Designing Highly Reversible and Stable Zn Anodes for Next-Generation Aqueous Batteries
Abstract
1. Introduction
2. Issues and Mechanisms Involving Zn Anode
2.1. Dendrite Growth
2.2. Hydrogen Evolution Reaction
2.3. Corrosion and Passivation
3. Intrinsic Anode Engineering
3.1. Inorganic Coatings
3.1.1. Oxides Coatings
3.1.2. Natural Minerals Coatings
3.2. Macromolecule Organic Coatings
3.2.1. Synthetic Organic Coatings
3.2.2. Natural Organic Coatings
3.2.3. Organic Coatings with Halogens
3.3. Alloying Anodes
4. Interfacial Electrolyte Regulation
4.1. Zn Salt Concentration
4.2. Electrolyte Additives
4.2.1. Inorganic Additives
4.2.2. Organic Additives
4.3. Hydrogel Electrolytes
4.4. All-Solid-State Electrolytes
5. Separator-Induced Transport Modulation
5.1. Modification of Conventional Separators
5.2. Construction of Novel Separators
6. Outlooks and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, J.; Liu, C.; Li, N.; Yang, L.; Yang, X.-G.; Dou, B.; Hou, S.; Feng, X.; Jiang, H.; Li, H.; et al. Wireless Transmission of Internal Hazard Signals in Li-Ion Batteries. Nature 2025, 641, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; You, Y.; Lu, J. Understanding Materials Failure Mechanisms for the Optimization of Lithium-Ion Battery Recycling. Nat. Rev. Mater. 2025, 10, 355–368. [Google Scholar] [CrossRef]
- Wang, H.; Tan, R.; Yang, Z.; Feng, Y.; Duan, X.; Ma, J. Stabilization Perspective on Metal Anodes for Aqueous Batteries. Adv. Energy Mater. 2021, 11, 2000962. [Google Scholar] [CrossRef]
- Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-Lithium-Ion Battery Cell Production and Its Compatibility with Lithium-Ion Cell Production Infrastructure. Nat. Energy 2021, 6, 123–134. [Google Scholar] [CrossRef]
- Liu, H.; Hou, X.; Zhang, Q.; Peng, W.; Li, Y.; Fan, X. Representative By-Products of Aqueous Zinc-Vanadium Batteries: Origins, Roles, Strategies, and Prospects. Adv. Energy Mater. 2025, 15, 2406171. [Google Scholar] [CrossRef]
- Xu, C.; Li, B.; Du, H.; Kang, F. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angew. Chem. Int. Ed. 2012, 51, 933–935. [Google Scholar] [CrossRef]
- Chen, W.; Chen, T.; Fu, J. Pivotal Role of Organic Materials in Aqueous Zinc-Based Batteries: Regulating Cathode, Anode, Electrolyte, and Separator. Adv. Funct. Mater. 2024, 34, 2308015. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, Z.; Ming, F.; Zeng, Y.; Wei, B.; Jiang, Q.; Qi, Z.; Wang, Z.; Liang, H. Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Zn-Ion Batteries. Small 2022, 18, 2200006. [Google Scholar] [CrossRef]
- Liu, G.-Q.; Fu, B.; Liu, Z.-X.; Li, L.-Y.; Liang, S.-Q.; Fang, G.-Z. Copper Oxide-Modified Highly Reversible Zn Powder Anode for Aqueous Zn Metal Batteries. Rare Met. 2024, 43, 5005–5016. [Google Scholar] [CrossRef]
- Song, Y.; Zhong, Z.; Chen, M.; Ding, Y.; Zhou, M.; Liu, Z.; Liang, S.; Fang, G. Interfacial Optimization Enabling Reversible and Stable Aqueous Zinc Metal Batteries under Harsh Conditions. J. Cent. South Univ. 2024, 31, 4536–4548. [Google Scholar] [CrossRef]
