A Comparison of the Role of the Chelating Agent on the Structure of Lithium Conducting Solid Electrolyte Li1.4Al0.4Ti1.6(PO4)3: Pechini vs. Modified Pechini-Type Methods
Abstract
:1. Introduction
2. Synthesis of Materials and Preparation
2.1. Reagents and Solutions
2.2. Characterization Methods
3. Results and Discussion
3.1. Thermal Behavior
3.2. Heat Treatment and Phase Analysis
3.3. Electrochemical Impedance Spectroscopy Studies
3.4. Microstructure Analysis
4. Conclusions
- Lower pyrolysis and crystallization temperature in case of the EDTA-assisted structure.
- Larger crystallite size in the case of the CA-assisted structure.
- Same bulk conductivity complemented by lower overall conductivity in the EDTA-assisted structure due to a larger portion of grain boundaries with low conductivity.
- Higher apparent porosity and smaller formed grains upon using EDTA or CA were confirmed by SEM images. However, a porosity analysis is recommended to study the compatibility of the prepared compounds in future studies.
Author Contributions
Funding
Conflicts of Interest
References
- Lorenc, P.; Strzelczyk, A.; Chachulski, B.; Jasinski, G. Properties of Nasicon-based CO2 sensors with Bi8Nb2O17 reference electrode. Solid State Ion. 2015, 271, 48–55. [Google Scholar] [CrossRef]
- Xu, X.; Wen, Z.; Wu, J.; Yang, X. Preparation and electrical properties of NASICON-type structured Li1.4Al0.4Ti1.6(PO4)3 glass-ceramics by the citric acid-assisted sol–Gel method. Solid State Ion. 2007, 178, 29–34. [Google Scholar] [CrossRef]
- Jasinski, G.; Jasinski, P.; Chachulski, B.; Nowakowski, A. Electrocatalytic gas sensors based on Nasicon and Lisicon. Mater. Sci. 2006, 24, 262–268. [Google Scholar]
- Kale, G.M.; Wang, L.; Hayes, J.E.; Congjin, J.; Hong, Y.R. Solid-state sensors for in-line monitoring of NO2 in automobile exhaust emission. J. Mater. Sci. 2003, 38, 4293–4300. [Google Scholar] [CrossRef]
- Safanama, D.; Damiano, D.; Rao, R.P.; Adams, S. Lithium conducting solid electrolyte Li1+xAlxGe2−x(PO4)3 membrane for aqueous lithium air battery. Solid State Ion. 2014, 262, 211–215. [Google Scholar] [CrossRef]
- Narváez-Semanate, J.L.; Rodrigues, A.C.M. Microstructure and ionic conductivity of Li1+xAlxTi2−x(PO4)3 NASICON glass-ceramics. Solid State Ion. 2010, 181, 1197–1204. [Google Scholar] [CrossRef]
- Jian, Z.; Hu, Y.-S.; Ji, X.; Chen, W. NASICON-Structured Materials for Energy Storage. Adv. Mater. 2017, 29, 1601925. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Seo, D.; Shi, T.; Chen, S.; Tian, Y.; Kim, H.; Ceder, G. A High-Energy NASICON-Type Cathode Material for Na-Ion Batteries. Adv. Energy Mater. 2020, 10, 1903968. [Google Scholar] [CrossRef]
