Research Progress of Working Electrode in Electrochemical Extraction of Lithium from Brine
Abstract
:1. Introduction
2. Principle of Electrochemical Extraction of Li from Brine
3. Research Progress of Working Electrode Materials in Electrochemical Extraction of Li from Brine
3.1. Spinel Structure
3.2. Olivine Structure
3.3. Layered Structure
3.4. Working Electrode Material to Extract Other Rare Ions
3.5. The Effects of Micro-Organisms on Working Electrode Materials
4. Conclusions and Prospects
- (1)
- It is necessary to develop working electrode materials with excellent comprehensive properties. Improving the electrochemical performance of the working electrode is the key to realizing engineering applications, which can start from the aspects of porosity, particle size, and synthesis route. The high saline-alkali environment of brine should also be considered. Furthermore, protective coatings can be developed to enhance the corrosion resistance of electrode materials by exploring the relationship between lattice size change and corrosion.
- (2)
- The current research on working electrodes is heavily dependent on experimental conditions and lack of standardized methods. Therefore, it is necessary to establish a scientific evaluation system of electrode materials as soon as possible to obtain electrode materials with application prospects.
- (3)
- The influence of micro-organisms on extraction equipment and electrode materials deserves further study due to their abundant presence in brines. Micro-organisms affect the performance of cathode materials and affect the safety, stability, and extraction efficiency of extraction equipment by corroding metal materials (such as pipes), and their mechanism of action needs to be further explored. In addition, the working electrode is prone to be blocked by micro-organisms during long-term use, so the removal of micro-organisms in brine deserves attention.
- (4)
- Material genomics integrate high-throughput computing, high-throughput preparation, high-throughput detection, and database systems, which can greatly shorten the material development cycle. Facing the problems existing in the current working electrode for electrochemical lithium extraction, material genomics can be used to design and prepare electrode materials.
- (5)
- Parameters such as brine flow rate and electric field distribution also have an impact on the efficiency, ion concentration, and lifetime of electrochemical lithium extraction [61]. For example, a flow-by-flow configuration with a small amount of intercalation material is not suitable for large-scale lithium extraction from brine, while a cross-flow configuration is suitable for industrial scale-up at a moderate flow rate. In addition, the lithium extraction efficiency also depends on the total current applied to the reactor. Therefore, operational parameters must be traded off to find the optimal conditions (capacity and capture rate) for the electrochemical extraction of lithium.
- (6)
- In addition to the working electrode materials, the construction of an electrochemical lithium extraction system has an important impact on the cost, efficiency, and energy consumption of electrochemical lithium extraction. Therefore, the development of electrochemical lithium extraction can be promoted by improving the electrode system and one such improvement is the exploration of the counter electrode system. The function of a counter electrode is to form a closed circuit in the electrochemical lithium extraction system and maintain the electric neutrality of the electrochemical lithium extraction system. Common counter electrodes are Ag electrode, Pt electrode, titanium electrode, activated carbon electrode, polymer electrode, etc. Compared with traditional precious metals, the environmentally friendly material-activated carbon electrode yields significant cost benefits. Next, we should also integrate the working electrode material with the counter electrode system to enhance the performance of the electrochemical lithium extraction system.