- Nishad, H.S.; Gupta, S.P.; Khan, N.S.; Biradar, A.V.; Lee, J.; Mane, S.M.; Walke, P.S. Structural Transformation of Hydrated WO3 into SnWO4 via Sn Incorporation Enables a Superior Pseudocapacitor and Aqueous Zinc-Ion Battery. Energy Fuels 2023, 37, 7501–7510. [Google Scholar] [CrossRef]
- Yang, Y.; Qin, L.; He, Q.; Yin, C.; Lei, Y.; Liang, S.; Fang, G. Electrochemically and Chemically In-Situ Interfacial Protection Layers towards Stable and Reversible Zn Anodes. Sci. Bull. 2025, 70, 104–124. [Google Scholar] [CrossRef]
- Ma, L.; Schroeder, M.A.; Borodin, O.; Pollard, T.P.; Ding, M.S.; Wang, C.; Xu, K. Realizing High Zinc Reversibility in Rechargeable Batteries. Nat. Energy 2020, 5, 743–749. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Zhao, J.; Liu, K.; Yang, P.; Fan, H.J. Stable Zinc Anodes Enabled by a Zincophilic Polyanionic Hydrogel Layer. Adv. Mater. 2022, 34, 2202382. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huang, W.; Deng, Z.; Peng, W.; Yang, Z.; Yuan, B.; Yang, L.; Li, S.; Zheng, X.; Deng, Y. Advancements in Zinc Reversibility and Utilization for Practical Aqueous Zinc-Ion Battery Applications. Adv. Energy Mater. 2025, 15, 2501052. [Google Scholar] [CrossRef]
- Gao, X.; Dai, Y.; Zhang, C.; Zhang, Y.; Zong, W.; Zhang, W.; Chen, R.; Zhu, J.; Hu, X.; Wang, M.; et al. When It’s Heavier: Interfacial and Solvation Chemistry of Isotopes in Aqueous Electrolytes for Zn-Ion Batteries. Angew. Chem. Int. Ed. 2023, 62, e202300608. [Google Scholar] [CrossRef]
- Liu, C.; Xie, X.; Lu, B.; Zhou, J.; Liang, S. Electrolyte Strategies toward Better Zinc-Ion Batteries. ACS Energy Lett. 2021, 6, 1015–1033. [Google Scholar] [CrossRef]
- Geng, L.; Wang, X.; Han, K.; Hu, P.; Zhou, L.; Zhao, Y.; Luo, W.; Mai, L. Eutectic Electrolytes in Advanced Metal-Ion Batteries. ACS Energy Lett. 2022, 7, 247–260. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Xu, A.; Lv, J.; Huang, M.; Ren, T.; Bai, J.; Wang, H.; Liu, X. Oriented and Continuous Phase Epitaxy Enabled by A Highly Dendrite-Resistant Plane Toward Super-High Areal Capacity Zinc Metal Batteries. Adv. Energy Mater. 2025, 15, 2404071. [Google Scholar] [CrossRef]
- Paswan, A.M.; Thakur, V.S.; Banerjee, S.; Raj, C.R. Electrochemical Engineering of Anode with Zincophilic Polymer Interface for Reversible Zinc Battery. Adv. Funct. Mater. 2025, 35, 2412370. [Google Scholar] [CrossRef]
- Zhang, K.; Yan, S.; Wu, C.; Wang, L.; Ma, C.; Ye, J.; Wu, Y. Extended Battery Compatibility Consideration from an Electrolyte Perspective. Small 2024, 20, 2401857. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, Z.; Zhang, T.; Zhang, J.; Guo, Y.; Shan, M.; Wang, K.; Shi, T.; Cui, G.; Wang, F.; et al. Ultra-Stable Zinc Anodes Facilitated by Hydrophilic Polypropylene Separators with Large Scale Production Capacity. Adv. Funct. Mater. 2024, 34, 2407262. [Google Scholar] [CrossRef]
- Lu, J.; Yang, J.; Zhang, Z.; Wang, C.; Xu, J.; Wang, T. Silk Fibroin Coating Enables Dendrite-Free Zinc Anode for Long-Life Aqueous Zinc-Ion Batteries. ChemSusChem 2022, 15, e202200656. [Google Scholar] [CrossRef]