- Ma, C.; Hao, X.; Yang, X.; Liang, X.; Liu, F.; Liu, T.; Yang, C.; Zhu, H.; Lu, G. Sub-ppb SO2 gas sensor based on NASICON and LaxSm1-xFeO3 sensing electrode. Sens. Actuators B Chem. 2018, 256, 648–655. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, C.; Yang, X.; Song, Y.; Liang, X.; Zhao, X.; Wang, Y.; Gao, Y.; Liu, F.; Liu, F.; et al. NASICON-based gas sensor utilizing MMnO3 (M: Gd, Sm, La) sensing electrode for triethylamine detection. Sens. Actuators B Chem. 2019, 295, 56–64. [Google Scholar] [CrossRef]
- Wi, T.-U.; Lee, C.; Rahman, F.; Go, W.; Kim, M.-H.; Kim, H.-S.; Hwang, D.; Kwak, S.K.; Kim, Y.; Lee, H.W. The Chemical Stability of Nasicon as a Solid Electrolyte for Seawater Batteries. ECS Meet. Abstr. 2019. [Google Scholar] [CrossRef]
- Yang, G.; Safanama, D.; Phuah, K.C.; Adams, S. Enhanced Li1+xAlxGe2−x(PO4)3 Anode-Protecting Membranes for Hybrid Lithium–Air Batteries by Spark Plasma Sintering. ACS Omega 2020, 5, 18205–18212. [Google Scholar] [CrossRef] [PubMed]
- Mariappan, C.R.; Galven, C.; Crosnier-Lopez, M.-P.; Le Berre, F.; Bohnke, O. Synthesis of nanostructured LiTi2(PO4)3 powder by a Pechini-type polymerizable complex method. J. Solid State Chem. 2006, 179, 450–456. [Google Scholar] [CrossRef]
- Catti, M. Lithium location in NASICON-type Li+ conductors by neutron diffraction. I. Triclinic α′-LiZr2(PO4)3. Solid State Ion. 1999, 123, 173–180. [Google Scholar] [CrossRef]
- Lin, Y.F.; Chang, C.Y. Magnetic mesoporous iron oxide/carbon aerogel photocatalysts with adsorption ability for organic dye removal. RSC Adv. 2014, 4, 28628–28631. [Google Scholar] [CrossRef]
- Vijayan, L.; Govindaraj, G. Structural and electrical properties of high-energy ball-milled NASICON type Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 ceramics. J. Phys. Chem. Solids 2011, 72, 613–619. [Google Scholar] [CrossRef]
- Schroeder, M.; Glatthaar, S.; Binder, J.R. Influence of spray granulation on the properties of wet chemically synthesized Li1.3Ti1.7Al0.3(PO4)3 (LATP) powders. Solid State Ion. 2011, 201, 49–53. [Google Scholar] [CrossRef]
- Catti, M.; Ghaani, M.R. On the lithiation reaction of niobium oxide: Structural and electronic properties of Li1.714Nb2O5. Phys. Chem. Chem. Phys. 2014, 16. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Sun, Q.; Wang, D.; Adair, K.; Liang, J.; Sun, X. Development of the cold sintering process and its application in solid-state lithium batteries. J. Power Sources 2018, 393, 193–203. [Google Scholar] [CrossRef]
- Waetzig, K.; Rost, A.; Langklotz, U.; Matthey, B.; Schilm, J. An explanation of the microcrack formation in Li1.3Al0.3Ti1.7(PO4)3 ceramics. J. Eur. Ceram. Soc. 2016, 36, 1995–2001. [Google Scholar] [CrossRef]
- Cretin, M.; Fabry, P.; Abello, L. Study of Li1+xAlxTi2-x(PO4)3 for Li+ potentiometric sensors. J. Eur. Ceram. Soc. 1995, 15, 1149–1156. [Google Scholar] [CrossRef]
- Wang, G.X.; Bradhurst, D.H.; Dou, S.X.; Liu, H.K. LiTi2(PO4)3 with NASICON-type structure as lithium-storage materials. J. Power Sources 2003, 124, 231–236. [Google Scholar] [CrossRef]
