Enhanced Electrochemical Performance of Carbon-Coated Nano-ZnO as an Anode Material for High-Rate Ni-Zn Batteries
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Fabrication Procedures
2.2.1. Preparation of Zn(Ac)2-PVA-EC Gel Precursor
2.2.2. Synthesis of Carbon-Coated Nano-ZnO Materials
2.3. Materials Characterization
2.4. Electrochemical Measurements
2.4.1. Half-Cell Three-Electrode System Test
2.4.2. Full Cell Assembly and Performance Evaluation
3. Results and Discussion
Structural Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, H.; Han, S.; Hou, Z.; Lan, H.; Niu, S.; Li, Q. Interactive issues and strategic solutions for aqueous Zn metal anodes. J. Energy Chem. 2025, 103, 163–187. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, N.; Pu, Z.; Shen, Y.; Li, Y. A novel zinc ion supercapacitor with ultrahigh capacity and ultralong cycling lives enhanced by redox electrolyte. J. Energy Storage 2023, 60, 106597. [Google Scholar] [CrossRef]
- Huang, M.; Li, M.; Niu, C.J.; Li, Q.; Mai, L.Q. Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries. Adv. Funct. Mater. 2019, 29, 1807847. [Google Scholar] [CrossRef]
- Xu, D.; Li, Q.; Qiao, Q.; Xiao, W.; Yan, J.; Li, Y. Research progress of high-safety lithium-ion battery separators. New Chem. Mater. 2023, 51, 40–44. [Google Scholar]
- Abu, S.M.; Hannan, M.A.; Lipu, M.S.H.; Ker, P.J.; Hossain, M.J.; Mahlia, T.M.I. State of the art of lithium-ion battery material potentials: An analytical evaluations, issues and future research directions. J. Clean. Prod. 2023, 394, 136246. [Google Scholar] [CrossRef]
- Li, S.; Das, P.; Wang, X.; Li, C.; Wu, Z.-S.; Cheng, H.-M. Insights on fabrication strategies and energy storage mechanisms of transition metal dichalcogenides cathodes for aqueous Zn-based batteries. Small 2025, e2410036. [Google Scholar] [CrossRef]
- Chen, L.; Cai, Q.; Liu, Y.; Xie, X.; Xie, H. Electrochemical activation endows iodine-doped bismuth telluride with rich vacancies for highly performance aqueous zinc-based battery. J. Power Sources 2025, 633, 236434. [Google Scholar] [CrossRef]
- Meng, L.; Lin, D.; Wang, J.; Zeng, Y.; Liu, Y.; Lu, X. Electrochemically activated nickel-carbon composite as ultrastable cathodes for rechargeable nickel-zinc batteries. ACS Appl. Mater. Interfaces 2019, 11, 14854–14861. [Google Scholar] [CrossRef]
- Wang, K.; Fan, X.; Chen, S.; Deng, J.; Zhang, L.; Jing, M.; Li, J.; Gou, L.; Li, D.; Ma, Y. 3D Co-doping α-Ni (OH)2 nanosheets for ultrastable, high-rate Ni-Zn battery. Small 2023, 19, 2206287. [Google Scholar] [CrossRef]
- Chen, T.; Bai, Y.; Xiao, X.; Pang, H. Exposing (0 0 1) crystal facet on the single crystalline β-Ni (OH)2 quasi-nanocubes for aqueous Ni-Zn batteries. Chem. Eng. J. 2021, 413, 127523. [Google Scholar] [CrossRef]
- Chu, Y.; Ren, L.; Hu, Z.; Huang, C.; Luo, J. An in-depth understanding of improvement strategies and corresponding characterizations towards Zn anode in aqueous Zn-ions batteries. Green Energy Environ. 2023, 8, 1006–1042. [Google Scholar] [CrossRef]
- Qin, R.; Wang, Y.; Yao, L.; Yang, L.; Zhao, Q.; Ding, S.; Liu, L.; Pan, F. Progress in interface structure and modification of zinc anode for aqueous batteries. Nano Energy 2022, 98, 107333. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, K.; Pei, P.; Wei, M.; Liu, X.; Xiao, Y.; Zhang, P. Zinc dendrite growth and inhibition strategies. Mater. Today Energy 2021, 20, 100692. [Google Scholar] [CrossRef]
- Bello, I.T.; Raza, H.; Michael, A.T.; Muneeswara, M.; Tewari, N.; Bingsen, W.; Cheung, Y.N.; Choi, Z.; Boles, S.T. Charging Ahead: The Evolution and Reliability of Nickel-Zinc Battery Solutions. EcoMat 2025, 7, e12505. [Google Scholar] [CrossRef]
