State of Health Estimation for Energy Storage Batteries Based on Multi-Condition Feature Extraction
Abstract
1. Introduction
2. Data Introduction and Analysis
2.1. Data Sources and Introduction
2.2. Data Analysis
3. Feature Extraction for Multi-Condition
3.1. Establishing a Candidate Feature Set
3.2. Screening of Aging Features Under Operational Conditions
4. Multi-Condition Normalized Estimation Model
5. Model Results and Analysis
5.1. Model Performance Evaluation Metrics
5.2. Model Results
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vaishnavi, B.; Reddy, V.S.S.; Deepa, K.; Sailaja, V. Assessing CO2 gas emission in residential areas: Implications for sustainable urban development. In Proceedings of the 2024 5th International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 18–20 September 2024; IEEE: New York, NY, USA, 2024; pp. 302–307. [Google Scholar] [CrossRef]
- Yang, B.; Huang, L.; Wei, K.; Shu, X.; Li, Y.; Ren, B.; Tan, L. Research on degradation characteristics and real-time reliability assessment of lithium-ion batteries. J. Electrochem. Soc. 2025, 172, 60519. [Google Scholar] [CrossRef]
- Yan, L. Recent Progress in Li2FeSiO4 Cathode Materials. In Proceedings of the 2022 Power System and Green Energy Conference (PSGEC), Shanghai, China, 25–27 August 2022; IEEE: New York, NY, USA, 2022; pp. 452–456. [Google Scholar] [CrossRef]
- Zhang, T.; Ye, S.; Xi, H.; An, D. A two-stage data-driven temperature prediction method considering battery aging for retired batteries and validation of preemptive thermal control. Appl. Therm. Eng. 2025, 281, 128666. [Google Scholar] [CrossRef]
- Song, L.; Zheng, Y.; Xiao, Z.; Wang, C.; Long, T. Review on thermal runaway of lithium-ion batteries for electric vehicles. J. Electron. Mater. 2022, 51, 30–46. [Google Scholar] [CrossRef]
- Bello, I.T.; Raza, H.; Michael, A.T.; Muneeswara, M.; Tewari, N.; Bingsen, W.; Cheung, Y.N.; Choi, Z.; Boles, S.T. Charging ahead: The evolution and reliability of nickel-zinc battery solutions. EcoMat 2025, 7, e12505. [Google Scholar] [CrossRef]
- Yang, G.; Ma, Q.; Sun, H.; Zhang, X. State of health estimation based on GAN-LSTM-TL for lithium-ion batteries. Int. J. Electrochem. Sci. 2022, 17, 221128. [Google Scholar] [CrossRef]
- Sui, X.; He, S.; Vilsen, S.B.; Meng, J.; Teodorescu, R.; Stroe, D.I. A review of non-probabilistic machine learning-based state of health estimation techniques for lithium-ion battery. Appl. Energy 2021, 300, 117346. [Google Scholar] [CrossRef]
- Qian, C.; Xu, B.; Chang, L.; Sun, B.; Feng, Q.; Yang, D.; Ren, Y.; Wang, Z. Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries. Energy 2021, 227, 120333. [Google Scholar] [CrossRef]
- Lin, M.; Wu, D.; Meng, J.; Wu, J.; Wu, H. A multi-feature-based multi-model fusion method for state of health estimation of lithium-ion batteries. J. Power Sources 2022, 518, 230774. [Google Scholar] [CrossRef]
- Yang, X.; Ma, B.; Xie, H.; Wang, W.; Zou, B.; Liang, F.; Hua, X.; Liu, X.; Chen, S. Lithium-ion battery state of health estimation with multi-feature collaborative analysis and deep learning method. Batteries 2023, 9, 120. [Google Scholar] [CrossRef]
