Electrochemical Testing of Carbon Materials as Bromine Electrodes for the Hydrogen-Bromine Redox Flow Battery
Abstract
:1. Introduction
2. Experimental Section
2.1. Electrolyte Chemicals
2.2. Electrode Materials and Setup
2.3. SEM and XPS Characterisation
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. SEM Characterisation
3.2. Electrochemical Characterisation
3.3. XPS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- IEA. World Energy Balances: Overview; IEA: Paris, France, 2019. [Google Scholar]
- IEA. Global Energy Review; IEA: Paris, France, 2021. [Google Scholar]
- Leung, P.; Li, X.; de León, C.P.; Berlouis, L.; Low, C.T.J.; Walsh, F.C. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2012, 2, 10125–10156. [Google Scholar] [CrossRef]
- Wang, C.; Lai, Q.; Feng, K.; Xu, P.; Li, X.; Zhang, H. From zeolite-type metal organic framework to porous nano-sheet carbon: High activity positive electrode material for bromine-based flow batteries. Nano Energy 2018, 44, 240–247. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Geological Survey. Mineral Commodity Summaries 2019; U.S Geological Survey: Reston, VA, USA, 2019; pp. 1–199. [Google Scholar] [CrossRef]
- Kosek, J.; Laconti, A. Advanced hydrogen electrode for a hydrogen-bromine battery. J. Power Sources 1988, 22, 293–300. [Google Scholar] [CrossRef]
- Saadi, K.; Nanikashvili, P.; Tatus-Portnoy, Z.; Hardisty, S.; Shokhen, V.; Zysler, M.; Zitoun, D. Crossover-tolerant coated platinum catalysts in hydrogen/bromine redox flow battery. J. Power Sources 2019, 422, 84–91. [Google Scholar] [CrossRef]
- Barna, G.G.; Frank, S.N.; Teherani, T.H.; Weedon, L.D. Lifetime Studies in H2/Br2 Fuel Cells. J. Electrochem. Soc. 1984, 131, 1973–1980. [Google Scholar] [CrossRef]
- Cho, K.T.; Ridgway, P.; Weber, A.; Haussener, S.; Battaglia, V.; Srinivasan, V. High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage. J. Electrochem. Soc. 2012, 159, A1806–A1815. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Xi, X.; Zhou, W.; Lai, Q.; Zhang, H. Bimodal highly ordered mesostructure carbon with high activity for Br2/Br− redox couple in bromine based batteries. Nano Energy 2016, 21, 217–227. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Xi, X.; Xu, P.; Lai, Q.; Zhang, H. Relationship between activity and structure of carbon materials for Br2/Br− in zinc bromine flow batteries. RSC Adv. 2016, 6, 40169–40174. [Google Scholar] [CrossRef]
- Wang, C.; Lai, Q.; Xu, P.; Zheng, D.; Li, X.; Zhang, H. Cage-Like Porous Carbon with Superhigh Activity and Br2-Complex-Entrapping Capability for Bromine-Based Flow Batteries. Adv. Mater. 2017, 29, 1605815. [Google Scholar] [CrossRef]
- Wang, S.; Liang, Y.; Zhuo, W.; Lei, H.; Javed, M.S.; Liu, B.; Wang, Z.; Mai, W. Freestanding polypyrrole/carbon nanotube electrodes with high mass loading for robust flexible supercapacitors. Mater. Chem. Front. 2020, 5, 1324–1329. [Google Scholar] [CrossRef]
- Wu, M.; Zhao, T.; Zhang, R.; Jiang, H.; Wei, L. A Zinc-Bromine Flow Battery with Improved Design of Cell Structure and Electrodes. Energy Technol. 2017, 6, 333–339. [Google Scholar] [CrossRef]