- Ho, V.-C.; Lim, H.; Kim, M.J.; Mun, J. Improving the Performance of Aqueous Zinc-Ion Batteries by Inhibiting Zinc Dendrite Growth: Recent Progress. Chem.—Asian J. 2022, 17, e202200289. [Google Scholar] [CrossRef]
- Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T. Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives. Nano-Micro Lett. 2022, 14, 42. [Google Scholar] [CrossRef]
- Wang, Y.; Mo, L.; Zhang, X.; Ren, Y.; Wei, T.; Li, Z.; Huang, Y.; Zhang, H.; Cao, G.; Hu, L. Facet-Termination Promoted Uniform Zn (100) Deposition for High-Stable Zinc-Ion Batteries. Adv. Energy Mater. 2023, 13, 2301517. [Google Scholar] [CrossRef]
- Li, X.; Zeng, J.; Yao, H.; Yuan, D.; Zhang, L. Current Advances on Zn Anodes for Aqueous Zinc-Ion Batteries. ChemNanoMat 2021, 7, 1162–1176. [Google Scholar] [CrossRef]
- Zhang, Q.; Luan, J.; Tang, Y.; Ji, X.; Wang, H. Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 13180–13191. [Google Scholar] [CrossRef]
- Wan, F.; Zhou, X.; Lu, Y.; Niu, Z.; Chen, J. Energy Storage Chemistry in Aqueous Zinc Metal Batteries. ACS Energy Lett. 2020, 5, 3569–3590. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.; Yang, W.; Chen, B.; Zhao, Z.; Qiu, H.; Dong, S.; Zhou, X.; Cui, G.; Chen, L. “Water-in-Deep Eutectic Solvent” Electrolytes Enable Zinc Metal Anodes for Rechargeable Aqueous Batteries. Nano Energy 2019, 57, 625–634. [Google Scholar] [CrossRef]
- Rana, A.; Roy, K.; Heil, J.N.; Nguyen, J.H.; Renault, C.; Tackett, B.M.; Dick, J.E. Realizing the Kinetic Origin of Hydrogen Evolution for Aqueous Zinc Metal Batteries. Adv. Energy Mater. 2024, 14, 2402521. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, J.; Hu, Z.; Li, J.; Li, J.; Zhang, Y.; Wang, C.; Cui, G. Long-Life and Deeply Rechargeable Aqueous Zn Anodes Enabled by a Multifunctional Brightener-Inspired Interphase. Energy Environ. Sci. 2019, 12, 1938–1949. [Google Scholar] [CrossRef]
- Cao, Z.; Zhuang, P.; Zhang, X.; Ye, M.; Shen, J.; Ajayan, P.M. Strategies for Dendrite-Free Anode in Aqueous Rechargeable Zinc Ion Batteries. Adv. Energy Mater. 2020, 10, 2001599. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, W.; Jiang, J.; Zhao, X.; Zheng, S.; Pan, Z.; Yang, X. Challenges and Perspectives of Hydrogen Evolution-Free Aqueous Zn-Ion Batteries. Energy Storage Mater. 2023, 59, 102767. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Zhang, Y.; Li, Y.; Sun, R.; Wang, Z.; Wang, H. Strategies towards the Challenges of Zinc Metal Anode in Rechargeable Aqueous Zinc Ion Batteries. Energy Storage Mater. 2021, 35, 19–46. [Google Scholar] [CrossRef]
- Roy, K.; Rana, A.; Heil, J.N.; Tackett, B.M.; Dick, J.E. For Zinc Metal Batteries, How Many Electrons Go to Hydrogen Evolution? An Electrochemical Mass Spectrometry Study. Angew. Chem. Int. Ed. 2024, 63, e202319010. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Xiao, Z.; Lao, Z.; Liu, J.; Xiao, X.; Fu, Q.; Zheng, F.; Zhou, G. Suppressing Spontaneous Acidic Corrosion and Hydrogen Evolution for Stable Zn//MnO2 Batteries. Angew. Chem. 2025, 137, e202502896. [Google Scholar] [CrossRef]