- (7)
- The biggest challenge of current electrochemical lithium extraction is the amplification effect in the real industrial scale-up process for which the existing working electrode materials, devices, specific operating parameters (such as DC potential, feed flow rate, the cycles of the recovered solution, etc.), energy consumption, etc., should be optimized and integrated.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Battistel, A.; Palagonia, M.S.; Brogioli, D.; La Mantia, F.; Trocoli, R. Electrochemical Methods for Lithium Recovery: A Comprehensive and Critical Review. Adv. Mater. 2020, 32, 1905440. [Google Scholar]
- Hu, B.; Shang, X.; Nie, P.; Zhang, B.; Yang, J.; Liu, J. Lithium ion sieve modified three-dimensional graphene electrode for selective extraction of lithium by capacitive deionization. J. Colloid Interface Sci. 2022, 612, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Calvo, E.J. Electrochemical methods for sustainable recovery of lithium from natural brines and battery recycling. Curr. Opin. Electrochem. 2019, 15, 102–108. [Google Scholar]
- Cubillos, C.F.; Aguilar, P.; Grágeda, M.; Dorador, C. Microbial Communities From the World’s Largest Lithium Reserve, Salar de Atacama, Chile: Life at High LiCl Concentrations. J. Geophys. Res. Biogeoences 2018, 123, 3668–3681. [Google Scholar]
- Delmas, C.; Maccario, M.; Croguennec, L.; Le Cras, F.; Weill, F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 2008, 7, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Fabre, C.; Ourti, N.E.; Ballouard, C.; Mercadier, J.; Cauzid, J. Handheld LIBS analysis for in situ quantification of Li and detection of the trace elements (Be, Rb and Cs). J. Geochem. Explor. 2022, 236, 106979. [Google Scholar] [CrossRef]
- Fang, J.-W.; Wang, J.; Ji, Z.-Y.; Cui, J.-L.; Guo, Z.-Y.; Liu, J.; Zhao, Y.-Y.; Yuan, J.-S. Establishment of PPy-derived carbon encapsulated LiMn2O4 film electrode and its performance for efficient Li+ electrosorption. Sep. Purif. Technol. 2022, 280, 119726. [Google Scholar]
- Flexer, V.; Fernando Baspineiro, C.; Ines Galli, C. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Total Environ. 2018, 639, 1188–1204. [Google Scholar] [CrossRef]
- Gandoman, F.H.; Jaguemont, J.; Goutam, S.; Gopalakrishnan, R.; Firouz, Y.; Kalogiannis, T.; Omar, N.; Van Mierlo, J. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges. Appl. Energy 2019, 251, 113343. [Google Scholar]
- Luo, G.; Zhu, L.; Li, X.; Zhou, G.; Sun, J.; Chen, L.; Chao, Y.; Jiang, L.; Zhu, W. Electrochemical lithium ions pump for lithium recovery from brine by using a surface stability Al2O3-ZrO2 coated LiMn2O4 electrode. J. Energy Chem. 2022, 69, 244–252. [Google Scholar] [CrossRef]
- Guo, Z.-Y.; Ji, Z.-Y.; Wang, J.; Guo, X.-F.; Liang, J.-S. Electrochemical lithium extraction based on “rocking-chair” electrode system with high energy-efficient: The driving mode of constant current-constant voltage. Desalination 2022, 533, 115767. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Ji, Z.Y.; Wang, J.; Chen, H.Y.; Yuan, J.S. Development of electrochemical lithium extraction based on a rocking chair system of LiMn2O4/Li1-xMn2O4: Self-driven plus external voltage driven. Sep. Purif. Technol. 2020, 259, 118154. [Google Scholar] [CrossRef]
- Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Mohamed, A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renew. Sustain. Energy Rev. 2017, 78, 834–854. [Google Scholar] [CrossRef]
- He, L.; Xu, W.; Song, Y.; Luo, Y.; Liu, X.; Zhao, Z. New Insights into the Application of Lithium-Ion Battery Materials: Selective Extraction of Lithium from Brines via a Rocking-Chair Lithium-Ion Battery System. Glob. Chall. 2018, 2, 1700079. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Kaur, S.; Kostecki, R. Mining Lithium from Seawater. Joule 2020, 4, 1357–1358. [Google Scholar] [CrossRef]