- Zhao, E.; Ma, F.; Jin, Y.; Kanamura, K. Pechini synthesis of high ionic conductivity Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes: The effect of dispersant. J. Alloys Compd. 2016, 680, 646–653. [Google Scholar] [CrossRef]
- Sakka, S. Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications. Applications of Sol-Gel Technology; Kluwer Academic Publishers: Boston, MA, USA, 2005; ISBN 9781402079689. [Google Scholar]
- Ejehi, F.; Marashi, S.P.H.; Ghaani, M.R.; Haghshenas, D.F. The synthesis of NaSICON-type ZrNb(PO4)3 structure by the use of Pechini method. Ceram. Int. 2012, 38. [Google Scholar] [CrossRef]
- Rahimi-Nasrabadi, M.; Ahmadi, F.; Eghbali-Arani, M. Simple morphology-controlled fabrication of CdTiO3 nanoparticles with the aid of different capping agents. J. Mater. Sci. Mater. Electron. 2016, 27, 13294–13299. [Google Scholar] [CrossRef]
- Yang, E.; Moon, D.J. Synthesis of LaNiO3 perovskite using an EDTA-cellulose method and comparison with the conventional Pechini method: Application to steam CO2 reforming of methane. RSC Adv. 2016, 6, 112885–112898. [Google Scholar] [CrossRef]
- Chrunik, M.; Majchrowski, A.; Zasada, D.; Chlanda, A.; Szala, M.; Salerno, M. Modified Pechini synthesis of Bi2ZnB2O7 nanoparticles. J. Alloys Compd. 2017, 725, 587–597. [Google Scholar] [CrossRef]
- Ranjeh, M.; Masjedi-Arani, M.; Salavati-Niasari, M.; Moayedi, H. EDTA-modified sol-gel synthesis of monoclinic Li2MnO3 nanoparticles as an effective photocatalyst for degradation of organic dyes. J. Mol. Liq. 2020, 300, 112292. [Google Scholar] [CrossRef]
- Lin, H.B.; Zhang, Y.M.; Hu, J.N.; Wang, Y.T.; Xing, L.D.; Xu, M.Q.; Li, X.P.; Li, W.S. LiNi0.5Mn1.5O4 nanoparticles: Synthesis with synergistic effect of polyvinylpyrrolidone and ethylene glycol and performance as cathode of lithium ion battery. J. Power Sources 2014, 257, 37–44. [Google Scholar] [CrossRef]
- Jin, S.; Choi, W.S.; Baek, S.-W.; Shin, T.H.; Park, J.-Y.; Kim, J.H. Electrochemical properties of electrospinning-fabricated layered perovskite used in cathode materials for a low temperature-operating solid oxide fuel cell. Thin Solid Film. 2018, 660, 663–671. [Google Scholar] [CrossRef]
- Addonizio, M.L.; Aronne, A.; Imparato, C. Amorphous hybrid TiO2 thin films: The role of organic ligands and UV irradiation. Appl. Surf. Sci. 2020, 502, 144095. [Google Scholar] [CrossRef]
- Cai, W.; Yang, Y.; Zhu, Y.; Li, D.; Xu, C. Preparation of high laser-induced damage threshold sol-gel Nb2O5 films with different additives. Optik 2020, 206, 164306. [Google Scholar] [CrossRef]
- Ozturk, B.; Soylu, G.S.P. Preparation of surfactant-modified ZnTiO3–TiO2 nanostructures and their photocatalytic properties under sunlight irradiation. J. Sol-Gel Sci. Technol. 2017, 81, 226–235. [Google Scholar] [CrossRef]
- Mazlan, N.A.; Osman, N.; Md Jani, A.M.; Yaakob, M.H. Role of ionic and nonionic surfactant on the phase formation and morphology of Ba(Ce,Zr)O3 solid solution. J. Sol-Gel Sci. Technol. 2016, 78, 50–59. [Google Scholar] [CrossRef]
