Transition Metal-Based Catalysts Powering Practical Room-Temperature Na-S Batteries: From Advances to Further Perspectives
Abstract
1. Introduction
2. Working Mechanisms, Challenges, and Design Principles of RT Na-S Batteries
2.1. Working Mechanisms
2.2. Challenges and Design Principles
3. Classifications and Function Mechanisms of Catalytic Materials
3.1. TM Single/Dual-Atom Catalysts
3.1.1. TM Single-Atom Catalysts
3.1.2. Dual-Atom Catalysts
3.2. TM Nanoparticle Catalysts
3.2.1. Regulation of Catalyst Carriers
3.2.2. Doping Engineering
3.2.3. Defect Engineering
3.2.4. Alloying
3.3. TM Compound Catalysts
3.3.1. Crystal Phase Engineering
3.3.2. Morphology Engineering
3.3.3. Vacancy Defect Engineering
3.4. TM-Based Heterostructure Catalysts
3.4.1. Synergistic Adsorption–Catalysis
3.4.2. Tandem Stepwise Catalysis
3.4.3. Heterointerface Catalysisl
4. Summary and Perspectives
4.1. Summary
4.2. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bamisile, O.; Cai, D.; Adun, H.; Dagbasi, M.; Ukwuoma, C.C.; Huang, Q.; Johnson, N.; Bamisile, O. Towards renewables development: Review of optimization techniques for energy storage and hybrid renewable energy systems. Heliyon 2024, 10, e37482. [Google Scholar] [CrossRef]
- Fang, R.; Chen, K.; Sun, Z.; Hu, G.; Wang, D.W.; Li, F. Realizing high-energy density for practical lithium-sulfur batteries. Interdiscip. Mater. 2023, 2, 761–770. [Google Scholar] [CrossRef]
- Costa, C.M.; Pinto, R.S.; Serra, J.P.; Barbosa, J.C.; Gonçalves, R.; Lanceros-Méndez, S. Next generation sustainable lithium-ion batteries: Micro and nanostructured materials and processes. Chem. Eng. J. 2025, 509, 161337. [Google Scholar] [CrossRef]
- Joshi, B.; Samuel, E.; Kim, Y.-I.; Yarin, A.L.; Swihart, M.T.; Yoon, S.S. Progress and potential of electrospinning-derived substrate-free and binder-free lithium-ion battery electrodes. Chem. Eng. J. 2022, 430, 132876. [Google Scholar] [CrossRef]
- Fang, R.; Zhao, S.; Sun, Z.; Wang, D.W.; Cheng, H.M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823. [Google Scholar] [CrossRef]
- Bhutia, P.T.; Grugeon, S.; El Mejdoubi, A.; Laruelle, S.; Marlair, G. Safety aspects of sodium-ion batteries: Prospective analysis from first generation towards more advanced systems. Batteries 2024, 10, 370. [Google Scholar] [CrossRef]
- Bruce Dunn, H.K.; Jean-Marie, T. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef]
- Hueso, K.B.; Armand, M.; Rojo, T. High temperature sodium batteries: Status, challenges and future trends. Energy Environ. Sci. 2013, 6, 734–749. [Google Scholar] [CrossRef]
- Virkar, A.V.; Miller, G.R.; Gordon, R.S. Resistivity-microstructure relations in lithia-stabilized polycrystalline β″-alumina. J. Am. Ceram. Soc. 2006, 61, 250–252. [Google Scholar] [CrossRef]
- Lu, X.; Kirby, B.W.; Xu, W.; Li, G.; Kim, J.Y.; Lemmon, J.P.; Sprenkle, V.L.; Yang, Z. Advanced intermediate-temperature Na–S battery. Energy Environ. Sci. 2013, 6, 299–306. [Google Scholar] [CrossRef]
- Nikiforidis, G.; van de Sanden, M.C.M.; Tsampas, M.N. High and intermediate temperature sodium–sulfur batteries for energy storage: Development, challenges and perspectives. RSC Adv. 2019, 9, 5649–5673. [Google Scholar] [CrossRef]
- Adelhelm, P.; Hartmann, P.; Bender, C.L.; Busche, M.; Eufinger, C.; Janek, J. From lithium to sodium: Cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein J. Nanotechnol. 2015, 6, 1016–1055. [Google Scholar] [CrossRef] [PubMed]
- Park, C.W.; Ahn, J.H.; Ryu, H.S.; Kim, K.W.; Ahn, H.J. Room-temperature solid-state sodium/sulfur battery. Electrochem. Solid State Lett. 2006, 9, A123–A125. [Google Scholar] [CrossRef]
- Kim, I.; Park, J.-Y.; Kim, C.; Park, J.-W.; Ahn, J.-P.; Ahn, J.-H.; Kim, K.-W.; Ahn, H.-J. Sodium polysulfides during charge/discharge of the room-temperature Na/S Battery Using TEGDME electrolyte. J. Electrochem. Soc. 2016, 163, A611–A616. [Google Scholar] [CrossRef]
- Yim, T.; Park, M.-S.; Yu, J.-S.; Kim, K.J.; Im, K.Y.; Kim, J.-H.; Jeong, G.; Jo, Y.N.; Woo, S.-G.; Kang, K.S.; et al. Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochim. Acta 2013, 107, 454–460. [Google Scholar] [CrossRef]
- Sungjemmenla; Soni, C.B.; Vineeth, S.K.; Kumar, V. Unveiling the physiochemical aspects of the matrix in improving sulfur-loading for room-temperature sodium-sulfur batteries. Mater. Adv. 2021, 2, 4165–4189. [Google Scholar] [CrossRef]
- Haridas, A.K.; Huang, C. Advances in strategic inhibition of polysulfide shuttle in room-temperature sodium-sulfur batteries via electrode and interface engineering. Batteries 2023, 9, 223. [Google Scholar] [CrossRef]
- Zhou, C.; Dong, C.; Wang, W.; Tian, Y.; Shen, C.; Yan, K.; Mai, L.; Xu, X. An ultrathin and crack-free metal-organic framework film for effective polysulfide inhibition in lithium-sulfur batteries. Interdiscip. Mater. 2024, 3, 306–315. [Google Scholar] [CrossRef]
- Hussain, T.; Kaewmaraya, T.; Hu, Z.; Zhao, X.S. Efficient control of the shuttle effect in sodium-sulfur batteries with functionalized nanoporous graphenes. ACS Appl. Nano Mater. 2022, 5, 12637–12645. [Google Scholar] [CrossRef]
- Hu, P.; Xiao, F.P.; Wu, Y.F.; Yang, X.M.; Li, N.; Wang, H.K.; Jia, J.F. Covalent encapsulation of sulfur in a graphene/N-doped carbon host for enhanced sodium-sulfur batteries. Chem. Eng. J. 2022, 443, 136257. [Google Scholar] [CrossRef]
- Yu, X.W.; Manthiram, A. Room-temperature sodium-sulfur batteries with liquid-phase sodium polysulfide catholytes and binder-free multiwall carbon nanotube fabric electrodes. J. Phys. Chem. C 2014, 118, 22952–22959. [Google Scholar] [CrossRef]