- Hong, Z.; Zhu, Q.; Liu, Y.; Wang, S.; Wu, J.; Jiang, H.; Hu, X.; Liu, K. Dependence of concentration polarization on discharge profile in electrochemical lithium extraction. Desalination 2022, 527, 115567. [Google Scholar] [CrossRef]
- Zheng, J.; Jia, X.; Wang, C.; Zheng, M.; Dong, Q. Electrochemical Performance of the LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 in Aqueous Electrolyte. J. Electrochem. Soc. 2010, 16, 151. [Google Scholar]
- Kim, J.S.; Lee, Y.H.; Choi, S.; Shin, J.; Choi, J.W. An Electrochemical Cell for Selective Lithium Capture from Seawater. Environ. Sci. Technol. 2015, 49, 9415–9422. [Google Scholar] [CrossRef]
- Kim, N.; Su, X.; Kim, C. Electrochemical lithium recovery system through the simultaneous lithium enrichment via sustainable redox reaction. Chem. Eng. J. 2020, 420, 127715. [Google Scholar] [CrossRef]
- Lawagon, C.P.; Nisola, G.M.; Cuevas, R.; Torrejos, R.; Kim, H.; Lee, S.P.; Chung, W.J. Li1−xNi0.5Mn1.5O4/Ag for electrochemical lithium recovery from brine and its optimized performance via response surface methodology. Sep. Purif. Technol. 2019, 212, 416–426. [Google Scholar] [CrossRef]
- Lawagon, C.P.; Nisola, G.M.; Cuevas, R.A.I.; Kim, H.; Lee, S.P.; Chung, W.J. Li1−xNi0.33Co1/3Mn1/3O2/Ag for electrochemical Lithium recovery from brine. Chem. Eng. J. 2018, 348, 1000–1011. [Google Scholar]
- Li, X.; Mo, Y.; Qing, W.; Shao, S.; Tang, C.Y.; Li, J. Membrane-based technologies for lithium recovery from water lithium resources: A review. J. Membr. Sci. 2019, 591, 117317. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Lin, D.; Hsu, P.C.; Chu, S. Lithium Extraction from Seawater through Pulsed Electrochemical Intercalation. Joule 2020, 4, 1459–1469. [Google Scholar] [CrossRef]
- Liu, D.; Xu, W.; Xiong, J.; He, L.; Zhao, Z. Electrochemical system with LiMn2O4 porous electrode for lithium recovery and its kinetics. Sep. Purif. Technol. 2021, 270, 118809. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, Z.; Ghahreman, A. Novel approaches for lithium extraction from salt-lake brines: A review. Hydrometallurgy 2019, 187, 81–100. [Google Scholar] [CrossRef]
- Mathew, M.; Kong, Q.H.; McGrory, J.; Fowler, M. Simulation of lithium ion battery replacement in a battery pack for application in electric vehicles. J. Power Sources 2017, 349, 94–104. [Google Scholar] [CrossRef]
- Meshram, P.; Pandey, B.D.; Mankhand, T.R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy 2014, 150, 192–208. [Google Scholar] [CrossRef]
- Mu, Y.; Zhang, C.; Zhang, W.; Wang, Y. Electrochemical lithium recovery from brine with high Mg2+/Li+ ratio using mesoporous λ-MnO2/LiMn2O4 modified 3D graphite felt electrodes. Desalination 2021, 511, 115112. [Google Scholar]
- Oren, A. The microbiology of red brines. Adv. Appl. Microbiol. 2020, 113, 57–110. [Google Scholar]
- Pasta, M.; Battistel, A.; Mantia, F.L. Batteries for lithium recovery from brines. Energy Environ. Sci. 2012, 5, 9487–9491. [Google Scholar]
- Pasta, M.; Wessells, C.D.; Cui, Y.; Mantia, F.L. A Desalination Battery. Nano Lett. 2012, 12, 839–843. [Google Scholar] [PubMed]
- Peng, H.; Zhao, Q. A Nano-Heterogeneous Membrane for Efficient Separation of Lithium from High Magnesium/Lithium Ratio Brine. Adv. Funct. Mater. 2021, 31, 2009430. [Google Scholar]
- Qian, H.; Zhang, D.; Lou, Y.; Li, Z.; Xu, D.; Du, C.; Li, X. Laboratory investigation of microbiologically influenced corrosion of Q235 carbon steel by halophilic archaea Natronorubrum tibetense. Corros. Sci. 2018, 145, 151–161. [Google Scholar] [CrossRef]
- Shang, X.; Liu, J.; Hu, B.; Nie, P.; Yang, J.; Zhang, B.; Wang, Y.; Zhan, F.; Qiu, J. CNT-Strung LiMn2O4 for Lithium Extraction with High Selectivity and Stability. Small Methods 2022, 6, 2200508. [Google Scholar]
- Sophia, A.C.; Saikant, S. Reduction of chromium(VI) with energy recovery using microbial fuel cell technology. J. Water Process Eng. 2016, 11, 39–45. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Liu, Y.; Xiang, X. Highly Efficient Lithium Extraction from Brine with a High Sodium Content by Adsorption-Coupled Electrochemical Technology. Acs Sustain. Chem. Eng. 2021, 9, 11022–11031. [Google Scholar] [CrossRef]
