# Modelling Lithium-Ion Battery Ageing in Electric Vehicle Applications—Calendar and Cycling Ageing Combination Effects

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Battery Ageing

#### 2.1. Main Ageing Mechanisms in Lithium-Ion Batteries

#### 2.2. Modelling Approaches

## 3. Experiments

#### 3.1. Experimental Setup

#### 3.2. Experimental Results

## 4. Calendar Ageing Model

#### 4.1. Model Formulation

#### 4.2. Parameter Identification

## 5. Combined Ageing Model

#### 5.1. Model Formulation

- (i)
- Mass is non-negative, then capacities must be non-negative:$$\begin{array}{cc}\hfill Q\left(t\right),\phantom{\rule{3.33333pt}{0ex}}{Q}_{F,rev}\left(t\right),\phantom{\rule{3.33333pt}{0ex}}{Q}_{F}\left(t\right)& \ge 0\hfill \end{array}$$
- (ii)
- Conservation of mass: the sum of capacities is constant and equal to initial capacity ${Q}^{0}$:$$\begin{array}{cc}\hfill Q\left(t\right)+{Q}_{F,rev}\left(t\right)+{Q}_{F}\left(t\right)& ={Q}^{0}.\hfill \end{array}$$

#### 5.2. Parameter Identification

- (i)
- establish a new parameter set: $x=(\lambda ,\phantom{\rule{3.33333pt}{0ex}}{k}_{irr},\phantom{\rule{3.33333pt}{0ex}}{k}_{s})$
- (ii)
- calculate ${Q}_{F,rev}^{eq}\left(SoC\right)$ (Equation (29))
- (iii)
- run simulation on each cycling profiles to obtain ${Q}_{F,sim}$ (Equations (19) and (20))
- (iv)
- calculate the mean absolute error, $f\left(x\right)$ (Equation (30))
- (v)
- while a minimum is not found, go to step (i)