- Guo, Q.B.; Sun, S.; Kim, K.I.; Zhang, H.S.; Liu, X.J.; Yan, C.L.; Xia, H. A novel one-step reaction sodium-sulfur battery with high areal sulfur loading on hierarchical porous carbon fiber. Carbon Energy 2021, 3, 440–448. [Google Scholar] [CrossRef]
- Lu, Q.Q.; Wang, X.Y.; Cao, J.; Chen, C.; Chen, K.; Zhao, Z.F.; Niu, Z.Q.; Chen, J. Freestanding carbon fiber cloth/sulfur composites for flexible room-temperature sodium-sulfur batteries. Energy Storage Mater. 2017, 8, 77–84. [Google Scholar] [CrossRef]
- Wang, Y.; Indubala, E.; Ma, C.; Zhang, C.; Li, C.; Zhang, W.; Chen, Y.; Zhao, Y.; Xiao, L.; Lv, B.; et al. Nitrogen doped three-dimensionally interconnected macroporous/mesoporous carbon nanofibers as free-standing electrode for room temperature sodium sulfur batteries. Diam. Relat. Mater. 2025, 152, 111997. [Google Scholar] [CrossRef]
- Xia, G.L.; Zhang, L.J.; Chen, X.W.; Huang, Y.Q.; Sun, D.L.; Fang, F.; Guo, Z.P.; Yu, X.B. Carbon hollow nanobubbles on porous carbon nanofibers: An ideal host for high-performance sodium-sulfur batteries and hydrogen storage. Energy Storage Mater. 2018, 14, 314–323. [Google Scholar] [CrossRef]
- Dong, C.W.; Zhou, H.Y.; Liu, H.; Jin, B.; Wen, Z.; Lang, X.Y.; Li, J.C.; Kim, J.; Jiang, Q. Inhibited shuttle effect by functional separator for room-temperature sodium-sulfur batteries. J. Mater. Sci. Technol. 2022, 113, 207–216. [Google Scholar] [CrossRef]
- Xu, H.; Xiang, Y.; Xu, X.; Liang, Y.; Li, Y.; Qi, Y.; Xu, M. A polysulfides-defensive, dendrite-suppressed, and flame-retardant separator with lean electrolyte for room temperature sodium-sulfur batteries. Adv. Funct. Mater. 2024, 34, 2403663. [Google Scholar] [CrossRef]
- Yin, C.C.; Li, Z.; Zhao, D.C.; Yang, J.Y.; Zhang, Y.; Du, Y.; Wang, Y. Azo-branched covalent organic framework thin films as active separators for superior sodium-sulfur batteries. ACS Nano 2022, 16, 14178–14187. [Google Scholar] [CrossRef]
- Chen, S.F.; Liang, L.J.; Li, Y.Y.; Wang, D.Y.; Lu, J.G.; Zhan, X.L.; Hou, Y.; Zhang, Q.H.; Lu, J. Brain capillary-inspired self-assembled covalent organic framework membrane for sodium-sulfur battery separator. Adv. Energy Mater. 2023, 13, 2204334. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhang, W.H.; Zhu, Z.Y.; Huang, Q.Q.; Liu, X.X.; Zhang, M.C.; Pei, W.B.; Wu, J.S. Multi-channel sulfurized polyacrylonitrile with hollow structure as cathode for room temperature sodium-sulfur batteries. J. Solid State Chem. 2021, 301, 122359. [Google Scholar] [CrossRef]
- Huang, X.L.; Wang, Y.X.; Chou, S.L.; Dou, S.X.; Wang, Z.M.M. Materials engineering for adsorption and catalysis in room-temperature Na-S batteries. Energy Environ. Sci. 2021, 14, 3757–3795. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, W.; Chen, Y.; Peng, Y.; Liu, X.; Yang, X.; Xiong, X.; Wang, J.; Liu, Y.; Jia, A.; et al. Integrated adsorption-catalysis design enabling high-performance sodium-sulfur batteries. Sustain. Energy Fuels 2025, 9, 3754–3779. [Google Scholar] [CrossRef]
- Meng, T.; Geng, Z.; Ma, F.; Wang, X.; Zhang, H.; Guan, C. Direct ink writing of metal-based electrocatalysts for Li-S batteries with efficient polysulfide conversion. Interdiscip. Mater. 2023, 2, 589–608. [Google Scholar] [CrossRef]
- Joshi, A.; Mohapatra, S.; Gupta, A.; Nandan, B. Review of metal nitrides for lithium-sulfur batteries: Design, mechanisms, and prospects. Chem. A Eur. J. 2025, 31, e202500971. [Google Scholar] [CrossRef]
- Liu, Y.P.; Bettels, F.; Lin, Z.H.; Li, Z.H.; Shao, Y.X.; Ding, F.; Liu, S.Y.; Zhang, L. Recent advances in transition-metal-based catalytic material for room-temperature sodium-sulfur batteries. Adv. Funct. Mater. 2023, 34, 2302626. [Google Scholar] [CrossRef]
- Fan, M.P.; Chen, Y.M.; Ke, X.; Huang, Z.X.; Chen, Y.C.; Wu, W.L.; Qu, X.F.; Shi, Z.C.; Guo, Z.P. In situ growth of NiS2 nanosheet array on Ni foil as cathode to improve the performance of lithium/sodium-sulfur batteries. Sci. China-Technol. Sci. 2022, 65, 231–237. [Google Scholar] [CrossRef]
- Wang, T.; Li, W.; Fu, Y.; Wang, D.; Wu, L.; Sun, K.; Liu, D.; Ma, R.; Shi, Y.; Yang, G.; et al. A mott-schottky heterojunction with strong chemisorption and fast conversion effects for room-temperature Na-S batteries. Small 2024, 20, 2311180. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Kang, Q.; Peng, B.; Zhuang, Z.; Wang, D.; Ma, L. Engineering single-atom catalysts for sulfur electrochemistry in metal-sulfur batteries. J. Energy Chem. 2025, 106, 768–790. [Google Scholar] [CrossRef]
- Song, H.; Li, Y.; Li, X.L.; Li, Y.; Li, D.s.; Wang, D.; Huang, S.; Yang, H.Y. Recent progress in heterostructured materials for room-temperature sodium-sulfur batteries. Interdiscip. Mater. 2024, 3, 565–594. [Google Scholar] [CrossRef]
- Yao, G.; Li, Z.Q.; Zhang, Y.H.; Xiao, Y.; Wei, L.Z.; Niu, H.L.; Chen, Q.W.; Yang, Y.; Zheng, F.C. Highly flexible carbon film implanted with single-atomic Zn-N2 moiety for long-life sodium-sulfur batteries. Adv. Funct. Mater. 2023, 34, 2214353. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.L.; Liu, H.W.; Qiu, W.L.; Feng, C.; Li, C.; Zhang, S.H.; Liu, H.K.; Dou, S.X.; Wang, Z.M.M. Nanostructure engineering strategies of cathode materials for room-temperature Na-S batteries. ACS Nano 2022, 16, 5103–5130. [Google Scholar] [CrossRef]
- Yu, X.W.; Manthiram, A. Capacity enhancement and discharge mechanisms of room-temperature sodium-sulfur batteries. Chemelectrochem 2014, 1, 1275–1280. [Google Scholar] [CrossRef]
- Gray, E.L.; Lee, J.-I.; Li, Z.; Moloney, J.; Yang, Z.J.; Chhowalla, M. Mapping Polysulfides in Sodium–Sulfur Batteries. ACS Nano 2025, 19, 8939–8947. [Google Scholar] [CrossRef]