- Tian, L.; Liu, Y.; Tang, P.; Yang, Y.; Wang, X.; Chen, T.; Bai, Y.; Tiraferri, A.; Liu, B. Lithium extraction from shale gas flowback and produced water using H1.33Mn1.67O4 adsorbent. Resour. Conserv. Recycl. 2022, 185, 106476. [Google Scholar]
- Trócoli, R.; Battistel, A.; Mantia, F.L. Selectivity of a Lithium-Recovery Process Based on LiFePO4. Chem. A Eur. J. 2014, 20, 9888–9891. [Google Scholar]
- Trócoli, R.; Erinmwingbovo, C.; La Mantia, F. Optimized Lithium Recovery from Brines by using an Electrochemical Ion-Pumping Process Based on λ-MnO2 and Nickel Hexacyanoferrate. ChemElectroChem 2017, 4, 143–149. [Google Scholar] [CrossRef]
- Vijay, A.; Arora, S.; Gupta, S.; Chhabra, M. Halophilic starch degrading bacteria isolated from Sambhar Lake, India, as potential anode catalyst in microbial fuel cell: A promising process for saline water treatment. Bioresour. Technol. 2018, 256, 391–398. [Google Scholar] [CrossRef]
- Xie, N.; Li, Y.; Yuan, Y.; Gong, J.; Hu, X. Fabricating a Flow-Through Hybrid Capacitive Deionization Cell for Selective Recovery of Lithium Ions. ACS Appl. Energy Mater. 2021, 4, 13036–13043. [Google Scholar]
- Xing, P.; Wang, C.; Chen, Y.; Ma, B. Rubidium extraction from mineral and brine resources: A review. Hydrometallurgy 2021, 203, 105644. [Google Scholar]
- Xiong, J.; He, L.; Zhao, Z. Lithium extraction from high-sodium raw brine with Li0.3FePO4 electrode. Desalination 2022, 535, 115822. [Google Scholar]
- Xiong, J.; Zhao, Z.; Liu, D.; He, L. Direct lithium extraction from raw brine by chemical redox method with LiFePO4/FePO4 materials. Sep. Purif. Technol. 2022, 290, 120789. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, Y.; Feng, Z.; Kahn, N.U.; Haq Khan, Z.U.; Tang, Y.; Sun, Y.; Wan, P.; Chen, Y.; Fan, M. A Self-Supported—MnO2 Film Electrode used for Electrochemical Lithium Recovery from Brines. ChemPlusChem 2018, 83, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; He, L.; Zhao, Z. Lithium extraction from high Mg/Li brine via electrochemical intercalation/de-intercalation system using LiMn2O4 materials. Desalination 2021, 503, 114935. [Google Scholar] [CrossRef]
- Xu, X.; Li, Y.; Yang, D.; Zheng, X.; Wang, Y.; Pan, J.; Zhang, T.; Xu, J.; Qiu, F.; Yan, Y.; et al. A facile strategy toward ion-imprinted hierarchical mesoporous material via dual-template method for simultaneous selective extraction of lithium and rubidium. J. Clean. Prod. 2018, 171, 264–274. [Google Scholar]
- Yang, C.; Zhang, X.; Huang, M.; Huang, J.; Fang, Z. Preparation and Rate Capability of Carbon Coated LiNi1/3Co1/3Mn1/3O2 as Cathode Material in Lithium Ion Batteries. Acs Appl. Mater. Interfaces 2017, 9, 12408–12415. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, F.; Ding, H.; He, P.; Zhou, H. Lithium Metal Extraction from Seawater. Joule 2018, 2, 1648–1651. [Google Scholar]
- Yu, J.; Zheng, M.; Wu, Q.; Nie, Z.; Bu, L. Extracting lithium from Tibetan Dangxiong Tso Salt Lake of carbonate type by using geothermal salinity-gradient solar pond. Sol. Energy 2015, 115, 133–144. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Rui, H.; Shi, D.; Peng, X.; Ji, L.; Song, X. Lithium recovery from effluent of spent lithium battery recycling process using solvent extraction. J. Hazard. Mater. 2020, 398, 122840. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, W.; Xu, R.; Wang, L.; Tang, H. Lithium extraction from water lithium resources through green electrochemical-battery approaches: A comprehensive review. J. Clean. Prod. 2021, 285, 124905. [Google Scholar] [CrossRef]
- Zhao, X.; Feng, M.; Jiao, Y.; Zhang, Y.; Sha, Z. Lithium extraction from brine in an ionic selective desalination battery. Desalination 2020, 481, 114360. [Google Scholar]