- Tian, Z.; Zhao, Z.; Yang, K.; Peng, K.; Zong, C.; Lai, Y. Communication-solvothermal synthesis of Bi2O3@ZnO spheres for high-performance rechargeable Zn-Ni battery. J. Electrochem. Soc. 2019, 166, A208–A210. [Google Scholar] [CrossRef]
- Banik, S.J.; Akolkar, R. Suppressing dendritic growth during alkaline zinc electrodeposition using polyethylenimine additive. Electrochim. Acta 2015, 179, 475–481. [Google Scholar] [CrossRef]
- Xue, X.; Sun, D.; Zeng, X.-G.; Huang, X.-B.; Zhang, H.-H.; Tang, Y.-G.; Wang, H.-Y. Two-step carbon modification of NaTi2(PO4)3 with improved sodium storage performance for Na-ion batteries. J. Cent. South Univ. 2018, 25, 2320–2331. [Google Scholar] [CrossRef]
- Feng, Z.; Yang, Z.; Huang, J.; Xie, X.; Zhang, Z. The superior cycling performance of the hydrothermal synthesized carbon-coated ZnO as anode material for zinc-nickel secondary cells. J. Power Sources 2015, 276, 162–169. [Google Scholar] [CrossRef]
- Long, W.; Yang, Z.; Fan, X.; Yang, B.; Zhao, Z.; Jing, J. The effects of carbon coating on the electrochemical performances of ZnO in Ni-Zn secondary batteries. Electrochim. Acta 2013, 105, 40–46. [Google Scholar] [CrossRef]
- Huang, J.; Yang, Z. Improved cycling performance of cellular sheet-like carbon-coated ZnO as anode material for Zn/Ni secondary battery. Ecs Electrochem. Lett. 2014, 3, A116–A119. [Google Scholar] [CrossRef]
- Yang, J.L.; Yuan, Y.F.; Wu, H.M.; Li, Y.; Chen, Y.B.; Guo, S.Y. Preparation and electrochemical performances of ZnO nanowires as anode materials for Ni/Zn secondary battery. Electrochim. Acta 2010, 55, 7050–7054. [Google Scholar] [CrossRef]
- Yuan, Y.F.; Tu, J.P.; Wu, H.M.; Yang, Y.Z.; Shi, D.Q.; Zhao, X.B. Electrochemical performance and morphology evolution of nanosized ZnO as anode material of Ni-Zn batteries. Electrochim. Acta 2006, 51, 3632–3636. [Google Scholar] [CrossRef]
- Gan, Q.; Zhao, K.; Liu, S.; He, Z. Solvent-free synthesis of N-doped carbon coated ZnO nanorods composite anode via a ZnO support-induced ZIF-8 in-situ growth strategy. Electrochim. Acta 2017, 250, 292–301. [Google Scholar] [CrossRef]
- Zeng, X.; Yang, Z.H.; Meng, J.L.; Chen, L.L.; Chen, H.Z.; Qin, H.G. The cube-like porous ZnO/C composites derived from metal organic framework-5 as anodic material with high electrochemical performance for Ni-Zn rechargeable battery. J. Power Sources 2019, 438, 226986. [Google Scholar] [CrossRef]
- Li, J.; Zhao, T.; Shangguan, E.; Li, Y.; Li, L.; Wang, D.; Wang, M.; Chang, Z.; Li, Q. Enhancing the rate and cycling performance of spherical ZnO anode material for advanced zinc-nickel secondary batteries by combined in-situ doping and coating with carbon. Electrochim. Acta 2017, 236, 180–189. [Google Scholar] [CrossRef]
- Korepanov, V.I.; Hamaguchi, H.-O.; Osawa, E.; Ermolenkov, V.; Lednev, I.K.; Etzold, B.J.M.; Levinson, O.; Zousman, B.; Epperla, C.P.; Chang, H.-C. Carbon structure in nanodiamonds elucidated from Raman spectroscopy. Carbon 2017, 121, 322–329. [Google Scholar] [CrossRef]
- Li, S.; Yang, Z.; Luo, Z.; Wu, J. ZnO@NC/CNT as anodic material for zinc nickel secondary batteries with ultra-high stability and long cycle life. Ind. Eng. Chem. Res. 2023, 62, 11392–11401. [Google Scholar] [CrossRef]
- Gao, X.; Liu, Y.; Shen, M.; Liu, X.; Zhao, Y.; Hou, L.; Yuan, C. Gas-Phase Conversion Promising Controlled Construction of Functional ZnF2/V2CTx for Stabilizing Zn Metal Anodes Toward Aqueous Zinc-Ion Batteries. Adv. Funct. Mater. 2025, 35, 2503212. [Google Scholar] [CrossRef]
- Rajan, C.P.; Abharana, N.; Jha, S.N.; Bhattacharyya, D.; John, T.T. Local structural studies through EXAFS and effect of Fe2+ or Fe3+ existence in ZnO nanoparticles. J. Phys. Chem. C 2021, 125, 13523–13533. [Google Scholar] [CrossRef]