- Zhong, X.; Huang, Y.J.; Cai, J.M.; Li, Y.J.; He, Z.D.; Cai, D.Y.; Geng, Z.L.; Deng, W.T.; Zou, G.Q.; Hou, H.S.; et al. Origin of the high catalytic activity of MoS2 in Na-S batteries: Electrochemically reconstructed Mo single atoms. J. Am. Chem. Soc. 2024, 146, 32124–32134. [Google Scholar] [CrossRef]
- Jin, F.; Wang, R.; Liu, Y.; Zhang, N.; Bao, C.; Li, D.; Wang, D.; Cheng, T.; Liu, H.; Dou, S.; et al. Conversion mechanism of sulfur in room-temperature sodium-sulfur battery with carbonate-based electrolyte. Energy Storage Mater. 2024, 69, 103388. [Google Scholar] [CrossRef]
- Yang, Z.Z.; Xiao, R.; Zhang, X.Y.; Wang, X.; Zhang, D.; Sun, Z.H.; Li, F. Role of catalytic materials on conversion of sulfur species for room temperature sodium-sulfur battery. Energy Environ. Mater. 2022, 5, 693–710. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Sun, Y.; Yang, R.; Lee, Y.; Ahn, J.-H. Dual-porosity carbon derived from waste bamboo char for room-temperature sodium-sulfur batteries using carbonate-based electrolyte. Ionics 2020, 27, 199–206. [Google Scholar] [CrossRef]
- Chen, P.; Wang, C.Y.; Wang, T.Y. Review and prospects for room-temperature sodium-sulfur batteries. Mater. Res. Lett. 2022, 10, 691–719. [Google Scholar] [CrossRef]
- Wang, L.; Wang, T.; Peng, L.L.; Wang, Y.L.; Zhang, M.; Zhou, J.; Chen, M.X.; Cao, J.H.; Fei, H.L.; Duan, X.D.; et al. The promises, challenges and pathways to room-temperature sodium-sulfur batteries. Natl. Sci. Rev. 2022, 9, nwab050. [Google Scholar] [CrossRef]
- Manthiram, A.; Yu, X.W. Ambient temperature sodium-sulfur batteries. Small 2015, 11, 2108–2114. [Google Scholar] [CrossRef]
- Yang, Q.J.; Yang, T.R.; Gao, W.; Qi, Y.R.; Guo, B.S.; Zhong, W.; Jiang, J.; Xu, M.W. An MXene-based aerogel with cobalt nanoparticles as an efficient sulfur host for room-temperature Na-S batteries. Inorg. Chem. Front. 2020, 7, 4396–4403. [Google Scholar] [CrossRef]
- Cengiz, E.C.; Erdol, Z.; Sakar, B.; Aslan, A.; Ata, A.; Ozturk, O.; Demir-Cakan, R. Investigation of the effect of using Al2O3-nafion barrier on room-temperature Na-S batteries. J. Phys. Chem. C 2017, 121, 15120–15126. [Google Scholar] [CrossRef]
- Fan, B.; Chen, W.; Li, K.; Wei, Q.; He, Q.; Liu, W.; Zhou, B.; Yuan, J.; Zou, Y. Synergistic adsorption and catalytic effects of Ti3C2Tx/CoO/MoO3 composite on lithium polysulfides for high-erformance lithium-sulfur batteries. Interdiscip. Mater. 2024, 3, 726–737. [Google Scholar]
- Mou, J.R.; Li, Y.J.; Liu, T.; Zhang, W.J.; Li, M.; Xu, Y.T.; Zhong, L.; Pan, W.H.; Yang, C.H.; Huang, J.L.; et al. Metal-organic frameworks-derived nitrogen-doped porous carbon nanocubes with embedded Co nanoparticles as efficient sulfur immobilizers for room temperature sodium-sulfur batteries. Small Methods 2021, 5, 2100455. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, M.; Huang, X.-L.; Lu, S.; Lu, K.; Wu, X. Atomic manganese manipulating polysulfide speciation pathway for room-temperature Na-S batteries. CCS Chem. 2024, 6, 2289–2304. [Google Scholar] [CrossRef]
- Zhang, B.W.; Sheng, T.; Liu, Y.D.; Wang, Y.X.; Zhang, L.; Lai, W.H.; Wang, L.; Yang, J.P.; Gu, Q.F.; Chou, S.L.; et al. Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nat. Commun. 2018, 9, 4082. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.W.; Li, S.N.; Yang, H.L.; Liang, X.H.; Lai, W.H.; Zhao, S.L.; Dong, J.C.; Chu, S.Q.; Gu, Q.F.; Liang, J.; et al. Atomically dispersed S-Fe-N4 for fast kinetics sodium-sulfur batteries via a dual function mechanism. Cell Rep. Phys. Sci. 2021, 2, 100531. [Google Scholar] [CrossRef]
- Ruan, J.; Lei, Y.-J.; Fan, Y.; Borras, M.C.; Luo, Z.; Yan, Z.; Johannessen, B.; Gu, Q.; Konstantinov, K.; Pang, W.K.; et al. Linearly interlinked Fe-Nx-Fe single atoms catalyze high-rate sodium-sulfur batteries. Adv. Mater. 2024, 36, 2312207. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.P.; Wang, H.K.; Xu, J.; Yang, W.Q.; Yang, X.M.; Yu, D.Y.W.; Rogach, A.L. Generating short-chain sulfur suitable for efficient sodium-sulfur batteries via atomic copper sites on a N,O-codoped carbon composite. Adv. Energy Mater. 2021, 11, 2100989. [Google Scholar] [CrossRef]
- Liu, R.; Feng, C.; Wu, P.; Sun, Y.; Chu, Z.; Hu, J.; Chen, W.; Guo, L.; Huang, Q.; Wang, D. Improving conversion kinetics of sodium polysulfides through electron spillover effect with V/Co dual-atomic site anchoring on N-doped MXene. Adv. Mater. 2025, 37, 2501371. [Google Scholar] [CrossRef]
- Li, C.; Yu, J.; Yang, D.; Li, H.; Cheng, Y.; Ren, Y.; Bi, X.; Ma, J.; Zhao, R.; Zhou, Y.; et al. Balancing electronic spin state via atomically-dispersed heteronuclear Fe-Co pairs for high-performance sodium-sulfur batteries. J. Am. Chem. Soc. 2025, 147, 8250–8259. [Google Scholar] [CrossRef]
- Hu, P.; Wu, Y.-F.; Gao, X.-P.; Huang, L.; Cai, B.-B.; Liu, Y.-X.; Ma, Y.; Jiang, S.; Wang, F.; Xiao, F.-P. N/O dual coordination of cobalt single atom for fast kinetics sodium-sulfur batteries. Rare Met. 2025, 44, 288–299. [Google Scholar] [CrossRef]
- Tian, H.; Lei, Y.; Sun, B.; Yang, C.-C.; Chen, C.-L.; Huang, T.; Zhang, X.; Chen, Y.; Song, A.; Pang, L.; et al. P-d orbital hybridization induced by transition metal atom sites for room-temperature sodium-sulfur batteries. Natl. Sci. Rev. 2025, 12, nwaf241. [Google Scholar]