## 6. Discussion

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

LFP/C | Lithium Iron Phosphate/graphite |

NMC/C | Nickel Manganese Cobalt/graphite |

ODE | Ordinary Differential Equation |

RPT | Reference Performance Tests |

SEI | Solid Electrolyte Interface |

SoC | State of Charge |

## References

- Vetter, J.; Novák, P.; Wagner, M.; Veit, C.; Möller, K.C.; Besenhard, J.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Sources
**2005**, 147, 269–281. [Google Scholar] [CrossRef] - Agubra, V.; Fergus, J. Lithium Ion Battery Anode Aging Mechanisms. Materials
**2013**, 6, 1310–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Redondo-Iglesias, E.; Venet, P.; Pelissier, S. Calendar and cycling ageing combination of batteries in electric vehicles. Microelectron. Reliab.
**2018**, 88–90, 1212–1215. [Google Scholar] [CrossRef] [Green Version] - Barré, A.; Deguilhem, B.; Grolleau, S.; Gérard, M.; Suard, F.; Riu, D. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources
**2013**, 241, 680–689. [Google Scholar] [CrossRef] [Green Version] - Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation
**2019**, 1, 100005. [Google Scholar] [CrossRef] - Schmalstieg, J.; Käbitz, S.; Ecker, M.; Sauer, D.U. A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. J. Power Sources
**2014**, 257, 325–334. [Google Scholar] [CrossRef] - Hoog, J.D.; Timmermans, J.M.; Ioan-Stroe, D.; Swierczynski, M.; Jaguemont, J.; Goutam, S.; Omar, N.; Mierlo, J.V.; Bossche, P.V.D. Combined cycling and calendar capacity fade modeling of a Nickel-Manganese-Cobalt Oxide Cell with real-life profile validation. Appl. Energy
**2017**, 200, 47–61. [Google Scholar] [CrossRef] - Gao, Y.; Jiang, J.; Zhang, C.; Zhang, W.; Jiang, Y. Aging mechanisms under different state-of-charge ranges and the multi-indicators system of state-of-health for lithium-ion battery with Li(NiMnCo)O2 cathode. J. Power Sources
**2018**, 400, 641–651. [Google Scholar] [CrossRef] - Kassem, M.; Delacourt, C. Postmortem analysis of calendar-aged graphite/LiFePO4 cells. J. Power Sources
**2013**, 235, 159–171. [Google Scholar] [CrossRef] - Delaille, A.; Grolleau, S.; Duclaud, F.; Bernard, J.; Revel, R.; Pelissier, S.; Redondo-Iglesias, E.; Vinassa, J.M.; Eddahech, A.; Forgez, C.; et al. SIMCAL Project: Calendar Aging Results Obtained On a Panel of 6 Commercial Li-Ion Cells; ECS Meeting Abstracts; The Electrochemical Society: San Francisco, CA, USA, 2013; Number 14; p. 1191. [Google Scholar]
- Peled, E.; Golodnitsky, D.; Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc.
**1997**, 144, L208–L210. [Google Scholar] [CrossRef] - Li, D.; Danilov, D.L.; Xie, J.; Raijmakers, L.; Gao, L.; Yang, Y.; Notten, P.H. Degradation Mechanisms of C6/LiFePO4 Batteries: Experimental Analyses of Calendar Aging. Electrochim. Acta
**2016**, 190, 1124–1133. [Google Scholar] [CrossRef] - Tippmann, S.; Walper, D.; Balboa, L.; Spier, B.; Bessler, W.G. Low-temperature charging of lithium-ion cells part I: Electrochemical modeling and experimental investigation of degradation behavior. J. Power Sources
**2014**, 252, 305–316. [Google Scholar] [CrossRef] - Legrand, N.; Knosp, B.; Desprez, P.; Lapicque, F.; Rael, S. Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling. J. Power Sources
**2014**, 245, 208–216. [Google Scholar] [CrossRef] - Sauer, D.U.; Wenzl, H. Comparison of different approaches for lifetime prediction of electrochemical systems—Using lead-acid batteries as example. J. Power Sources
**2008**, 176, 534–546. [Google Scholar] [CrossRef] - Eddahech, A.; Briat, O.; Woirgard, E.; Vinassa, J. Remaining useful life prediction of lithium batteries in calendar ageing for automotive applications. Microelectron. Reliab.
**2012**, 52, 2438–2442. [Google Scholar] [CrossRef] - Grolleau, S.; Delaille, A.; Gualous, H. Predicting lithium-ion battery degradation for efficient design and management. In Proceedings of the Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17–20 November 2013; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Grolleau, S.; Delaille, A.; Gualous, H.; Gyan, P.; Revel, R.; Bernard, J.; Redondo-Iglesias, E.; Peter, J. Calendar aging of commercial graphite/LiFePO4 cell – Predicting capacity fade under time dependent storage conditions. J. Power Sources
**2014**, 255, 450–458. [Google Scholar] [CrossRef] - Wang, J.; Liu, P.; Hicks-Garner, J.; Sherman, E.; Soukiazian, S.; Verbrugge, M.; Tataria, H.; Musser, J.; Finamore, P. Cycle-life model for graphite-LiFePO4 cells. J. Power Sources
**2011**, 196, 3942–3948. [Google Scholar] [CrossRef] - Song, Z.; Hofmann, H.; Li, J.; Hou, J.; Zhang, X.; Ouyang, M. The optimization of a hybrid energy storage system at subzero temperatures: Energy management strategy design and battery heating requirement analysis. Appl. Energy
**2015**, 159, 576–588. [Google Scholar] [CrossRef] - Petit, M.; Prada, E.; Sauvant-Moynot, V. Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime. Appl. Energy
**2016**, 172, 398–407. [Google Scholar] [CrossRef] - NIST/SEMATECH E-Handbook of Statistical Methods. 2013. Available online: http://www.itl.nist.gov/div898/handbook/index.htm (accessed on 1 October 2016).
- Redondo-Iglesias, E.; Venet, P.; Pelissier, S. Eyring acceleration model for predicting calendar ageing of lithium-ion batteries. J. Energy Storage
**2017**, 13, 176–183. [Google Scholar] [CrossRef] [Green Version] - Redondo-Iglesias, E.; Venet, P.; Pelissier, S. Efficiency Degradation Model of Lithium-ion Batteries for Electric Vehicles. IEEE Trans. Ind. Appl.
**2019**, 55, 1932–1940. [Google Scholar] [CrossRef] [Green Version] - Redondo-Iglesias, E.; Venet, P.; Pelissier, S. Influence of the non-conservation of SoC value during calendar ageing tests on modelling the capacity loss of batteries. In Proceedings of the 2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 31 March–2 April 2015; p. 5. [Google Scholar] [CrossRef]
- Yazami, R.; Reynier, Y.F. Mechanism of self-discharge in graphite–lithium anode. Electrochim. Acta
**2002**, 47, 1217–1223. [Google Scholar] [CrossRef]

**Figure 2.**Capacity fade under different calendar/cycling ageing conditions. Relative values of capacity fade are expressed in p.u. which means “per unit”.