- Suresh, S.; Ulaganathan, M.; Venkatesan, N.; Periasamy, P.; Ragupathy, P. High performance zinc-bromine redox flow batteries: Role of various carbon felts and cell configurations. J. Energy Storage 2018, 20, 134–139. [Google Scholar] [CrossRef]
- Wu, M.C.; Zhao, T.S.; Jiang, H.R.; Zeng, Y.K.; Ren, Y.X. High-performance zinc bromine flow battery via improved design of electrolyte and electrode. J. Power Sources 2017, 355, 62–68. [Google Scholar] [CrossRef]
- Cho, K.T.; Tucker, M.C.; Ding, M.; Ridgway, P.; Battaglia, V.S.; Srinivasan, V.; Weber, A.Z. Cyclic Performance Analysis of Hydrogen/Bromine Flow Batteries for Grid-Scale Energy Storage. ChemPlusChem 2014, 80, 402–411. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, Z.-G.; Wang, X.; Yu, H.; Liu, S.; Yi, B. The characterization of graphite felt electrode with surface modification for H2/Br2 fuel cell. J. Power Sources 2013, 242, 15–22. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, H.; Zhao, P.; Yi, B. A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery. Electrochim. Acta 2006, 51, 6304–6312. [Google Scholar] [CrossRef]
- Javed, M.S.; Shah, S.S.A.; Najam, T.; Siyal, S.H.; Hussain, S.; Saleem, M.; Zhao, Z.; Mai, W. Achieving high-energy density and superior cyclic stability in flexible and lightweight pseudocapacitor through synergic effects of binder-free CoGa2O4 2D-hexagonal nanoplates. Nano Energy 2020, 77, 105276. [Google Scholar] [CrossRef]
- Javed, M.S.; Shaheen, N.; Hussain, S.; Li, J.; Shah, S.S.A.; Abbas, Y.; Ahmad, M.A.; Raza, R.; Mai, W. An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra. J. Mater. Chem. A 2018, 7, 946–957. [Google Scholar] [CrossRef]
- Le, T.X.H.; Bechelany, M.; Cretin, M. Carbon felt based-electrodes for energy and environmental applications: A review. Carbon 2017, 122, 564–591. [Google Scholar] [CrossRef]
- Wang, M.; Du, J.; Zhou, J.; Ma, C.; Bao, L.; Li, X.; Li, X. Numerical evaluation of the effect of mesopore microstructure for carbon electrode in flow battery. J. Power Sources 2019, 424, 27–34. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, T.; Zeng, Y.; An, L.; Wei, L. A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries. J. Power Sources 2016, 329, 247–254. [Google Scholar] [CrossRef]
- dos Reis, G.; de Oliveira, H.; Larsson, S.; Thyrel, M.; Lima, E.C. A Short Review on the Electrochemical Performance of Hierarchical and Nitrogen-Doped Activated Biocarbon-Based Electrodes for Supercapacitors. Nanomaterials 2021, 11, 424. [Google Scholar] [CrossRef]
- Du, Y.; Ma, S.; Dai, J.; Lin, J.; Zhou, X.; Chen, T.; Gu, X. Biomass Carbon Materials Contribute Better Alkali-Metal–Selenium Batteries: A Mini-Review. Batteries 2022, 8, 123. [Google Scholar] [CrossRef]
- Lai, Q.; Zhang, H.; Li, X.; Zhang, L.; Cheng, Y. A novel single flow zinc–bromine battery with improved energy density. J. Power Sources 2013, 235, 1–4. [Google Scholar] [CrossRef]
- Dixon, D.; Babu, D.; Langner, J.; Bruns, M.; Pfaffmann, L.; Bhaskar, A.; Schneider, J.; Scheiba, F.; Ehrenberg, H. Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application. J. Power Sources 2016, 332, 240–248. [Google Scholar] [CrossRef]