- Song, W.; Wen, Z.; Wang, X.; Qian, K.; Zhang, T.; Wang, H.; Ding, J.; Hu, W. Unsaturation degree of Fe single atom site manipulates polysulfide behavior in sodium-sulfur batteries. Nat. Commun. 2025, 16, 2795. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.L.; Huang, S.Z.; Xu, T.T.; Sun, P.; Li, X.L.; Lim, Y.V.; Yan, D.; Shang, Y.; Su, B.J.; Juang, J.Y.; et al. Low-coordinated Zn−N2 sites as bidirectional atomic catalysis for room-temperature Na−S batteries. ACS Appl. Mater. Interfaces 2023, 15, 26650–26659. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Zhang, Y.; Li, Z.; Yao, G.; Wei, L.; Wang, C.; Chen, Q.; Wang, H. Axial ligand induces the charge localization of Ca single-atom sites for efficient Na–S batteries. Nat. Commun. 2025, 16, 4372. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Liu, T.; Lao, Z.; Cheng, Y.; Wang, T.; Mao, J.; Zhang, H.; Liu, E.; Shi, C.; Zhou, G.; et al. Optimizing s-p orbital overlap between sodium polysulfides and single-atom indium catalyst for efficient sulfur redox reaction. Angew. Chem. Int. Ed. 2025, 64, e202422208. [Google Scholar] [CrossRef]
- Jin, F.; Ning, Y.; Wang, B.; Ren, Z.H.; Luo, H.; Zhang, Z.K.; Zhang, N.; Wang, D.L. Cobalt, nitrogen co-doped microporous carbon matrix derived from metal organic frameworks toward high specific capacity room temperature sodium sulfur batteries. J. Power Sources 2023, 565, 232917. [Google Scholar] [CrossRef]
- Jiang, Y.; Yu, Z.X.; Zhou, X.F.; Cheng, X.L.; Huang, H.J.; Liu, F.F.; Yang, Y.X.; He, S.N.; Pan, H.G.; Yang, H.; et al. Single-atom vanadium catalyst boosting reaction kinetics of polysulfides in Na-S batteries. Adv. Mater. 2023, 35, 2208873. [Google Scholar] [CrossRef]
- Li, Z.; Chen, X.; Yao, G.; Wei, L.; Chen, Q.; Luo, Q.; Zheng, F.; Wang, H. Strengthening d-p orbital-hybridization via coordination number regulation of manganese single-atom catalysts toward fast kinetic and long-life sodium-sulfur batteries. Adv. Funct. Mater. 2024, 34, 2400859. [Google Scholar] [CrossRef]
- Zheng, F.; Chen, F.; Li, Z.; Yao, G.; Dong, S.; Wei, L.; Chen, Q.; Wang, C.; Wang, H. Template-sacrificing synthesis of asymmetrically coordinated Zn single-atom sites for high-performance sodium-sulfur batteries. Adv. Funct. Mater. 2025, 35, 2413084. [Google Scholar] [CrossRef]
- Bai, R.L.; Lin, Q.S.; Li, X.Y.; Ling, F.X.; Wang, H.J.; Tan, S.; Hu, L.X.; Ma, M.Z.; Wu, X.J.; Shao, Y.; et al. Toward complete transformation of sodium polysulfides by regulating the second-shell coordinating environment of atomically dispersed Fe. Angew. Chem.-Int. Ed. 2023, 62, e202218165. [Google Scholar] [CrossRef]
- Lei, Y.-J.; Lu, X.; Yoshikawa, H.; Matsumura, D.; Fan, Y.; Zhao, L.; Li, J.; Wang, S.; Gu, Q.; Liu, H.-K.; et al. Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries. Nat. Commun. 2024, 15, 3325. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Yao, Y.; Lin, Q.; Wu, L.; Li, Z.; Wang, H.; Ma, M.; Mu, D.; Hu, L.; Yang, H.; et al. Preferable single-atom catalysts enabled by natural language processing for high energy density Na-S batteries. Nat. Commun. 2025, 16, 5827. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Zhang, H.Y. Boosting electrocatalytic activity via introducing carbon vacancies and iron defects towards high-performance room-temperature sodium-sulfur batteries. Appl. Mater. Today 2025, 42, 102575. [Google Scholar] [CrossRef]
- Mei, T.; Li, X.; Lin, X.; Bai, L.; Xu, M.; Qi, Y. Cobalt catalytic regulation engineering in room-temperature sodium-sulfur batteries: Facilitating rapid polysulfides conversion and delicate Na2S nucleation. Adv. Funct. Mater. 2025, 35, 2418126. [Google Scholar] [CrossRef]
- Zhang, R.X.; Esposito, A.M.; Thornburg, E.S.; Chen, X.Y.; Zhang, X.Y.; Philip, M.A.; Magana, A.; Gewirth, A.A. Conversion of Co nanoparticles to CoS in metal−organic framework-derived porous carbon during cycling facilitates Na2S reactivity in a Na−S battery. ACS Appl. Mater. Interfaces 2020, 12, 29285–29295. [Google Scholar] [CrossRef]
- Du, W.Y.; Gao, W.; Yang, T.T.; Guo, B.S.; Zhang, L.Z.; Bao, S.J.; Chen, Y.M.; Xu, M.W. Cobalt nanoparticles embedded into free-standing carbon nanofibers as catalyst for room-temperature sodium-sulfur batteries. J. Colloid Interface Sci. 2020, 565, 63–69. [Google Scholar] [CrossRef]
- Wang, L.F.; Wang, H.Y.; Zhang, S.P.; Ren, N.Q.; Wu, Y.; Wu, L.; Zhou, X.F.; Yao, Y.; Wu, X.J.; Yu, Y. Manipulating the electronic structure of nickel via alloying with iron: Toward high-kinetics sulfur cathode for Na-S batteries. ACS Nano 2021, 15, 15218–15228. [Google Scholar] [CrossRef]
- Ma, Q.R.; Zhong, W.; Du, G.Y.; Qi, Y.R.; Bao, S.J.; Xu, M.W.; Li, C.M. Multi-step controllable catalysis method for the defense of sodium polysulfide dissolution in room-temperature Na-S batteries. ACS Appl. Mater. Interfaces 2021, 13, 11852–11860. [Google Scholar] [CrossRef]
- Tang, K.; Peng, X.; Zhang, Z.; Li, G.; Wang, J.; Wang, Y.; Chen, C.; Zhang, N.; Xie, X.; Wu, Z. A highly dispersed cobalt electrocatalyst with electron-deficient centers induced by boron toward enhanced adsorption and electrocatalysis for room-temperature sodium-sulfur batteries. Small 2024, 20, 2311151. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Ma, S.Y.; Rosebrock, M.; Rusch, P.; Barnscheidt, Y.; Wu, C.Q.; Nan, P.F.; Bettels, F.; Lin, Z.H.; Li, T.R.; et al. Tungsten nanoparticles accelerate polysulfides conversion: A viable route toward stable room-temperature sodium-sulfur batteries. Adv. Sci. 2022, 9, 2105544. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.F.; Xu, Q.Q.; Huang, L.; Huang, B.; Hu, P.; Xiao, F.P.; Li, N. Encapsulation of sulfur in MoS2-modified metal-organic framework-derived N, O-codoped carbon host for sodium-sulfur batteries. J. Colloid Interface Sci. 2024, 654, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.K.; Hussain, T.; Tabassum, H.; Wei, Z.; Tang, W.W.; Li, S.; Bao, S.J.; Zhao, X.S.; Xu, M.W. Sulfur encapsulation into yolk-shell Fe2N@nitrogen doped carbon for ambient-temperature sodium-sulfur battery cathode. Chem. Eng. J. 2022, 429, 132389. [Google Scholar] [CrossRef]