- Li, M.; He, Q.; Li, Z.; Li, Q.; Zhang, Y.; Meng, J.; Liu, X.; Li, S.; Wu, B.; Chen, L.; et al. A Novel Dendrite-Free Mn2+ /Zn2+ Hybrid Battery with 2.3 V Voltage Window and 11000-Cycle Lifespan. Adv. Energy Mater. 2019, 9, 1901469. [Google Scholar] [CrossRef]
- Zhu, M.; Hu, J.; Lu, Q.; Dong, H.; Karnaushenko, D.D.; Becker, C.; Karnaushenko, D.; Li, Y.; Tang, H.; Qu, Z.; et al. A Patternable and In Situ Formed Polymeric Zinc Blanket for a Reversible Zinc Anode in a Skin-Mountable Microbattery. Adv. Mater. 2021, 33, 2007497. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Holoubek, J.; Wu, X.; Daniyar, A.; Zhu, L.; Chen, C.; Leonard, D.P.; Rodríguez-Pérez, I.A.; Jiang, J.-X.; Fang, C.; et al. A ZnCl2 Water-in-Salt Electrolyte for a Reversible Zn Metal Anode. Chem. Commun. 2018, 54, 14097–14099. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Cao, L.; Deng, T.; Liu, S.; Wang, C. Design of a Solid Electrolyte Interphase for Aqueous Zn Batteries. Angew. Chem. Int. Ed. 2021, 60, 13035–13041. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-M.; Kim, Y.-J.; Eom, S.-W.; Choi, N.-S.; Kim, K.-W.; Cho, S.-B. Improvement in Self-Discharge of Zn Anode by Applying Surface Modification for Zn–Air Batteries with High Energy Density. J. Power Sources 2013, 227, 177–184. [Google Scholar] [CrossRef]
- He, H.; Tong, H.; Song, X.; Song, X.; Liu, J. Highly Stable Zn Metal Anodes Enabled by Atomic Layer Deposited Al2O3 Coating for Aqueous Zinc-Ion Batteries. J. Mater. Chem. A 2020, 8, 7836–7846. [Google Scholar] [CrossRef]
- Dai, L.; Wang, T.; Jin, B.; Liu, N.; Niu, Y.; Meng, W.; Gao, Z.; Wu, X.; Wang, L.; He, Z. γ-Al2O3 Coating Layer Confining Zinc Dendrite Growth for High Stability Aqueous Rechargeable Zinc-Ion Batteries. Surf. Coat. Technol. 2021, 427, 127813. [Google Scholar] [CrossRef]
- Schmid, M.; Schadeck, U.; Willert-Porada, M. Development of Silica Based Coatings on Zinc Particles for Improved Oxidation Behavior in Battery Applications. Surf. Coat. Technol. 2017, 310, 51–58. [Google Scholar] [CrossRef]
- Schmid, M.; Willert-Porada, M. Electrochemical Behavior of Zinc Particles with Silica Based Coatings as Anode Material for Zinc Air Batteries with Improved Discharge Capacity. J. Power Sources 2017, 351, 115–122. [Google Scholar] [CrossRef]
- Zhong, X.; Zhou, M.; Xu, T.; Zhuge, X.; Luo, Z.; Luo, K.; Pan, L. Superhydrophobic SiO2 Coating Layer Enabling Stable and Reversible Zn Anode for Aqueous Zn-Ion Batteries. Appl. Surf. Sci. 2024, 654, 159406. [Google Scholar] [CrossRef]
- Zhou, M.; Guo, S.; Fang, G.; Sun, H.; Cao, X.; Zhou, J.; Pan, A.; Liang, S. Suppressing By-Product via Stratified Adsorption Effect to Assist Highly Reversible Zinc Anode in Aqueous Electrolyte. J. Energy Chem. 2021, 55, 549–556. [Google Scholar] [CrossRef]
- Li, X.; Ye, P.; Dou, A.; Jiang, Z.; Naveed, A.; Zhou, Y.; Su, M.; Zhang, P.; Liu, Y. Nanoporous Nb2O5 Coatings Enabled Long-Life and Deeply Rechargeable Zinc Anodes for Aqueous Zinc-Ion Batteries. J. Energy Storage 2024, 76, 109874. [Google Scholar] [CrossRef]
- Li, W.; Yun, H.; Dai, W.; Wang, B.; Xu, Q. Construction and Electrochemical Properties of Preferred Crystal Face (002) on Zn Anode Surface. JOM 2024, 76, 3994–4005. [Google Scholar] [CrossRef]