- Sletnes, M.; Skjærvø, S.L.; Lindgren, M.; Grande, T.; Einarsrud, M.-A. Luminescent Eu3+-doped NaLa(WO4)(MoO4) and Ba2CaMoO6 prepared by the modified Pechini method. J. Sol-Gel Sci. Technol. 2016, 77, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.-L.; Xu, Z.; Zhou, Z.-H. Conversions of monomeric, dimeric and tetrameric lanthanum and samarium citrates with ethylenediaminetetraacetates in aqueous solutions. Polyhedron 2018, 153, 213–217. [Google Scholar] [CrossRef]
- Amar, I.A.; Petit, C.T.G.; Lan, R.; Mann, G.; Tao, S. Electrochemical synthesis of ammonia from wet nitrogen using La 0.6 Sr 0.4 FeO 3−δ –Ce 0.8 Gd 0.18 Ca 0.02 O 2−δ composite cathode. RSC Adv. 2014, 4, 18749–18754. [Google Scholar] [CrossRef]
- Amar, I.A.; Lan, R.; Tao, S. Electrochemical Synthesis of Ammonia Directly from Wet N 2 Using La 0.6 Sr 0.4 Fe 0.8 Cu 0.2 O 3- δ -Ce 0.8 Gd 0.18 Ca 0.02 O 2- δ Composite Catalyst. J. Electrochem. Soc. 2014, 161, H350–H354. [Google Scholar] [CrossRef]
- Amar, I.A.; Petit, C.T.G.; Mann, G.; Lan, R.; Skabara, P.J.; Tao, S. Electrochemical synthesis of ammonia from N2 and H2O based on (Li,Na,K)2CO3–Ce0.8Gd0.18Ca0.02O2−δ composite electrolyte and CoFe2O4 cathode. Int. J. Hydrogen Energy 2014, 39, 4322–4330. [Google Scholar] [CrossRef] [Green Version]
- Amar, I.A.; Lan, R.; Tao, S. Synthesis of ammonia directly from wet nitrogen using a redox stable La 0.75 Sr 0.25 Cr 0.5 Fe 0.5 O 3−δ –Ce 0.8 Gd 0.18 Ca 0.02 O 2−δ composite cathode. RSC Adv. 2015, 5, 38977–38983. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zheng, Y.; Lin, Y.; Ran, R.; Shao, Z.; Farrusseng, D. A comparative study of La0.8Sr0.2MnO3 and La0.8Sr0.2Sc0.1Mn0.9O3 as cathode materials of single-chamber SOFCs operating on a methane–air mixture. J. Power Sources 2009, 191, 225–232. [Google Scholar] [CrossRef]
- Tseng, C.-J.; Chang, J.-K.; Lee, K.-R.; Hung, I.-M.; Lin, J.-C.; Jang, S.-C.; Lee, S.-W. Potassium doping optimization in proton-conducting Ba1-xKxCe0.6Zr0.2Y0.2O3-δ oxides for fuel cell applications. J. Alloys Compd. 2017, 696, 251–256. [Google Scholar] [CrossRef]
- Fares, A.; Barama, A.; Barama, S.; FodilCherif, N.; Chelaghmia, M.L. Synthesis and Characterization of Ba 0.5 Sr 0.5 Ni x Co 0.8-x Fe 0.2 O 3-δ (x = 0 and 0.2) Perovskites as Electro-catalysts for Methanol Oxidation in Alkaline Media. Electroanalysis 2017, 29, 2323–2331. [Google Scholar] [CrossRef]
- Bonturim, E.; Mazzocchi, V.L.; Parente, C.B.R.; Mestnik-Filho, J.; de Lima, N.B.; Seo, E.S.M. Oxygen stoichiometry of Ba0.50Sr0.50Co0.80Fe0.20O3−δ obtained by EDTA–citrate method and measured by X-ray and neutron diffraction. J. Radioanal. Nucl. Chem. 2015, 306, 769–773. [Google Scholar] [CrossRef]