- Huang, X.L.; Xiang, P.; Liu, H.W.; Feng, C.; Zhang, S.H.; Tian, Z.Q.; Liu, H.K.; Dou, S.X.; Wang, Z.M. In situ implanting MnO nanoparticles into carbon nanorod-assembled microspheres enables performance-enhanced room-temperature Na-S batteries. Inorg. Chem. Front. 2022, 9, 5486–5494. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, L.; Wang, T.; Ma, R.; Wang, D.; Fu, Y.; Du, R.; Zhang, J.; Liu, D.; Wu, L.; et al. Optimizing adsorption-catalysis synergy to accelerate sulfur conversion kinetics in room-temperature Na-S batteries. Small 2025, 21, e2502257. [Google Scholar] [CrossRef]
- Zhou, X.F.; Yu, Z.X.; Yao, Y.; Jiang, Y.; Rui, X.H.; Liu, J.Q.; Yu, Y. A high-efficiency Mo2C electrocatalyst promoting the polysulfide redox kinetics for Na-S batteries. Adv. Mater. 2022, 34, 2200479. [Google Scholar] [CrossRef]
- Ye, C.; Jin, H.Y.; Shan, J.Q.; Jiao, Y.; Li, H.; Gu, Q.F.; Davey, K.; Wang, H.H.; Qiao, S.Z. A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries. Nat. Commun. 2021, 12, 7195. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.Z.; Sun, M.H.; Ai, L.S.; Qin, L.; Zhao, Z.B.; Qiu, J.S. Co4N embedded nitrogen doped carbon with 2D/3D hybrid structure as sulfur host for room-temperature sodium-sulfur batteries. Electrochim. Acta 2023, 451, 142288. [Google Scholar] [CrossRef]
- Qi, Y.R.; Li, Q.J.; Wu, Y.K.; Bao, S.J.; Li, C.M.; Chen, Y.M.; Wang, G.X.; Xu, M.W. A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries. Nat. Commun. 2021, 12, 6347. [Google Scholar] [CrossRef]
- Wang, H.; Qi, Y.R.; Xiao, F.Y.; Liu, P.; Li, Y.; Bao, S.J.; Xu, M.W. Tessellated N-doped carbon/CoSe2 as trap-catalyst sulfur hosts for room-temperature sodium-sulfur batteries. Inorg. Chem. Front. 2022, 9, 1743–1751. [Google Scholar] [CrossRef]
- Huang, X.L.; Zhang, X.F.; Zhou, L.J.; Guo, Z.P.; Liu, H.K.; Dou, S.X.; Wang, Z.M. Orthorhombic Nb2O5 decorated carbon nanoreactors enable bidirectionally regulated redox behaviors in room-temperature Na-S batteries. Adv. Sci. 2023, 10, 2206558. [Google Scholar] [CrossRef]
- Ma, Q.Y.; Liu, Q.Q.; Li, Z.Y.; Pu, J.; Mujtaba, J.; Fang, Z. Oxygen vacancy-mediated amorphous GeOx assisted polysulfide redox kinetics for room-temperature sodium-sulfur batteries. J. Colloid Interface Sci. 2023, 629, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, T.; Yang, G.; Ma, R.; Li, W.; Fu, Y.; Wu, L.; Liu, Z.; Liu, D.; Wu, Y.; et al. Oxygen vacancy modified cerium dioxide with excellent catalytic activity for room-temperature Na-S batteries. J. Energy Storage 2024, 91, 112141. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, L.; Shi, Y.; Fu, Y.; Wang, D.; Wang, T.; Yang, G.; Zhang, J.; Wu, L.; Liu, D.; et al. Enhanced polysulfide conversion in room-temperature sodium-sulfur batteries via nanoscale TiO2 modified porous carbon structures. J. Colloid Interface Sci. 2025, 684, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.J.; Song, B.Y.; Zhang, Q.Y.; He, J.R.; Wu, Y.P. 3D flower-like nanospheres constructed by transition metal telluride nanosheets as sulfur immobilizers for high-performance room-temperature Na-S batteries. Small 2023, 20, 2310225. [Google Scholar] [CrossRef]
- Qian, S.Y.; Yuan, Z.Y.; Li, G.S.; Li, D.D.; Li, J.Z.; Han, W. 3D layered structure Ti3C2Tx MXene/Ni(OH)2/C with strong catalytic and adsorption capabilities of polysulfides for high-capacity Sodium-Sulfur battery. Chem. Eng. J. 2023, 471, 144528. [Google Scholar] [CrossRef]
- Huang, C.; Yu, J.; Lei, Y.-J.; Usoltsev, O.; Gong, L.; Cui, Z.; Li, J.; Li, C.; Nan, B.; Lu, X.; et al. Generation of unpaired electrons to promote electron transfer at the cathode of room-temperature sodium sulfur batteries. Chem. Eng. J. 2025, 506, 160146. [Google Scholar] [CrossRef]
- Lei, Y.J.; Wu, C.; Lu, X.X.; Hua, W.B.; Li, S.B.; Liang, Y.R.; Liu, H.W.; Lai, W.H.; Gu, Q.F.; Cai, X.L.; et al. Streamline sulfur redox reactions to achieve efficient room-temperature sodium-sulfur batteries. Angew. Chem. Int. Ed. 2022, 61, e202200384. [Google Scholar] [CrossRef]
- Zhang, H.; Song, B.; Zhang, W.; An, B.; Fu, L.; Lu, S.; Cheng, Y.; Chen, Q.; Lu, K. Bidirectional tandem electrocatalysis manipulated sulfur speciation pathway for high-capacity and stable Na-S battery. Angew. Chem. Int. Ed. 2023, 62, e202217009. [Google Scholar] [CrossRef]
- Fang, D.L.; Ghosh, T.; Huang, S.Z.; Wang, Y.; Qiu, J.B.; Xu, X.H.; Yang, H.Y. Core-shell tandem catalysis coupled with interface engineering for high-performance room-temperature Na-S batteries. Small 2023, 19, 2302461. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Z.; Liu, M.; Ge, S.; Ma, K.; Jiao, Q.; Li, H.; Xie, H.; Zhao, Y.; Feng, C. Synergistically promoting the catalytic conversion of polysulfides via in-situ construction of Ni-MnO2 heterostructure on N-doped hollow carbon spheres towards high-performance sodium-sulfur batteries. Chem. Eng. J. 2024, 494, 153006. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, M.; Wang, Y.; Wang, Z.; Wang, H.; Liu, X. Achieving a quasi-solid-state conversion of polysulfides via building high efficiency heterostructure for room temperature Na-S batteries. Adv. Energy Mater. 2024, 14, 2303925. [Google Scholar] [CrossRef]
- Qin, G.; Liu, Y.; Han, P.; Cao, S.; Guo, X.; Guo, Z. High performance room temperature Na-S batteries based on FCNT modified Co3C-Co nanocubes. Chem. Eng. J. 2020, 396, 125295. [Google Scholar] [CrossRef]
