetting, C. The European Green Deal, ESDN Report, December 2020, ESDN Office, Vienna. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 12 May 2022).
- Sánchez-Díez, E.; Ventosa, E.; Guarnieri, M.; Trovò, A.; Flox, C.; Marcilla, R.; Soavi, F.; Mazur, P.; Aranzabe, E.; Ferret, R. Redox flow batteries: Status and perspective towards sustainable stationary energy storage. J. Power Source 2021, 481, 228804. [Google Scholar] [CrossRef]
- Pan, F.; Wang, Q. Redox species of redox flow batteries: A review. Molecules 2015, 11, 20499–20517. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, C. Cost-effective iron-based aqueous redox flow batteries for large-scale energy storage application: A review. J. Power Source 2021, 493, 229445. [Google Scholar] [CrossRef]
- Guo, L.; Guo, H.; Huang, H.; Tao, S.; Cheng, Y. Inhibition of zinc dendrites in zinc-based flow batteries. Front. Chem. 2020, 8, 557. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Negro, E.; Nale, A.; Pagot, G.; Vezzù, K.; Zawodzinski, T.A.; Meda, L.; Gambaro, C.; Di Noto, V. An efficient barrier toward vanadium crossover in redox flow batteries: The bilayer [Nafion/(WO3)x] hybrid inorganic-organic membrane. Electrochim. Acta 2021, 378, 138133. [Google Scholar] [CrossRef]
- Castañeda, L.F.; Walsh, F.C.; Nava, J.L.; Ponce De Leon, C. Graphite felt as a versatile electrode material: Properties, reaction environment, performance and applications. Electrochim. Acta 2017, 258, 1115–1139. [Google Scholar] [CrossRef]
- Kim, K.J.; Park, M.S.; Kim, Y.J.; Kim, J.H.; Doub, S.X.; Skyllas-Kazacos, M. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J. Mater. Chem. A 2015, 3, 16913–16933. [Google Scholar] [CrossRef]
- He, Z.; Lv, Y.; Zhang, T.; Zhu, Y.; Dai, L.; Yao, S.; Zhu, W.; Wang, L. Electrode materials for vanadium redox flow batteries: Intrinsic treatment and introducing catalyst. Chem. Eng. J. 2022, 427, 131680. [Google Scholar] [CrossRef]
- Radinger, H. 2021: A Surface Odyssey. Role of Oxygen Functional Groups on Activated Carbon-Based Electrodes in Vanadium Flow Batteries. ChemPhysChem 2021, 22, 2498–2505. [Google Scholar] [CrossRef]
- Sun, B.; Skyllas-Kazacos, M. Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment. Electrochim. Acta 1992, 7, 1253–1260. [Google Scholar] [CrossRef]
- Sun, B.; Skyllas-Kazacos, M. Chemical modification of graphite electrode materials for vanadium redox flow battery application—II Acid treatments. Electrochim. Acta 1992, 13, 2459–2465. [Google Scholar] [CrossRef]
- Kim, K.J.; Kim, Y.J.; Kim, J.H.; Park, M.S. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries. Mater. Chem. Phys. 2011, 131, 547–553. [Google Scholar] [CrossRef]
- Dixon, D.; Babu, D.J.; Langner, J.; Bruns, M.; Pfaffmann, L.; Bhaskara, A.; Schneider, J.J.; Scheiba, F.; Ehrenberg, H. Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application. J. Power Source 2016, 332, 240–248. [Google Scholar] [CrossRef]
- Wu, X.; Xu, H.; Xu, P.; Shen, Y.; Lu, L.; Shi, J.; Fu, J.; Zhao, H. Microwave-treated graphite felt as the positive electrode for all-vanadium redox flow battery. J. Power Source 2014, 263, 104–109. [Google Scholar] [CrossRef]
- Cho, Y.I.; Park, S.J.; Hwang, H.J.; Lee, J.G.; Jeon, Y.K.; Chu, Y.H.; Shul, Y. Effects of Microwave Treatment on Carbon Electrode for Vanadium Redox Flow Battery. ChemElectroChem 2015, 2, 872–876. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Z.; Tang, Y.; Bian, H.; Ng, T.; Zhang, W.; Lee, C. Graphene-Nanowall-Decorated Carbon Felt with Excellent Electrochemical Activity Toward VO2+/VO2+ Couple for All Vanadium Redox Flow Battery. Adv. Sci. 2016, 3, 1500276. [Google Scholar] [CrossRef] [Green Version]