- Zhao, X.; Jiao, Y.; Xue, P.; Feng, M.; Sha, Z. Efficiently lithium extraction from brine by using three-dimensional (3D) nanostructured hybrid inorganic-gel framework electrode. ACS Sustain. Chem. Eng. 2020, 8, 4827–4837. [Google Scholar]
- Zhao, X.; Li, G.; Feng, M.; Wang, Y. Semi-continuous electrochemical extraction of lithium from brine using CF-NMMO/AC asymmetric hybrid capacitors. Electrochim. Acta 2019, 331, 135285. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, H.; Wang, Y.; Sha, Z. Review on the electrochemical extraction of lithium from seawater/brine. J. Electroanal. Chem. 2019, 850, 113389. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, H.; Wang, Y.; Yang, L.; Zhu, L. Lithium extraction from brine by an asymmetric hybrid capacitor composed of heterostructured lithium-rich cathode and nano-bismuth anode. Sep. Purif. Technol. 2021, 274, 119078. [Google Scholar]
- Zhao, Y.; Zhou, E.; Xu, D.; Yang, Y.; Zhao, Y.; Zhang, T.; Gu, T.; Yang, K.; Wang, F. Laboratory investigation of microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm using electrochemical noise. Corros. Sci. 2018, 143, 281–291. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, X.; Yang, Y.; Li, L.; Li, G.; Guo, Z.; Feng, C. Self-Assembled LiNi1/3Co1/3Mn1/3O2 Nanosheet Cathode with High Electrochemical Performance. ACS Appl. Mater. Interfaces 2017, 9, 39560–39568. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, X.; Wang, Q.; Gao, F.; Jin, T.; Hao, X.; Ma, P.; Li, J.; Guan, G. A scalable three-dimensional porous λ-MnO2/rGO/Ca-alginate composite electroactive film with potential-responsive ion-pumping effect for selective recovery of lithium ions. Sep. Purif. Technol. 2021, 259, 118111. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-Lopez, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar]
Properties | LiMn2O4 | LiFePO4 | LiNi1/3Co1/3Mn1/3O2 |
---|---|---|---|
Initial brine [Mg/Li ratio] | 147.8 [47] | 134.4 [48]; 132 [49] | 5.15 [42,45] |
Selectivity | High Lithium ion selectivity [47] | High Lithium ion selectivity [48] | High Lithium ion selectivity [42] |
Cyclic stability | After 100 cycles, the capacity retention was 91% [47] | Capacity retention exceeds 90% after 100 cycles [39] | excellent cycle stability [42,45] |
Absorption capacity [mg/g] | 37 [50]; 12 [47] | 25 [48]; 9.13 [49] | 1.56 [42]; 13.84 [45] |
Purity [%] | 96.2 [51] | 74.3–99.98 [52] | 93 [42]; 96.4 [45] |
Energy [Wh/mol] | 7.63 [50]; 37 [47] | 2.8–29.5 [52] | 2.6 [42]; 1.4 [45] |
Efficiency [%] | 83.3 [47] | 83 [48]; 82.23 [39]; 91.11 [49] | 84.4 [45] |
Advantages | Highly selective, higher electrical conductivity | Adequate ion selectivity, cycling stability and adsorption capacity | High theoretical discharge capacity, high charge/discharge rate, favorable cycle stability, low cost and low environmental toxicity |
Disadvantages | Poor cycle stability, Harsh preparation process, low capacity of reversible embedded lithium | High power consumption, low conductivity and tap density | Preparation conditions are harsh and the cost is high |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, G.; Dong, G.; Zheng, H. Research Progress of Working Electrode in Electrochemical Extraction of Lithium from Brine. Batteries 2022, 8, 225. https://doi.org/10.3390/batteries8110225
Wang Y, Zhang G, Dong G, Zheng H. Research Progress of Working Electrode in Electrochemical Extraction of Lithium from Brine. Batteries. 2022; 8(11):225. https://doi.org/10.3390/batteries8110225
Chicago/Turabian StyleWang, Yangyang, Guangya Zhang, Guangfeng Dong, and Heng Zheng. 2022. "Research Progress of Working Electrode in Electrochemical Extraction of Lithium from Brine" Batteries 8, no. 11: 225. https://doi.org/10.3390/batteries8110225
APA StyleWang, Y., Zhang, G., Dong, G., & Zheng, H. (2022). Research Progress of Working Electrode in Electrochemical Extraction of Lithium from Brine. Batteries, 8(11), 225. https://doi.org/10.3390/batteries8110225