- Zhang, S.P.; Yao, Y.; Jiao, X.J.; Ma, M.Z.; Huang, H.J.; Zhou, X.F.; Wang, L.F.; Bai, J.T.; Yu, Y. Mo2N-W2N heterostructures embedded in spherical carbon superstructure as highly efficient polysulfide electrocatalysts for stable room-temperature Na-S batteries. Adv. Mater. 2021, 33, 2103846. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Ruan, J.F.; Pang, Y.P.; Yang, J.H.; Liu, Y.F.; Huang, Y.Z.; Zheng, S.Y. Enabling a stable room-temperature sodium-sulfur battery cathode by building heterostructures in multichannel carbon fibers. ACS Nano 2021, 15, 5639–5648. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, L.; Guo, B.; Kong, Y.; Wang, F.; Jing, Z.; Qu, G.; Mamoor, M.; Wang, D.; He, X.; et al. In situ electrochemical evolution of amorphous metallic borides enabling long cycling room-/subzero-temperature sodium-sulfur batteries. Adv. Mater. 2024, 36, 2411725. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.W.; Cao, L.Y.; Tang, C.; Tan, C.H.; Cheng, N.Y.; Lai, W.H.; Wang, Y.X.; Cheng, Z.X.; Dong, J.C.; Kong, Y.; et al. Atomically dispersed dual-site cathode with a record high sulfur mass loading for high-performance room-temperature sodium-sulfur batteries. Adv. Mater. 2023, 35, 2206828. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, Z.; Luo, D.; Wang, X. Construction of heterointerfaced nanoreactor electrocatalyst via in situ evolution toward practical room-temperature sodium-sulfur batteries. Adv. Funct. Mater. 2025, 35, 2414172. [Google Scholar] [CrossRef]
- Wu, J.H.; Yu, Z.X.; Yao, Y.; Wang, L.F.; Wu, Y.; Cheng, X.L.; Ali, Z.; Yu, Y. Bifunctional catalyst for liquid-solid redox conversion in room-temperature sodium-sulfur batteries. Small Struct. 2022, 3, 2200020. [Google Scholar] [CrossRef]
- Guo, D.; Zhang, X.; Liu, M.; Yu, Z.; Chen, X.a.; Yang, B.; Zhou, Z.; Wang, S. Single Mo-N4 atomic sites anchored on N-doped carbon nanoflowers as sulfur host with multiple immobilization and catalytic effects for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2204458. [Google Scholar] [CrossRef]
- Sun, J.-F.; Xu, Q.-Q.; Qi, J.-L.; Zhou, D.; Zhu, H.-Y.; Yin, J.-Z. Isolated single atoms anchored on N-doped carbon materials as a highly efficient catalyst for electrochemical and organic reactions. ACS Sustain. Chem. Eng. 2020, 8, 14630–14656. [Google Scholar] [CrossRef]
- Gu, Y.; Xi, B.J.; Zhang, H.; Ma, Y.C.; Xiong, S.L. Activation of main-group antimony atomic sites for oxygen reduction catalysis. Angew. Chem. Int. Ed. 2022, 61, e202202200. [Google Scholar] [CrossRef]
- Guo, Y.; Jin, Z.; Lu, J.; Wei, L.; Wang, W.; Huang, Y.; Wang, A. Engineering a deficient-coordinated single-atom indium electrocatalyst for fast redox conversion in practical 500 Wh kg−1-level pouch lithium-sulfur batteries. Energy Environ. Sci. 2023, 16, 5274–5283. [Google Scholar] [CrossRef]
- Lao, Z.; Han, Z.; Ma, J.; Zhang, M.; Wu, X.; Jia, Y.; Gao, R.; Zhu, Y.; Xiao, X.; Yu, K.; et al. Band structure engineering and orbital orientation control constructing dual active sites for efficient sulfur redox reaction. Adv. Mater. 2023, 36, 2309024. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Wang, Z.; Yang, F.; Huang, X.; Liu, J.; Liang, Y.; Xie, J.; Javed, M.S.; Lu, X.; Tan, S.; et al. NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries. Nano Energy 2020, 68, 104293. [Google Scholar] [CrossRef]
- Du, W.Y.; Shen, K.Q.; Qi, Y.R.; Gao, W.; Tao, M.L.; Du, G.Y.; Bao, S.J.; Chen, M.Y.; Chen, Y.M.; Xu, M.W. Efficient catalytic conversion of polysulfides by biomimetic design of “branch-leaf” electrode for high-energy sodium-sulfur batteries. Nano-Micro Lett. 2021, 13, 50. [Google Scholar] [CrossRef]
- Guo, B.S.; Du, W.Y.; Yang, T.T.; Deng, J.H.; Liu, D.Y.; Qi, Y.R.; Jiang, J.; Bao, S.J.; Xu, M.W. Nickel hollow spheres concatenated by nitrogen-doped carbon fibers for enhancing electrochemical kinetics of sodium-sulfur batteries. Adv. Sci. 2020, 7, 1902617. [Google Scholar] [CrossRef]
- Yan, Z.C.; Xiao, J.; Lai, W.H.; Wang, L.; Gebert, F.; Wang, Y.X.; Gu, Q.F.; Liu, H.; Chou, S.L.; Liu, H.K.; et al. Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries. Nat. Commun. 2019, 10, 4793. [Google Scholar] [CrossRef]
- Tang, W.W.; Zhong, W.; Wu, Y.K.; Qi, Y.R.; Guo, B.S.; Liu, D.Y.; Bao, S.J.; Xu, M.W. Vanadium carbide nanoparticles incorporation in carbon nanofibers for room-temperature sodium sulfur batteries: Confining, trapping, and catalyzing. Chem. Eng. J. 2020, 395, 124978. [Google Scholar] [CrossRef]
- Huang, X.L.; Hussain, T.; Liu, H.W.; Kaewmaraya, T.; Xu, M.W.; Liu, H.K.; Dou, S.X.; Wang, Z.M. Dredging sodium polysulfides using a Fe3C electrocatalyst to realize improved room-temperature Na–S batteries. Inorg. Chem. Front. 2023, 10, 4241–4251. [Google Scholar] [CrossRef]
- Sun, W.; Hou, J.; Zhou, Y.; Zhu, T.; Yuan, Q.; Wang, S.; Manshaii, F.; Song, C.; Lei, X.; Wu, X.; et al. Amorphous FeSnOx nanosheets with hierarchical vacancies for room-temperature sodium-sulfur batteries. Angew. Chem. Int. Ed. 2024, 63, e202404816. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Y.; Shu, H.; Yan, Z.; Wu, Z.; Wang, Y.; Zhu, Z.; Wang, X. The design of chemisorption and catalysis synergistic defender for efficient room temperature sodium-sulfur batteries. J. Colloid Interface Sci. 2025, 678, 292–300. [Google Scholar] [CrossRef]
- Dong, C.W.; Zhou, H.Y.; Jin, B.; Gao, W.; Lang, X.Y.; Li, J.C.; Jiang, Q. Enabling high-performance room-temperature sodium/sulfur batteries with few-layer 2H-MoSe2 embellished nitrogen-doped hollow carbon spheres as polysulfide barriers. J. Mater. Chem. A. 2021, 9, 3451–3463. [Google Scholar] [CrossRef]
- Hou, R.Q.; Yuan, S.Y.; Wang, Y.G. Research status quo and prospect of electrolytes for room-temperature sodium-sulfur battery (Ⅰ). Dianchi (Battery Bimon.) 2024, 54, 3–8. (In Chinese) [Google Scholar]
Category | Catalytic Materials | Catalyst Mechanism | Catalyst Content | Electrolyte | Cycling Stability (Sulfur Loading) | Ref. |
---|---|---|---|---|---|---|