- So, S.; Ahn, Y.N.; Ko, J.; Kim, I.T.; Hur, J. Uniform and Oriented Zinc Deposition Induced by Artificial Nb2O5 Layer for Highly Reversible Zn Anode in Aqueous Zinc Ion Batteries. Energy Storage Mater. 2022, 52, 40–51. [Google Scholar] [CrossRef]
- Kang, L.; Cui, M.; Jiang, F.; Gao, Y.; Luo, H.; Liu, J.; Liang, W.; Zhi, C. Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long-Life Zinc Rechargeable Aqueous Batteries. Adv. Energy Mater. 2018, 8, 1801090. [Google Scholar] [CrossRef]
- Liu, M.; Hu, A.; Yan, Z.; Chen, J.; He, M.; Zhou, B.; Pan, Y.; Fan, Y.; Gao, D.; Long, J. Enhancing Zn2+ Diffusion for Dendrite-Free Zinc Anodes via a Robust Zincophilic Clay Mineral Coating. Chem. Eng. J. 2024, 479, 147410. [Google Scholar] [CrossRef]
- Deng, C.; Xie, X.; Han, J.; Tang, Y.; Gao, J.; Liu, C.; Shi, X.; Zhou, J.; Liang, S. A Sieve-Functional and Uniform-Porous Kaolin Layer toward Stable Zinc Metal Anode. Adv. Funct. Mater. 2020, 30, 2000599. [Google Scholar] [CrossRef]
- Emir, S.; Paksoy, H. New Multilayered Microencapsulated Phase Change Material with CaCO3 and Ag Shells. Energy Storage 2021, 3, e214. [Google Scholar] [CrossRef]
- Yan, H.; Li, S.; Nan, Y.; Yang, S.; Li, B. Ultrafast Zinc–Ion–Conductor Interface toward High-Rate and Stable Zinc Metal Batteries. Adv. Energy Mater. 2021, 11, 2100186. [Google Scholar] [CrossRef]
- Wang, W.; Xu, R.; Zhang, X.; Wang, P.; Yang, B.; Yang, B.; Yang, J.; Su, K.; Ma, P.; Deng, Y.; et al. A Surface Engineering Strategy for the Stabilization of Zinc Metal Anodes with Montmorillonite Layers toward Long-Life Rechargeable Aqueous Zinc Ion Batteries. J. Energy Chem. 2025, 100, 94–105. [Google Scholar] [CrossRef]
- Cui, H.; Ma, L.; Huang, Z.; Chen, Z.; Zhi, C. Organic Materials-Based Cathode for Zinc Ion Battery. SmartMat 2022, 3, 565–581. [Google Scholar] [CrossRef]
- Park, J.H.; Kwak, M.; Hwang, C.; Kang, K.; Liu, N.; Jang, J.; Grzybowski, B.A. Self-Assembling Films of Covalent Organic Frameworks Enable Long-Term, Efficient Cycling of Zinc-Ion Batteries. Adv. Mater. 2021, 33, 2101726. [Google Scholar] [CrossRef]
- Yang, J.; Wang, S.; Du, L.; Bi, S.; Zhu, J.; Liu, L.; Niu, Z. Thermal-Cyclized Polyacrylonitrile Artificial Protective Layers Toward Stable Zinc Anodes for Aqueous Zinc-Based Batteries. Adv. Funct. Mater. 2024, 34, 2314426. [Google Scholar] [CrossRef]
- Hao, J.; Li, X.; Zhang, S.; Yang, F.; Zeng, X.; Zhang, S.; Bo, G.; Wang, C.; Guo, Z. Designing Dendrite-Free Zinc Anodes for Advanced Aqueous Zinc Batteries. Adv. Funct. Mater. 2020, 30, 2001263. [Google Scholar] [CrossRef]
- Fernandes, S.P.S.; Mellah, A.; Kovář, P.; Sárria, M.P.; Pšenička, M.; Djamila, H.; Salonen, L.M.; Espiña, B. Extraction of Ibuprofen from Natural Waters Using a Covalent Organic Framework. Molecules 2020, 25, 3132. [Google Scholar] [CrossRef]
- Son, S.-B.; Gao, T.; Harvey, S.P.; Steirer, K.X.; Stokes, A.; Norman, A.; Wang, C.; Cresce, A.; Xu, K.; Ban, C. An Artificial Interphase Enables Reversible Magnesium Chemistry in Carbonate Electrolytes. Nat. Chem. 2018, 10, 532–539. [Google Scholar] [CrossRef]