- Kim, K.J.; Kim, Y.-J.; Kim, J.-H.; Park, M.-S. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries. Mater. Chem. Phys. 2011, 131, 547–553. [Google Scholar] [CrossRef]
- Sun, B.; Skyllas-Kazacos, M. Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment. Electrochimica Acta 1992, 37, 1253–1260. [Google Scholar] [CrossRef]
- Parsons, R.; Bard, A.J.; Parsons, R.; Jordan, J. Standard Potentials in Aqueous Solution, 1st ed.; M. Dekker: New York, NY, USA, 1985; pp. 13–37. [Google Scholar]
- Mastragostino, M.; Gramellini, C. Kinetic study of the electrochemical processes of the bromine/bromine aqueous system on vitreous carbon electrodes. Electrochim. Acta 1985, 30, 373–380. [Google Scholar] [CrossRef]
- Ramette, R.W.; Palmer, D.A. Thermodynamics of tri- and pentabromide anions in aqueous solution. J. Solut. Chem. 1986, 15, 387–395. [Google Scholar] [CrossRef]
- Küttinger, M.; Wlodarczyk, J.K.; Daubner, D.; Fischer, P.; Tübke, J. High energy density electrolytes for H2/Br2 redox flow batteries, their polybromide composition and influence on battery cycling limits. RSC Adv. 2021, 11, 5218–5229. [Google Scholar] [CrossRef] [PubMed]
- Vogel, I.; Möbius, A. On some problems of the zinc—Bromine system as an electric energy storage system of higher efficiency—I. Kinetics of the bromine electrode. Electrochim. Acta 1991, 36, 1403–1408. [Google Scholar] [CrossRef]
- Pletcher, D. An Introduction to Electrode Reactions, in: A First Course Electrode Process, 2nd ed.; RSC Publishing: Cambridge, UK, 2009; p. 45. [Google Scholar]
- Rahman, F.; Skyllas-Kazacos, M. Vanadium redox battery: Positive half-cell electrolyte studies. J. Power Sources 2009, 189, 1212–1219. [Google Scholar] [CrossRef]
- Wu, X.; Liu, S.; Wang, N.; Peng, S.; He, Z. Influence of organic additives on electrochemical properties of the positive electrolyte for all-vanadium redox flow battery. Electrochim. Acta 2012, 78, 475–482. [Google Scholar] [CrossRef]
- Bard, A.; Faulkner, L. Kinetics of Electrode Reactions. In Electrochem. Methods Fundam. Appl., 2nd ed.; John Wiley & Sons Inc.: New York, NY, USA, 2001; pp. 87–136. [Google Scholar]
- Bard, A.; Faulkner, L. Introduction and Overview of Electrode Processes. In Electrochem. Methods Fundam. Appl., 2nd ed.; John Wiley & Sons Inc.: New York, NY, USA, 2001; pp. 1–43. [Google Scholar]
- Yue, L.; Li, W.; Sun, F.; Zhao, L.; Xing, L. Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery. Carbon 2010, 48, 3079–3090. [Google Scholar] [CrossRef]
- Tucker, M.C.; Cho, K.T.; Weber, A.Z.; Lin, G.; Van Nguyen, T. Optimization of electrode characteristics for the Br2/H2 redox flow cell. J. Appl. Electrochem. 2014, 45, 11–19. [Google Scholar] [CrossRef]