TM single/dual atoms | Mn/NC | Strong Lewis acid–base interaction promotes the direct conversion of Na2S4 to Na2S | \ | 1 M NaFSI in TEGDME with 1wt% NaNO3 | 720 mAh g−1@500th cycle@500 mA g−1 (1.8–2.5 mg cm−2) | [55] |
Con-HC | Polarity–polarity interaction | 28% | 1 M NaClO4 in PC/EC (1:1 Vol%) with 5 wt% FEC | 508 mAh g−1@600th cycle@100 mA g−1 | [56] | |
Fe1-NMC | Electron transfer | 17.5% | 1 M NaClO4 in PC/EC (1:1 Vol%) with 5 wt% FEC | 540 mAh g−1@500th cycle@0.1 A g−1 | [57] | |
Fe/NC/700 | Metallic bonding enhances electron transfer | 28% | 1 M NaClO4 in PC/EC (1:1 Vol%) | 325 mAh g−1@5000th cycle@10 A g−1 (1.5–2 mg cm−2) | [58] | |
Cu SA/NOC-2 | Coordination activates S8 cleavage into short-chain sulfur | 23% | 1 M NaSO3CF3 in DEGDME | 776 mAh g−1@100th cycle@0.1 A g−1 (2.0–2.5 mg cm−2) | [59] | |
VCo DACs/N-MXene | Electron spillover effect | 23% | 1 M NaSO3CF3 in DEGDME | 1199.3 mAh g−1@100th cycle@0.2C (0.8–1.2 mg cm−2) | [60] | |
Fe-Co/NC | Iron atoms induce the delocalization of Co electrons, altering the electron spin state | 32% | 1.0 M NaClO4 in EC/DMC (1:1 Vol%) with 5.0% FEC | 379 mAh g−1@2000th cycle@1C (1 mg cm−2) | [61] | |
Co-N2O2/MOFc | Strong d-p hybridization for Co single-atom d-electron density regulation | 23% | 1 M NaSO3CF3 in DEGDME | 425 mAh g−1@1000th cycle@1 A g−1 (1.0–1.2 mg cm−2) | [62] | |
Mn-N-C | Strong p-d hybridization | 32% | 1 M NaClO4 in PC/EC (1:1 Vol%) with 5 wt% FEC | 888 mAh g−1@200th cycle@0.2 A g−1 (1.6 mg cm−2) | [63] | |
Fe-N1 | Unsaturated coordination | 35% | 2 M NaTFSI in PC/FEC (1:1 Vol%) | 647.8 mAh g−1@200th cycle@167.5 mA g−1 | [64] | |
Zn-N2/CF | Asymmetric electron distribution | \ | 1 M NaClO4 in EC/DEC (1:1 Vol%) with 5% FEC | 317.4 mAh g−1@100th cycle@0.1 A g−1 (1.0 mg cm−2) | [40] | |
Zn-N2@NG | Unsaturated coordination | 14% | 1 M NaClO4 in EC/DEC (1:1 Vol%) with 5% FEC | 414 mAh g−1@400th cycle@0.6 A g−1 (1.0 mg cm−2) | [65] | |
Ca-O4N-C | Axial-N-ligand-induced Ca site charge localization promotes p-p orbital hybridization | 23% | 2 M NaTFSI in PC/FEC (1:1 Vol%) | 887 mAh g−1@800th cycle@3C (1 mg cm−2) | [66] | |
NHC-InN5 SACs | High s-p orbital overlap | 23% | 1 M NaClO4 in PC/EC (1:1 Vol%) with 5 wt% FEC | 384.9 mAh g−1@800th cycle@1 A g−1 (1.5 mg cm−2) | [67] | |
Co, N-MPC-10% | Polar interaction | 32% | 1 M NaClO4 in PC/EC (1:1 Vol%) with 3 wt% FEC | 1275.01 mAh g−1@100th cycle@0.1C (1.3 mg cm−2) | [68] | |
3D-PNCV | Promote electron transfer | 35% | 1 M NaTFSI in PC/FEC (1:1 Vol%) | 991 mAh g−1@100th cycle@0.2 A g−1 | [69] | |
Mn-N2/CNs | Regulating the coordination number of Mn single atoms enhances d-p orbital hybridization | 23% | 2 M NaTFSI in PC/FEC (1:1 Vol%) | 926 mAh g−1@100th cycle@0.1C (0.9 mg cm−2) | [70] | |
Zn-N3O/HCs | N/O coordination to generate localized electrons at the single-atom center of Zn to enhance d-p hybridization | 23% | 2 M NaTFSI in PC/FEC (1:1 Vol%) | 1155 mAh g−1@100th cycle@0.1C (0.8–1.0 mg cm−2) | [71] | |
SA Fe-N/S@CNF | Regulation of the coordination structure of Fe-N4S2 | \ | 1 M NaClO4 in EC/DEC (1:1 Vol%) with 5 wt% FEC | 595 mAh g−1@500th cycle@1 A g−1 (4 mg cm−2) | [72] | |
Mn1-PNC | Electron transfer | 28% | 1 M NaClO4 in EC/PC (1:1 Vol%) with 5 wt% FEC | 344.1 mAh g−1@3000th cycle@2 A g−1 (2.6 mg cm−2) | [73] | |
SA Co-N/S | Strong interaction between Co site and sulfur | \ | 2 M NaTFSI in PC/FEC (1:1 Vol%) | 2.54 mAh cm−2@70th@0.5 A g−1 (4.2 mg cm−2) | [74] | |
TM nanoparticles | Fe1.88C0.12@CNTs | Strong d-p orbital hybridization based on carbon vacancies and iron defects forms Fe-S bonds | \ | 1 M NaClO4 in TEGDME with 2% NaNO3 | 486 mAh g−1@1000th cycle@1 A g−1 (0.8–1.4 mg cm−2) | [75] |
Co-NMCN | The generation of Co-S bonds | 35% | 1 M NaClO4 in PC/EC (1:1 Vol%) with 5 wt% FEC | 529.6 mAh g−1@100th cycle@0.5C (3 mg cm−2) | [76] | |
CoNC | The conversion of Co nanoparticles and CoN4 sites into CoS | 35% | a molar ratio of NaFSI/DME/BTFE = 1:1:0.8 | 530 mAh g−1@150th cycle@80 mA g−1 (0.6–0.7 mg cm−2) | [77] | |
CNTs/Co@NC-0.25 | Catalysis based on the Co nanoparticles | \ | 1 M NaClO4 in EC/DEC (1:1 Vol%) with 2 wt% FEC | 634.6 mAh g−1@100th cycle@0.1C (0.7–0.9 mg cm−2) | [54] | |
Co@NPCNFs | Co nanoparticles enable rapid sodium intercalation and reduction of NaPSs | \ | 1 M NaClO4 in EC/DEC (1:1 Vol%) | 411 mAh g−1@800th cycle@1C (1 mg cm−2) | [78] | |
FeNi3@HC | Alloying regulates the electronic structure | 35% | 2 M NaClO4 in PC/FEC (1:1 Vol%) | 862 mAh g−1@100th cycle@0.2 A g−1 | [79] | |
Ni/Co-C-12 | Adjusting the Ni/Co ratio delays the conversion of Na2S to NaPSs and accelerates the conversion of NaPSs to sulfur | 40% | 1 M NaClO4 in TEGDME | 813.5 mAh g−1@200th cycle@0.5C | [80] | |
Co@BNC | The formation of electron defect centers in Co nanoparticles based on B doping | 31.5% | 1 M NaClO4 in PC/EC (1:1 Vol%) with 3 wt% FEC | 416 mAh g−1@600th cycle@0.5C (0.8–1 mg cm−2) | [81] | |
MG-Co | High-conductivity MXene in synergy with Co nanoparticles for catalysis | 40% | 1.0 M NaPF6 in DOL/DIGLYME (1:1 Vol%) | 360 mAh g−1@200th cycle@0.5C | [51] | |
W@N-G | The reduction of Na2S4 is promoted by embedding W nanoparticles | 7.28% | 1 M NaClO4 in EC/PC (1:1 Vol%) with 3 wt% FEC | 398 mAh g−1@1000th cycle@1C (1 mg cm−2) | [82] | |
TM compounds | NOC@MoS2 | Strong Lewis acid–base interactions | 35% | 1 M NaCF3SO3 in DEGDME | 576 mAh g−1@100th cycle@0.1 A g−1 (0.9–1.5 mg cm−2) | [83] |
YS-Fe2N@NC | N-doped carbon encapsulating Fe2N to promote the transfer of electrons from NaPSs to N in Fe2N | 56% | 1 M NaClO4 in DEGDME | 467 mAh g−1@350th cycle@2C (3.1 mg cm−2) | [84] | |
MnO@NACM | The conductive network of carbon nanorods works in synergy with MnO for adsorption and catalysis | 44% | 1 M NaClO4 in EC/PC (1:1 Vol%) with 5 wt% FEC | 234 mAh g−1@1000th cycle@2 A g−1 (0.7–0.9 mg cm−2) | [85] | |