- Yue, H.; Shi, Z.; Wang, Q.; Cao, Z.; Dong, H.; Qiao, Y.; Yin, Y.; Yang, S. MOF-derived cobalt-doped ZnO@C composites as a high-performance anode material for Lithium-Ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 17067–17074. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Kong, Q.; Wu, X.; An, X.; Zhang, J.; Wang, Q.; Yao, W. V2O3@C optimized by carbon regulation strategy for ultra long-life aqueous zinc-ion batteries. Chem. Eng. J. 2023, 451, 138765. [Google Scholar] [CrossRef]
- Shangguan, E.; Li, L.; Wu, C.; Ning, S.; Wang, M.; Li, L.; Zhao, L.; Li, Q.; Li, J. Comparative structural and electrochemical study of spherical ZnO with different tap density and morphology as anode materials for Ni/Zn secondary batteries. J. Alloys Compd. 2021, 868, 159141. [Google Scholar] [CrossRef]
- Kathavate, V.; Pawar, D.; Bagal, N.; Deshpande, P. Role of nano ZnO particles in the electrodeposition and growth mechanism of phosphate coatings for enhancing the anti-corrosive performance of low carbon steel in 3.5% NaCl aqueous solution. J. Alloys Compd. 2020, 823, 153812. [Google Scholar] [CrossRef]
- Xiang, T.; Wang, J.; Liang, Y.; Daoudi, W.; Dong, W.; Li, R.; Chen, X.; Liu, S.; Zheng, S.; Zhang, K. Carbon dots for anti-corrosion. Adv. Funct. Mater. 2024, 34, 2411456. [Google Scholar] [CrossRef]
- Mohamed, I.M.; Yasin, A.S.; Liu, C. Synthesis, surface characterization and electrochemical performance of ZnO@activated carbon as a supercapacitor electrode material in acidic and alkaline electrolytes. Ceram. Int. 2020, 46, 3912–3920. [Google Scholar] [CrossRef]
- Huang, J.; Yang, Z.; Xie, X.; Feng, Z.; Zhang, Z. Preparation of cribriform sheet-like carbon-coated zinc oxide with improved electrochemical performance. J. Power Sources 2015, 289, 8–16. [Google Scholar] [CrossRef]
- Cui, C.; Li, M.; Zhou, X.; Zhang, X. Synthesis of ZnO/carbon nanotube composites for enhanced electrochemical performance of Ni-Zn secondary batteries. Mater. Res. Bull. 2019, 112, 261–268. [Google Scholar] [CrossRef]
- Sun, L.; Yi, Z.; Lin, J.; Liang, F.; Wu, Y.; Cao, Z.; Wang, L. Fast and energy efficient synthesis of ZnO@RGO and its application in Ni–Zn secondary battery. J. Phys. Chem. C 2016, 120, 12337–12343. [Google Scholar] [CrossRef]
- Li, Z.; Hu, X.; Kang, J.; Wang, X.; Kong, L.; Shi, Z.; Wang, Z. Porous ZnO nanosphere inherently encapsulated in carbon framework as a high-performance anode for Ni–Zn secondary batteries. Front. Chem. 2022, 10, 936679. [Google Scholar]
- Ding, J.; Zheng, H.; Gao, H.; Wang, S.; Wu, S.; Fang, S.; Cheng, F. Operando non-topological conversion constructing the high-performance nickel-zinc battery anode. Chem. Eng. J. 2021, 414, 128716. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, W.; Xiong, C.; Yu, Y.; Ji, X.; Xu, H.; Chen, Z.; Chen, J.; Wang, R. Enhanced Electrochemical Performance of Carbon-Coated Nano-ZnO as an Anode Material for High-Rate Ni-Zn Batteries. Batteries 2025, 11, 342. https://doi.org/10.3390/batteries11090342
Cao W, Xiong C, Yu Y, Ji X, Xu H, Chen Z, Chen J, Wang R. Enhanced Electrochemical Performance of Carbon-Coated Nano-ZnO as an Anode Material for High-Rate Ni-Zn Batteries. Batteries. 2025; 11(9):342. https://doi.org/10.3390/batteries11090342
Chicago/Turabian StyleCao, Wei, Chenhan Xiong, Yanqiu Yu, Xiang Ji, Hao Xu, Ziwei Chen, Jun Chen, and Rui Wang. 2025. "Enhanced Electrochemical Performance of Carbon-Coated Nano-ZnO as an Anode Material for High-Rate Ni-Zn Batteries" Batteries 11, no. 9: 342. https://doi.org/10.3390/batteries11090342
APA StyleCao, W., Xiong, C., Yu, Y., Ji, X., Xu, H., Chen, Z., Chen, J., & Wang, R. (2025). Enhanced Electrochemical Performance of Carbon-Coated Nano-ZnO as an Anode Material for High-Rate Ni-Zn Batteries. Batteries, 11(9), 342. https://doi.org/10.3390/batteries11090342