- Tseng, C.-J.; Chang, J.-K.; Hung, I.-M.; Lee, K.-R.; Lee, S.-W. BaZr0.2Ce0.8−xYxO3−δ solid oxide fuel cell electrolyte synthesized by sol–gel combined with composition-exchange method. Int. J. Hydrogen Energy 2014, 39, 14434–14440. [Google Scholar] [CrossRef]
- Jahanbakhshi, M. Mesoporous carbon foam, synthesized via modified Pechini method, in a new dispersant of Salep as a novel substrate for electroanalytical determination of epinephrine in the presence of uric acid. Mater. Sci. Eng. C 2017, 70, 544–551. [Google Scholar] [CrossRef]
- Lu, X.; Wang, T.; Qi, Y. Crystalline characteristics and superconducting properties of Bi2212 thin films by Pechini sol–gel method: Effect of heating rate on the film growth. J. Sol-Gel Sci. Technol. 2016, 77, 100–108. [Google Scholar] [CrossRef]
- Chaput, F.; Boilot, J.-P.; Beauger, A. Alkoxide-Hydroxide Route to Syntheltize BaTiO3-Based Powders. J. Am. Ceram. Soc. 1990, 73, 942–948. [Google Scholar] [CrossRef]
- Fang, T.-T.; Wu, M.-S.; Tsai, J.-D. 13C NMR Study of the Solution Chemistry of Barium Titanium Citrate Gels Prepared Using the Pechini Process. J. Am. Ceram. Soc. 2004, 85, 2984–2988. [Google Scholar] [CrossRef]
- Mashreghi, A.; Ghasemi, M. Investigating the effect of molar ratio between TiO2 nanoparticles and titanium alkoxide in Pechini based TiO2 paste on photovoltaic performance of dye-sensitized solar cells. Renew. Energy 2015, 75, 481–488. [Google Scholar] [CrossRef]
- Kakihana, M.; Tada, M.; Shiro, M.; Petrykin, V.; Osada, M.; Nakamura, Y. Structure and Stability of Water Soluble (NH4) 8 [Ti4 (C6H4O7) 4 (O2) 4]·8H2O. Inorg. Chem. 2001, 40, 891–894. [Google Scholar] [CrossRef]
- Akbarzadeh, R.; Jen, T.-C.; Asadi, A.; Ozaveshe Oviroh, P. Titanate based photocatalysts for climate-efficient water treatment. Energy Procedia 2019, 158, 4536–4541. [Google Scholar] [CrossRef]
- Pant, B.; Park, M.; Park, S.J. Recent Advances in TiO2 Films Prepared by Sol-gel Methods for Photocatalytic Degradation of Organic Pollutants and Antibacterial Activities. Coatings 2019, 9, 613. [Google Scholar] [CrossRef] [Green Version]
- Ghaani, M.R.; Marashi, P. L16 Orthogonal Design Synthesis of NASICON-type Li1.4Al0.4Ti1.6(PO4)3 Solid Electrolyte by Pechini Method for Process Optimization. Iran. J. Mater. Sci. Eng. 2018, 15, 60–71. [Google Scholar]
- Takle, S.P.; Apine, O.A.; Ambekar, J.D.; Landge, S.L.; Bhujbal, N.N.; Kale, B.B.; Sonawane, R.S. Solar-light-active mesoporous Cr–TiO 2 for photodegradation of spent wash: An in-depth study using QTOF LC-MS. RSC Adv. 2019, 9, 4226–4238. [Google Scholar] [CrossRef] [Green Version]
- Schwarzenbach, G.; Muehlebach, J.; Mueller, K. Peroxo complexes of titanium. Inorg. Chem. 1970, 9, 2381–2390. [Google Scholar] [CrossRef]
- Rohe, M.; Merz, K. Active peroxo titanium complexes: Syntheses, characterization and their potential in the photooxidation of 2-propanol. Chem. Commun. 2008, 862–864. [Google Scholar] [CrossRef]