- Guan, T.; Sun, S.; Gao, Y.; Du, C.; Zuo, P.; Cui, Y.; Zhang, L.; Yin, G. The effect of elevated temperature on the accelerated aging of LiCoO2/mesocarbon microbeads batteries. Appl. Energy 2016, 177, 1–10. [Google Scholar] [CrossRef]
- Fleischhammer, M.; Waldmann, T.; Bisle, G.; Hogg, B.I.; Wohlfahrt-Mehrens, M. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries. J. Power Sources 2015, 274, 432–439. [Google Scholar] [CrossRef]
- Zhang, G.; Wei, X.; Chen, D.; Wang, X.; Chen, S.; Zhu, J.; Dai, H. Thermal characteristic evolution of lithium-ion batteries during the whole lifecycle. J. Energy Chem. 2024, 92, 534–547. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Yang, L.; Zhou, Z.; Meng, Y.; Zhang, W.; Shuan, Z.; Li, Y.; Lv, F. SOH estimation method for lithium-ion battery packs under real-world operating conditions based on a new attenuated model without additional experiments. Energy 2025, 330, 136802. [Google Scholar] [CrossRef]
- Lin, C.; Tuo, X.; Wu, L.; Zhang, G.; Lyu, Z.; Zeng, X. Physics-informed machine learning for accurate SOH estimation of lithium-ion batteries considering various temperatures and operating conditions. Energy 2025, 318, 134937. [Google Scholar] [CrossRef]
- Yuan, X.-D.; Qian, D.-M.; Wang, X.-Y.; Tang, C.-Y.; Hu, S.; Cui, T.; Yuan, W.-J. Numerical research on electrochemical behavior, thermal characteristics, and aging formation of lithium-ion cell at different ambient temperatures and charge/discharge rates. Energy Fuels 2024, 38, 21554–21574. [Google Scholar] [CrossRef]
- Mohtat, P.; Siegel, J.B.; Stefanopoulou, A.G.; Lee, S. UofM Pouch Cell Voltage and Expansion Cyclic Aging Dataset [Data Set]; Deep Blue Data; University of Michigan: Ann Arbor, MI, USA, 2021. [Google Scholar] [CrossRef]
- Jingyi, W.; Yijing, H.; Song, H. Current situation analysis of echelon utilization of traction battery for new energy vehicle industry. In Proceedings of the 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 25–27 February 2022; IEEE: New York, NY, USA, 2022; pp. 693–696. [Google Scholar] [CrossRef]
- Li, S.; Fu, Z.; Zhu, J.; Yuan, Y. Estimation of state-of-health for lithium-ion battery based on increment capacity analysis method and long short-term memory neural network. In Proceedings of the 2023 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Chongqing, China, 7–9 July 2023; IEEE: New York, NY, USA, 2023; pp. 1818–1823. [Google Scholar] [CrossRef]
- Mohammed, M.A.; El-Feky, S.F. An enhanced filter-based approach for feature selection. In Proceedings of the 2025 Intelligent Methods, Systems, and Applications (IMSA), Giza, Egypt, 12–13 July 2025; IEEE: New York, NY, USA, 2025; pp. 539–543. [Google Scholar] [CrossRef]
- Cheng, X.; Gao, X.; Ma, F.; Wang, Y. State of health estimation of lithium-ion batteries with feature interpretability based on partial charge curves. J. Electrochem. Soc. 2025, 172, 030509. [Google Scholar] [CrossRef]










| Condition | Temperature/°C | Rate (Charge_Discharge) | DOD (%) |
|---|---|---|---|
| 1 | 25 | 0.2C_0.2C | 0–100 |
| 2 | −5 | 0.2C_0.2C | 0–100 |
| 3 | 45 | 0.2C_0.2C | 0–100 |
| 4 | 25 | 0.2C_1.5C | 0–100 |
| 5 | −5 | 0.2C_1.5C | 0–100 |
| 6 | 45 | 0.2C_1.5C | 0–100 |
| 7 | 25 | 0.2C_0.2C | 50–100 |
| 8 | −5 | 0.2C_0.2C | 50–100 |
| 9 | 45 | 0.2C_0.2C | 50–100 |