- Etienne, M.; Vivo-Vilches, J.F.; Vakulko, I.; Genois, C.; Liu, L.; Perdicakis, M.; Hempelmann, R.; Walcarius, A. Layer-by-Layer modification of graphite felt with MWCNT for vanadium redox flow battery. Electrochim. Acta 2019, 313, 131–140. [Google Scholar] [CrossRef]
- Li, X.; Huang, K.-L.; Liu, S.-Q.; Tan, N.; Chen, L.-Q. Characteristics of graphite felt electrode electrochemically oxidized for vanadium redox battery application. Trans. Nonferrous Met. Soc. China 2007, 17, 195–199. [Google Scholar] [CrossRef]
- Li, X.; Huang, K.-L.; Liu, S.-Q.; Chen, L.-Q. Electrochemical behaviour of diverse vanadium ions at modified graphite felt electrode in sulphuric solution. J. Cent. South Univ. Technol. 2007, 14, 51–56. [Google Scholar] [CrossRef]
- Zhang, W.; Xi, J.; Li, Z.; Zhoua, H.; Liua, L.; Wua, Z.; Qiu, X. Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application. Electrochim. Acta 2013, 89, 429–435. [Google Scholar] [CrossRef]
- Wang, W.; Wei, Z.; Su, W.; Fan, X.; Liu, J.; Yan, C.; Zeng, C. Kinetic investigation of vanadium (V)/(IV) redox couple on electrochemically oxidized graphite electrodes. Electrochim. Acta 2016, 205, 102–112. [Google Scholar] [CrossRef]
- Li, W.; Liu, J.; Yan, C. Reduced graphene oxide with tunable C/O ratio and its activity towards vanadium redox pairs for an all vanadium redox flow battery. Carbon 2013, 55, 313–320. [Google Scholar] [CrossRef]
- Noack, J.; Roznyatovskaya, N.; Kunzendorf, J.; Skyllas-Kazacos, M.; Menictas, C.; Tübke, J. The influence of electrochemical treatment on electrode reactions for vanadium redox-flow batteries. J. Energy Chem. 2018, 27, 1341–1352. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.A.; Bourke, A.; Quill, N.; Wainright, J.S.; Lynch, R.P.; Buckley, D.N.; Savenill, R.F. Kinetic study of electrochemical treatment of carbon fiber microelectrodes leading to in situ enhancement of vanadium flow battery efficiency. J. Electrochem. Soc. 2016, 9, A2095–A2102. [Google Scholar] [CrossRef]
- Taylor, S.M.; Patru, A.; Perego, D.; Fabbri, E.; Schmidt, T.J. Influence of carbon material properties on activity and stability of the negative electrode in vanadium redox flow batteries: A model electrode study. ACS Appl. Energy Mater. 2018, 1, 1166–1174. [Google Scholar] [CrossRef]
- Kabir, H.; Gyan, I.O.; Cheng, I.F. Electrochemical modification of a pyrolytic graphite sheet for improved negative electrode performance in the vanadium redox flow battery. J. Power Source 2017, 342, 31–37. [Google Scholar] [CrossRef]
- Bourke, A.; Miller, M.A.; Lynch, R.P.; Gao, X.; Landon, J.; Wainright, J.S.; Savinell, R.F.; Buckley, D.N. Electrode kinetics of vanadium flow batteries: Contrasting responses of V(II)-V(III) and V(IV)-V(V) to electrochemical pre-treatment of carbon. J. Electrochem. Soc. 2016, 1, A5097–A5105. [Google Scholar] [CrossRef] [Green Version]
- Xi, J.; Zhang, W.; Li, Z.; Zhou, H.; Liu, L.; Wu, Z.; Qiu, X. Effect of electro-oxidation current density on performance of graphite felt electrode for vanadium redox flow battery. Int. J. Electrochem. Sci. 2013, 8, 4700–4711. [Google Scholar]
- García-Alcalde, L.; González, Z.; Barreda, D.; García-Rocha, V.; Blanco, C.; Santamaría, R. Unraveling the relevance of carbon felts surface modification during electrophoretic deposition of nanocarbons on their performance as electrodes for the VO2+/VO2+ redox couple. Appl. Surf. Sci. 2021, 569, 151095. [Google Scholar] [CrossRef]
- McCreery, R.L.; Cline, K.K.; McDermott, C.A.; McDermott, M.T. Control of reactivity at carbon electrode surfaces. Colloids Surf. A Physicochem. Eng. Asp. 1994, 93, 211–219. [Google Scholar] [CrossRef]