NiSe-C | Regulating the electronic state of the d/p orbital at the NiSe catalytic site | 35% | 2 M NaTFSI in PC/FEC (1:1 Vol%) | 401.4 mAh g−1@1000th cycle@2 A g−1 | [86] | |
HPC/Mo2C | Strong adsorption and high catalysis of highly conductive Mo2C | 38.5% | 2 M NaTFSI in PC/FEC (1:1 Vol%) | 1098 mAh g−1@120th cycle@0.2 A g−1 | [87] | |
Mo5N6 | Mo5N6 based on high d bands | 5% | 1 M NaClO4 in EC/PC (1:1 Vol%) with 5 wt% FEC | 186 mAh g−1@10000th cycle@1675 mA g−1 (1.2 mg cm−2) | [88] | |
2D/3D Co4N-NC@CC | The abundant adsorption and catalytic active sites of 2D/3D CoN4 accelerate charge transfer | \ | 1 M NaClO4 in EC/PC (1:1 Vol%) with 2M NaNO3 | 592 mAh g−1@1000th cycle@1.0C (1.0 mg cm−2) | [89] | |
Fe3N-NMCN | The Na-N and Fe-S bonds of Fe3N and NaPSs | \ | 1 M NaPF6 in DOL/DIGLYME (1:1 Vol%) | 696 mAh g−1@2800th cycle@8375 mA g−1 | [90] | |
NCCS | Enhance conductivity | 50% | 1 M NaClO4 in EC/DEC (1:1 Vol%) | 470.3 mAh g−1@500th cycle@1C | [91] | |
Nb2O5-CNR | Excellent sodium affinity and sulfur affinity | 40% | 1 M NaClO4 in EC/PC (1:1 Vol%) with 5 wt% FEC | 617 mAh g−1@600th cycle@0.5 A g−1 | [92] | |
GeOx/NC | The O vacancy provides highly active sites | \ | 1 M NaSO3CF3 in DEGDME | 385 mAh g−1@1200th cycle@1 A g−1 (1 mg cm−2) | [93] | |
PC/CeO2-x | The O vacancy leads to a reduction in the CeO2-x band gap, increasing the electrical conductivity | 35% | 2 M NaTFSI in PC/FEC (1:1 Vol%) | 906 mAh g−1@200th cycle@0.5 A g−1 | [94] | |
TiO2@SPC | Valence regulation forms defect sites | 35% | 2 M NaTFSI in EC/PEC | 400 mAh g−1@400th cycle@2A g−1 | [95] | |
MoTe2 | Multiple active sites | 8% | \ | 498 mAh g−1@500th cycle@1C | [96] | |
Ti3C2Tx/Ni(OH)2/C | Synergistic effect of physical constraints and MXene adsorption as well as Ni(OH)2 catalysis | 28% | 1 M NaSO3CF3 in DIGLYME | 1144.7 mAh g−1@100th cycle@0.22C | [97] | |
TM heterostructures | Co3O4-NC@C3N4 | Unpaired Co 3d electrons promote electron transfer | 24% | 1 M NaClO4 in EC/DEC (1:1 Vol%) with 5 wt% FEC | 737.2 mAh g−1@1000th cycle@1C (1.5 mg cm−2) | [98] |
Co1-CoS2/NC | CoS2/Co1 dual-terminal electron donor–catalytic synergistic effect | 28% | 1 M NaClO4 in EC/PC (1:1 Vol%) with 5 wt% FEC | 642 mAh g−1@150th cycle@0.2 A g−1 (1.6 mg cm−2) | [99] | |
P-Fe2O3@Fe-PPy | Series-segmented catalysis | \ | 1 M NaFSI in TEGDME with 1wt% NaNO3 | 674 mAh g−1@500th cycle@500 mA g−1 (1.8–2.5 mg cm−1) | [100] | |
ZnS-NC@Ni-N4 | Series-segmented catalysis | 35% | 1 M NaClO4 in EC/DEC (1:1 Vol%) with 5 wt% FEC | 725 mAh g−1@2000th cycle@1 A g−1 (1.0 mg cm−1) | [101] | |
HCS@Ni-MnO2 | Heterostructure interface rich in micro/mesoporous hollow structures | 35% | 1 M NaCF3SO3 in DEGDME | 586.8 mAh g−1@1000th cycle@5 A g−1 (1.2–1.4 mg cm−1) | [102] | |
MoC-W2C-MCNF | The MoC-W2C heterointerface accelerates the quasi-solid-state conversion of electron/ion transport | \ | 1 M NaClO4 in EC/PC (1:1 Vol%) with 5 wt% FEC | 640 mAh g−1@500th cycle@0.2 A g−1 (1.5 mg cm−2) | [103] | |
FCNT@Co3C-Co | Strong adsorption and catalysis based on Lewis acid sites of Co3C and Co | \ | 1 M NaClO4 in EC/DMC (6:4 Vol%) | 448 mAh g−1@500th cycle@2C (3.2 mg cm−2) | [104] | |
MoN-W2N@PC | The Mo2N-W2N heterojunction | 35% | 2 M NaTFSI in PC/FEC (1:1 Vol%) | 517 mAh g−1@400th cycle@1 A g−1 (0.9 mg cm−2) | [105] | |
TiN-TiO2@MCCFs | The synergistic effect of TiN catalysis and TiO2 adsorption | \ | 1 M NaClO4 in EC/PC (1:1 Vol%) with 5 wt% FEC | 640 mAh g−1@100th cycle@0.1 A g−1 (1.08 mg cm−2) | [106] | |
Ni-B@GO | Catalysis of the interface between amorphous Ni-B and crystalline Ni-Sx | 16% | 1 M NaTFSI in PC/FEC | 470 mAh g−1@1000th cycle@2 A g−1 | [107] | |
MoS2-Mo1/SGF | Atomic-level dual active site delocalization of electrons optimizes the Mo electronic structure | 7% | 1 M NaClO4 in EC/PC (1:1 Vol%) with 5 wt% FEC | 505 mAh g−1@1000th cycle@0.1 A g−1 (0.96 mg cm−2) | [108] | |
MoS2/MoSAC/CF | The regulation of the electronic structure at the center of the Mod band promotes the hybridization of the d-p orbitals | 35% | 1 M NaClO4 in EC/PC (1:1 Vol%) with 5 wt% FEC | 441.38 mAh g−1@100th cycle@1 A g−1 (1.0 mg cm−2) | [44] | |
Co-S-C@MC | The heterogeneous interface Co-S-C regulates the electronic structure and enhances the center of the Co d band | 32% | 1 M NaTFSI in TEGDME/FEC (1:1 Vol%) | 1215 mAh g−1@500th cycle@0.1C (1.0 mg cm−2) | [109] | |
CoS2-CoSe2@CNFs | Strong adsorption of CoS2 and high catalysis of CoSe2 | \ | 2 M NaTFSI in PC/FEC (1:1 Vol%) | 749 mAh g−1@200th cycle@1 A g−1 | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, Y.; Yang, Y.; Lei, P.; Cao, H.; Xiang, Y. Transition Metal-Based Catalysts Powering Practical Room-Temperature Na-S Batteries: From Advances to Further Perspectives. Batteries 2025, 11, 333. https://doi.org/10.3390/batteries11090333
Li J, Wang Y, Yang Y, Lei P, Cao H, Xiang Y. Transition Metal-Based Catalysts Powering Practical Room-Temperature Na-S Batteries: From Advances to Further Perspectives. Batteries. 2025; 11(9):333. https://doi.org/10.3390/batteries11090333
Chicago/Turabian StyleLi, Junsheng, Yongli Wang, Yuanyuan Yang, Peng Lei, Huatang Cao, and Yinyu Xiang. 2025. "Transition Metal-Based Catalysts Powering Practical Room-Temperature Na-S Batteries: From Advances to Further Perspectives" Batteries 11, no. 9: 333. https://doi.org/10.3390/batteries11090333
APA StyleLi, J., Wang, Y., Yang, Y., Lei, P., Cao, H., & Xiang, Y. (2025). Transition Metal-Based Catalysts Powering Practical Room-Temperature Na-S Batteries: From Advances to Further Perspectives. Batteries, 11(9), 333. https://doi.org/10.3390/batteries11090333