| 10 | 25 | 0.2C_1.5C | 50–100 |
| 11 | −5 | 0.2C_1.5C | 50–100 |
| 12 | 45 | 0.2C_1.5C | 50–100 |
| Feature Data Type | Statistical Method |
|---|---|
| Voltage-Time | Peak, Peak Position |
| Current-Time | Quantile |
| Capacity-Time | Maximum Value |
| Energy-Time | Mean Value |
| IC Curve | Variance |
| CC Charge/CV Charge | Time Percentage |
| Feature | Count | Frequency (%) | Pearson_Avg | Spearman_Avg |
|---|---|---|---|---|
| IC_V | 10 | 83.33333 | 0.804754 | 0.820414 |
| I-T_CV_var | 9 | 75 | 0.782012 | 0.795555 |
| V-T_DC_var | 8 | 66.66667 | 0.807323 | 0.788799 |
| V-T_CC_quantile_1-4 | 6 | 50 | 0.838187 | 0.921093 |
| V-T_CC_var | 6 | 50 | 0.557229 | 0.753678 |
| I-T_CV_quantile_3-4 | 6 | 50 | 0.818177 | 0.724918 |
| I-T_CV_quantile_1-2 | 6 | 50 | 0.73444 | 0.667399 |
| Condition | MAE (%) | RMSE (%) |
|---|---|---|
| 1 | 0.8856 | 1.2489 |
| 2 | 0.4024 | 0.4644 |
| 3 | 0.5792 | 0.7142 |
| 4 | 0.4419 | 0.5707 |
| 5 | 0.5749 | 0.6767 |
| 6 | 1.1555 | 1.2006 |
| 7 | 1.3468 | 1.4649 |
| 8 | 0.7293 | 0.8196 |
| 9 | 0.9534 | 1.1817 |
| 10 | 0.6776 | 0.8264 |
| 11 | 1.6037 | 1.7526 |
| 12 | 0.5871 | 0.8815 |
| Research Method | Average MAE (%) | Average RMSE (%) |
|---|---|---|
| Proposed Method | 0.8281 | 0.9835 |
| LSTM-only | 2.7709 | 2.9653 |
| RNN-only | 2.2503 | 2.4848 |
| Proposed Method with RNN Replacing by LSTM | 2.3495 | 2.5517 |
| Condition | 3 Features | 7 Features | 47 Features | |||
|---|---|---|---|---|---|---|
| MAE | RMSE | MAE | RMSE | MAE | RMSE | |
| 1# | 3.7362 | 3.9628 | 1.8865 | 2.2165 | 0.5237 | 0.642 |
| 2# | 2.6748 | 2.7794 | 2.2224 | 2.3547 | 0.3362 | 0.4206 |
| 3# | 6.0236 | 6.0496 | 2.1586 | 2.2762 | 0.2152 | 0.2403 |
| 4# | 3.9383 | 4.0503 | 1.2603 | 1.5276 | 0.5284 | 0.738 |
| 5# | 2.6124 | 2.6868 | 1.4401 | 1.5414 | 1.5173 | 1.6914 |
| 6# | 6.1847 | 6.3537 | 3.3333 | 3.403 | 0.9587 | 1.1175 |
| 7# | 5.075 | 5.4079 | 2.8968 | 3.3112 | 4.2683 | 4.5544 |
| 8# | 3.401 | 3.4752 | 1.6856 | 1.8573 | 5.3021 | 5.3252 |
| 9# | 4.5277 | 4.5688 | 0.8156 | 0.9067 | 3.6795 | 3.7451 |
| 10# | 1.2984 | 1.6308 | 3.8312 | 4.1066 | 2.7345 | 2.8797 |
| 11# | 17.122 | 17.3692 | 9.5938 | 9.6957 | 2.6972 | 2.7828 |
| 12# | 1.2783 | 1.4366 | 2.638 | 3.0419 | 2.319 | 2.8967 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tang, W.; Liu, X.; Li, X.; Shen, J.; Liao, Z.; Gong, M. State of Health Estimation for Energy Storage Batteries Based on Multi-Condition Feature Extraction. Batteries 2026, 12, 34. https://doi.org/10.3390/batteries12010034
Tang W, Liu X, Li X, Shen J, Liao Z, Gong M. State of Health Estimation for Energy Storage Batteries Based on Multi-Condition Feature Extraction. Batteries. 2026; 12(1):34. https://doi.org/10.3390/batteries12010034
Chicago/Turabian StyleTang, Wentao, Xun Liu, Xiaohang Li, Jiangxue Shen, Zhiyuan Liao, and Minming Gong. 2026. "State of Health Estimation for Energy Storage Batteries Based on Multi-Condition Feature Extraction" Batteries 12, no. 1: 34. https://doi.org/10.3390/batteries12010034
APA StyleTang, W., Liu, X., Li, X., Shen, J., Liao, Z., & Gong, M. (2026). State of Health Estimation for Energy Storage Batteries Based on Multi-Condition Feature Extraction. Batteries, 12(1), 34. https://doi.org/10.3390/batteries12010034