- Wang, W.H.; Wang, X.D. Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery. Electrochim. Acta 2007, 52, 6755–6762. [Google Scholar] [CrossRef]
- Yue, L.; Li, W.; Sun, F.; Zhao, L.; Xing, L. Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery. Carbon 2010, 48, 3079–3090. [Google Scholar] [CrossRef]
- Sherwood, P.M.A. Practical Surface Analysis, Auger and X-ray Photoelectron Spectroscopy; Briggs, D., Seah, M.P., Eds.; Wiley: New York, NY, USA, 1990; Volume 1, p. 574. [Google Scholar]
- García-Alcalde, L.; González, Z.; Concheso, A.; Blanco, C.; Santamaría, R. Impact of electrochemical cells configuration on a reliable assessment of active electrode materials for vanadium redox flow batteries. Electrochim. Acta 2022, 432, 141225. [Google Scholar] [CrossRef]
Sample | jpa (mA·cm−2) | jpc (mA·cm−2) | jpa/jpc | Epa(V) | Epc(V) | ΔEp(V) |
---|---|---|---|---|---|---|
GF | 87.41 | - | - | 1.47 | 0.40 | >1.07 |
GF-Eox-H2SO4 | 114.26 | −112.47 | 1.02 | 1.53 | 0.63 | 0.91 |
GF-Ered-H2SO4 | 100.34 | −95.74 | 1.05 | 1.49 | 0.64 | 0.85 |
GF-Eox-HNO3 | - | −83.66 | - | >1.70 | 0.57 | >1.13 |
GF-Ered-HNO3 | 112.01 | −99.81 | 1.12 | 1.58 | 0.59 | 0.99 |
GF | GF-Eox-H2SO4 | GF-Eox-HNO3 | |||||
---|---|---|---|---|---|---|---|
Point | Distance 1 (μm) | C (wt.%) | O (wt.%) | C (wt.%) | O (wt.%) | C (wt.%) | O (wt.%) |
1 | 0 | 98.72 | 1.28 | 93.67 | 6.33 | 94.59 | 5.41 |
2 | 0.3 | 98.75 | 1.25 | 98.76 | 1.24 | 96.54 | 3.46 |
3 | 0.6 | 98.99 | 1.01 | 98.64 | 1.36 | 96.85 | 3.15 |
4 | 0.9 | 98.95 | 1.05 | 98.73 | 1.27 | 98.80 | 1.20 |
5 | 1.2. | 99.03 | 0.97 | 98.63 | 1.37 | 99.02 | 0.98 |
Sample | jpa (mA·cm−2) | jpc (mA·cm−2) | jpa/jpc | Epa(V) | Epc(V) | ΔEp(V) |
---|---|---|---|---|---|---|
GF | 113.63 | −112.87 | 1.01 | 0.26 | −0.77 | 1.04 |
GF-Eox-H2SO4 | 118.01 | −113.21 | 1.04 | 0.09 | −0.63 | 0.72 |
GF-Ered-H2SO4 | 106.45 | −103.05 | 1.03 | 0.09 | −0.65 | 0.74 |
GF-Eox-HNO3 | 117.23 | −119.28 | 0.98 | 0.16 | −0.74 | 0.89 |
GF-Ered-HNO3 | 102.01 | −104.94 | 0.97 | 0.08 | −0.68 | 0.76 |
Sample | Electrolyte | mfelt (g) | Sfelt (cm2) | dc (mA·cm2) | I (mA) | Cspec(C·g−1) | t (s) |
---|---|---|---|---|---|---|---|
GF-Eox-H2SO4 | 1.0 M H2SO4 | 1.663 | 25 | 200 | 5000 | 5000 | 1663 |
GF-Eox-HNO3 | 1.0 M HNO3 | 1.648 | 25 | 200 | 5000 | 5000 | 1648 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Alcalde, L.; Concheso, A.; Rocha, V.G.; Blanco, C.; Santamaría, R.; González, Z. Influence of the Oxygen Surface Functionalities Introduced by Electrochemical Treatment on the Behavior of Graphite Felts as Electrodes in VRFBs. Batteries 2022, 8, 281. https://doi.org/10.3390/batteries8120281
García-Alcalde L, Concheso A, Rocha VG, Blanco C, Santamaría R, González Z. Influence of the Oxygen Surface Functionalities Introduced by Electrochemical Treatment on the Behavior of Graphite Felts as Electrodes in VRFBs. Batteries. 2022; 8(12):281. https://doi.org/10.3390/batteries8120281
Chicago/Turabian StyleGarcía-Alcalde, Laura, Alejandro Concheso, Victoria G. Rocha, Clara Blanco, Ricardo Santamaría, and Zoraida González. 2022. "Influence of the Oxygen Surface Functionalities Introduced by Electrochemical Treatment on the Behavior of Graphite Felts as Electrodes in VRFBs" Batteries 8, no. 12: 281. https://doi.org/10.3390/batteries8120281
APA StyleGarcía-Alcalde, L., Concheso, A., Rocha, V. G., Blanco, C., Santamaría, R., & González, Z. (2022). Influence of the Oxygen Surface Functionalities Introduced by Electrochemical Treatment on the Behavior of Graphite Felts as Electrodes in VRFBs. Batteries, 8(12), 281. https://doi.org/10.3390/batteries8120281