- Suss, M.E.; Conforti, K.; Gilson, L.; Buie, C.R.; Bazant, M.Z. Membraneless flow battery leveraging flow-through heterogeneous porous media for improved power density and reduced crossover. RSC Adv. 2016, 6, 100209–100213. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.-T.; Teng, H.; Chen, W.-Y.; Cheng, Y.-S. Synthesis, characterization, and electrochemical capacitance of amino-functionalized carbon nanotube/carbon paper electrodes. Carbon 2010, 48, 4219–4229. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Teng, H. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 2002, 40, 667–674. [Google Scholar] [CrossRef]
Electrode Material | Manufacturer | Type | Porosity (%) | Thickness |
---|---|---|---|---|
22AA | SGL Carbon | Carbon paper | 90 | 120 µm |
28AA | SGL Carbon | Carbon paper | 82 | 190 µm |
36AA | SGL Carbon | Carbon paper | 90 | 185 µm |
MGL370 | AvCarb | Moulded graphite laminate | 78 | 370 µm |
ELAT Hydrophilic Cloth | Nuvant Systems | Woven carbon cloth | 80 | 406 µm |
GFD Graphite Felt | SGL Carbon | Graphite felt | 94 | 2.5 mm |
Electrode Material | Rct (Ω cm2) | i0 (mA cm−2) | k0 × 10−5 (cm s−1) | Cdl (µF) |
---|---|---|---|---|
22AA pristine | 1.78 | 7.26 | 3.76 | 59.5 |
28AA pristine | 1.32 | 9.79 | 5.07 | 85.0 |
36AA pristine | 1.28 | 10.09 | 5.23 | 86.5 |
MGL370 pristine | 1.33 | 9.71 | 5.03 | 68.0 |
GF pristine | 0.80 | 16.19 | 8.39 | 117.8 |
Carbon cloth pristine | 1.32 | 9.79 | 5.07 | 99.1 |
22AA AN550 | 1.12 | 11.52 | 5.97 | 662.2 |
28AA AN550 | 1.19 | 10.86 | 5.63 | 756.6 |
36AA AN550 | 1.26 | 10.24 | 5.31 | 845.1 |
MGL370 AN550 | 1.25 | 10.33 | 5.35 | 608.2 |
GF AN550 | 0.68 | 18.97 | 9.83 | 2440.0 |
Carbon cloth AN550 | 1.14 | 11.31 | 5.86 | 1395.0 |
Electrode Material | Reduction/Oxidation Potential Ratio (1st Cycle) | Reduction/Oxidation Potential Ratio (50th Cycle) |
---|---|---|
22AA AN550 | 0.73 | 0.72 |
28AA AN550 | 0.72 | 0.73 |
36AA AN550 | 0.70 | 0.73 |
MGL370 AN550 | 0.67 | 0.69 |
GF AN550 | 0.83 | 0.80 |
Carbon cloth AN550 | 0.72 | 0.70 |
Sample | Oxygen Functional Group Content (%) | Oxygen Functional Group Distribution from O1s Spectra (%) | ||
---|---|---|---|---|
C=O | C–O | O–C=O | ||
GF | 16.56 | 4.73 | 33.59 | 61.69 |
GF AN550 | 16.86 | 10.90 | 62.34 | 26.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popat, Y.; Trudgeon, D.P.; Li, X.; Connor, P.; Asokan, A.; Suss, M.E. Electrochemical Testing of Carbon Materials as Bromine Electrodes for the Hydrogen-Bromine Redox Flow Battery. Batteries 2022, 8, 166. https://doi.org/10.3390/batteries8100166
Popat Y, Trudgeon DP, Li X, Connor P, Asokan A, Suss ME. Electrochemical Testing of Carbon Materials as Bromine Electrodes for the Hydrogen-Bromine Redox Flow Battery. Batteries. 2022; 8(10):166. https://doi.org/10.3390/batteries8100166
Chicago/Turabian StylePopat, Yaksh, David P. Trudgeon, Xiaohong Li, Peter Connor, Arunchander Asokan, and Matthew E. Suss. 2022. "Electrochemical Testing of Carbon Materials as Bromine Electrodes for the Hydrogen-Bromine Redox Flow Battery" Batteries 8, no. 10: 166. https://doi.org/10.3390/batteries8100166
APA StylePopat, Y., Trudgeon, D. P., Li, X., Connor, P., Asokan, A., & Suss, M. E. (2022). Electrochemical Testing of Carbon Materials as Bromine Electrodes for the Hydrogen-Bromine Redox Flow Battery. Batteries, 8(10), 166. https://doi.org/10.3390/batteries8100166