**Figure 3.**Calendar ageing modelling results: natural logarithm of acceleration coefficient (${C}_{a}$) versus $SoC$. The blue circles are the experimental points, the lines are the result of model 1, 2 and 3 (Equations (9), (10) and (11) respectively). For model 2: $z=5$. For model 3: $a=0.7,b=10$.

**Figure 5.**Capacity fade simulations compared to measurements under different ageing conditions. Simulations are plotted by using lines. Measurements are plotted with markers (the legend for these points is in Figure 2).

**Figure 6.**Simulation results for cycling profiles between SoC 100 and 80% with current rates C/2. All profiles have the same weekly charge throughput: 1.4 p.u., that is, seven times 0.2 p.u. Profiles 1 and 2 have the same average SoC (98%) as profiles 3 and 4 (82%).

**Table 1.**Calendar ageing model results: absolute mean errors and maximum errors of ${C}_{a}$ for different stress formulations.

${\mathit{C}}_{\mathit{a}}$ | abs. Mean Error/Max. Error (%) | Identified Parameters | Fixed Parameters | Comments |
---|---|---|---|---|

${A}^{\prime}\xb7exp(B\xb7{SoC}^{z})$ | 7.1/22.5 | ${A}^{\prime},B$ | z = 1 | model 1 (Equation (9)) |

6.2/22.1 | z = 2 | |||

5.0/17.1 | z = 3 | |||

4.1/13.1 | z = 4 | |||

4.0/11.4 | z = 5 | model 2 (Equation (10)) | ||

4.4/13.2 | z = 6 | |||

4.9/14.4 | z = 7 | |||

5.4/15.0 | z = 8 | |||

5.8/15.2 | z = 9 | |||

6.1/15.6 | z = 10 | |||

${A}^{\prime}\xb7exp({B}_{1}\xb7\sqrt{SoC}+{B}_{2}\xb7SoC)$ | 3.7/11.4 | ${A}^{\prime},{B}_{1},{B}_{2}$ | ||

${A}^{\prime}\xb7exp({B}_{1}\xb7SoC+{B}_{2}\xb7So{C}^{2})$ | 3.8/12.2 | ${A}^{\prime},{B}_{1},{B}_{2}$ | ||

${A}^{\prime}\xb7exp({B}_{1}\xb7SoC+{B}_{2}\xb7So{C}^{2}+{B}_{3}\xb7So{C}^{3})$ | 3.5/11.9 | ${A}^{\prime},{B}_{1},{B}_{2},{B}_{3}$ | ||

${A}^{\prime}\xb7exp(B\xb7{f}_{re}\left(SoC\right))$ | 3.5/11.7 | ${A}^{\prime},B$ | a = 0.7, b = 10 | model 3 (Equation (11)) |

Parameter | Initial Value (${\mathit{x}}_{0}$) | Upper Bound (${\mathit{x}}_{\mathit{max}}$) | Lower Bound (${\mathit{x}}_{\mathit{min}}$) | Obtained Value (${\mathit{x}}_{\mathit{end}}$) |
---|---|---|---|---|

$\lambda $ | 10 | 20 | 0.1 | 7.41 |

${k}_{irr}$ | 0.1 | 0.5 | 0.0001 | 0.0547 |

${k}_{s}$ | 0.1 | 0.5 | 0.0001 | 0.0548 |

(a) Model equations. | ||

Main equations (ODE system): | ||

$\frac{d{Q}_{F,rev}\left(t\right)}{dt}=\lambda \xb7({Q}_{F,rev}^{eq}-{Q}_{F,rev}\left(t\right))+{k}_{s}\xb7I\left(t\right)$ | Equation (19) | |

$\frac{d{Q}_{F}\left(t\right)}{dt}=\lambda \xb7{k}_{irr}\xb7{Q}_{F,rev}\left(t\right)$ | Equation (20) | |

Auxiliary equations: | ||

$SoC\left(t\right)=So{C}^{0}+\frac{\int I\left(t\right)\xb7dt}{Q\left(t\right)}$ | t in days | |