- Zhou, D.; Huang, G.; Chen, X.; Xu, J.; Gong, S. Synthesis of LaAlO3 via ethylenediaminetetraacetic acid precursor. Mater. Chem. Phys. 2004, 84, 33–36. [Google Scholar] [CrossRef]
- Sumathi, R.; Johnson, K.; Viswanathan, B.; Varadarajan, T.K. Selective oxidation and dehydrogenation of benzyl alcohol on ABB′O3 (A = Ba, B = Pb, Ce, Ti and B′ = Bi, Cu, Sb)-type perovskite oxides-temperature programmed reduction studies. Appl. Catal. A Gen. 1998, 172, 15–22. [Google Scholar] [CrossRef]
- Luo, L.; Ouyang, Y.; Lu, X.; Lu, X.; Chen, Q. The Effects of Rare Earths on Activity and Surface Properties of Ru/Γ-Al2o3 Catalyst for Water Gas Shift Reaction. Bull. Chem. Soc. Ethiop. 2007, 21. [Google Scholar] [CrossRef]
- McMurry, J. Organic Chemistry. Cengage Learning: Hampshire, UK, 2015; ISBN 9781305084445. [Google Scholar]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, Y.; Kobayashi, E.; Plashnitsa, L.S.; Okada, S.; Yamaki, J. Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds. Electrochim. Acta 2013, 101, 59–65. [Google Scholar] [CrossRef]
- Ahmad, A.; Wheat, T.; Kuriakose, A.; Canaday, J.; Mcdonald, A. Dependence of the properties of Nasicons on their composition and processing. Solid State Ion. 1987, 24, 89–97. [Google Scholar] [CrossRef]
Complexing Agent | A (Å) | C (Å) | Volume (Å3) | Crystallite Size (nm) |
---|---|---|---|---|
EDTA | 8.5017 (7) | 20.877 (4) | 1306.8 (2) | 34 |
CA | 8.4991 (5) | 20.778 (3) | 1299.8 (2) | 102 |
Complexing Agent | σtotal (S·cm−1) | σb (S·cm−1) | σgb (S·cm−1) |
---|---|---|---|
CA | (2.1 ± 0.2) × 10−5 | (5.13 ± 0.05) × 10−5 | (3.7 ± 0.2) × 10−5 |
EDTA | (0.6 ± 0.3) × 10−5 | (3.72 ± 0.06) × 10−5 | (0.6 ± 0.3) × 10−5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghaani, M.R.; Mohtasebi, A.M.; Tajeri, R.; Marashi, P. A Comparison of the Role of the Chelating Agent on the Structure of Lithium Conducting Solid Electrolyte Li1.4Al0.4Ti1.6(PO4)3: Pechini vs. Modified Pechini-Type Methods. Batteries 2020, 6, 48. https://doi.org/10.3390/batteries6040048
Ghaani MR, Mohtasebi AM, Tajeri R, Marashi P. A Comparison of the Role of the Chelating Agent on the Structure of Lithium Conducting Solid Electrolyte Li1.4Al0.4Ti1.6(PO4)3: Pechini vs. Modified Pechini-Type Methods. Batteries. 2020; 6(4):48. https://doi.org/10.3390/batteries6040048
Chicago/Turabian StyleGhaani, Mohammad Reza, Amir Masoud Mohtasebi, Razie Tajeri, and Pirooz Marashi. 2020. "A Comparison of the Role of the Chelating Agent on the Structure of Lithium Conducting Solid Electrolyte Li1.4Al0.4Ti1.6(PO4)3: Pechini vs. Modified Pechini-Type Methods" Batteries 6, no. 4: 48. https://doi.org/10.3390/batteries6040048
APA StyleGhaani, M. R., Mohtasebi, A. M., Tajeri, R., & Marashi, P. (2020). A Comparison of the Role of the Chelating Agent on the Structure of Lithium Conducting Solid Electrolyte Li1.4Al0.4Ti1.6(PO4)3: Pechini vs. Modified Pechini-Type Methods. Batteries, 6(4), 48. https://doi.org/10.3390/batteries6040048