I in p.u./day | ||

${f}_{re}\left(SoC\right)=a+\frac{(SoC-a)}{(1+{e}^{-b(SoC-a)})}$ | Equation (12) | |

${C}_{a}\left(SoC\right)={A}^{\prime}\xb7{e}^{\left(B{f}_{re}\left(SoC\right)\right)}$ | Equation (11) | |

${Q}_{F,rev}^{eq}\left(SoC\right)=\frac{{C}_{a}\left(SoC\right)}{(\lambda \xb7{k}_{irr})}$ | Equation (29) | |

$Q\left(t\right)={Q}^{0}-{Q}_{F,rev}\left(t\right)-{Q}_{F}\left(t\right)$ | from Equation (26) | |

(b) Model parameters. | ||

Parameter | Units | Value |

${A}^{\prime}$ | p.u./day | 8.8765 × 10${}^{-5}$ |

B | (no units) | 3.2162 |

a | (no units) | 0.7 |

b | (no units) | 10 |

$\lambda $ | day${}^{-1}$ | 7.41 |

${k}_{irr}$ | (no units) | 0.0547 |

${k}_{s}$ | (no units) | 0.0548 |

**Table 4.**Simulation results for different use profiles. Underlined values are showing the differences between each four profile group (profiles 5 to 8, 9 to 12 and 13 to 16) respect to the original profiles (1 to 4).

Profile Number | ${\mathit{SoC}}_{\mathit{max}}$ | ${\mathit{SoC}}_{\mathit{min}}$ | ${\mathit{SoC}}_{\mathit{avg}}$ | I | Weekly Charge Throughput | ${\mathit{Q}}_{\mathit{F}}$ after 70 Days | Comments |
---|---|---|---|---|---|---|---|

p.u. | p.u. | p.u. | C | p.u. | % | ||

1 | 1 | 0.8 | 0.98 | 0.5 | 1.4 | 19.62 | daily SOC100-80, rest 100 |

2 | 16.89 | monday SOC100-80x7, rest 100 | |||||

3 | 0.82 | 12.03 | daily SOC80-100, rest 80 | ||||

4 | 12.08 | monday SOC80-100x7, rest 80 | |||||

5 | 1 | 0.6 | 0.98 | 0.5 | 2.8 | 26.51 | daily SOC100-60, rest 100 |

6 | 23.44 | monday SOC100-60x7, rest 100 | |||||

7 | 0.62 | 11.31 | daily SOC60-100, rest 60 | ||||

8 | 11.35 | monday SOC60-100x7, rest 60 | |||||

9 | 1 | 0.8 | 0.98 | 0.2 | 1.4 | 19.36 | daily SOC100-80 (I = C/5), rest 100 |

10 | 16.54 | monday SOC100-80x7 (I = C/5), rest 100 | |||||

11 | 0.82 | 11.64 | daily SOC80-100 (I = C/5), rest 80 | ||||

12 | 11.71 | monday SOC80-100x7 (I = C/5), rest 80 | |||||

13 | 0.8 | 0.6 | 0.78 | 0.5 | 1.4 | 13.18 | daily SOC80-60, rest 80 |

14 | 10.25 | monday SOC80-60x7, rest 80 | |||||

15 | 0.62 | 10.17 | daily SOC60-80, rest 60 | ||||

16 | 10.12 | monday SOC60-80x7, rest 60 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Redondo-Iglesias, E.; Venet, P.; Pelissier, S.
Modelling Lithium-Ion Battery Ageing in Electric Vehicle Applications—Calendar and Cycling Ageing Combination Effects. *Batteries* **2020**, *6*, 14.
https://doi.org/10.3390/batteries6010014

**AMA Style**

Redondo-Iglesias E, Venet P, Pelissier S.
Modelling Lithium-Ion Battery Ageing in Electric Vehicle Applications—Calendar and Cycling Ageing Combination Effects. *Batteries*. 2020; 6(1):14.
https://doi.org/10.3390/batteries6010014

**Chicago/Turabian Style**

Redondo-Iglesias, Eduardo, Pascal Venet, and Serge Pelissier.
2020. "Modelling Lithium-Ion Battery Ageing in Electric Vehicle Applications—Calendar and Cycling Ageing Combination Effects" *Batteries* 6, no. 1: 14.
https://doi.org/10.3390/batteries6010014