- Wang, D.; Dong, H.; Zhang, H.; Zhang, Y.; Xu, Y.; Zhao, C.; Sun, Y.; Zhou, N. Enabling a High Performance of Mesoporous α-Fe2O3 Anodes by Building a Conformal Coating of Cyclized-PAN Network. ACS Appl. Mater. Interfaces 2016, 8, 19524–19532. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S.; Xu, L.; Momen, R.; Deng, W.; Hu, J.; Zou, G.; Hou, H.; Ji, X. High-Yield Carbon Dots Interlayer for Ultra-Stable Zinc Batteries. Adv. Energy Mater. 2022, 12, 2200665. [Google Scholar] [CrossRef]
- Jeon, H.G.; Heo, S.; Song, J.; Kim, C. A Near-Single-Ion Conducting Protective Layer for Dendrite-Free Zinc Metal Anodes. Adv. Energy Mater. 2025, 15, 2500155. [Google Scholar] [CrossRef]
- Zhang, H.; Qiu, T.; Yang, J.; Ma, Y.; Ding, C.; Ono, L.K.; Zeng, J.; Liu, W.; Zhao, S.; Zou, C.; et al. Tailored Glycol-Functionalized Mixed-Conductive Polythiophene Coatings Enable Stable Zinc Anodes. Energy Environ. Sci. 2025, 18, 5448–5456. [Google Scholar] [CrossRef]
- Mei, J.; Peng, X.; Zhang, Q.; Zhang, X.; Liao, T.; Mitic, V.; Sun, Z. Bamboo-Membrane Inspired Multilevel Ultrafast Interlayer Ion Transport for Superior Volumetric Energy Storage. Adv. Funct. Mater. 2021, 31, 2100299. [Google Scholar] [CrossRef]
- Zhai, S.; Song, W.; Jiang, K.; Tan, X.; Zhang, W.; Yang, Y.; Chen, W.; Chen, N.; Zeng, H.; Li, H.; et al. Mimicking Ion and Water Management in Poultry Breeding for Highly Reversible Zinc Ion Batteries. Energy Environ. Sci. 2023, 16, 5479–5489. [Google Scholar] [CrossRef]
- Huang, Z.; Yang, S.; Zhang, Y.; Zhang, Y.; Xue, R.; Ma, Y.; Wang, Z. Ultrathin Reed Membranes: Nature’s Intimate Ion-Regulation Skins Safeguarding Zinc Metal Anodes in Aqueous Batteries. Adv. Energy Mater. 2024, 14, 2400033. [Google Scholar] [CrossRef]
- Cai, X.; Wang, X.; Bie, Z.; Jiao, Z.; Li, Y.; Yan, W.; Fan, H.J.; Song, W. A Layer-by-Layer Self-Assembled Bio-Macromolecule Film for Stable Zinc Anode. Adv. Mater. 2024, 36, 2306734. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, T.; Liu, R.; Liu, Y.; Ma, J.; Ji, Q.; Li, N.; Wang, C.; Zhang, Q.; Yan, W. Boron-Fluoride Dual-atom Synergistic Regulated Interface Coating Enables Stable Zn-Metal Anodes. Angew. Chem. Int. Ed. 2025, 64, e202503376. [Google Scholar] [CrossRef]
- Lei, D.; Shang, W.; Cheng, L.; Poonam; Kaiser, W.; Banerjee, P.; Tu, S.; Henrotte, O.; Zhang, J.; Gagliardi, A.; et al. Ion-Transport Kinetics and Interface Stability Augmentation of Zinc Anodes Based on Fluorinated Covalent Organic Framework Thin Films. Adv. Energy Mater. 2024, 14, 2403030. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, R.; Peng, C.; Chen, W.; Wu, T.; Hu, B.; Weng, W.; Yao, Y.; Zeng, J.; Chen, Z.; et al. Horizontally Arranged Zinc Platelet Electrodeposits Modulated by Fluorinated Covalent Organic Framework Film for High-Rate and Durable Aqueous Zinc Ion Batteries. Nat. Commun. 2021, 12, 6606. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Wang, Z.; Lei, H.; Chen, Z.; Mai, W. Novel 3D Nanoporous Zn–Cu Alloy as Long-Life Anode toward High-Voltage Double Electrolyte Aqueous Zinc-Ion Batteries. Small 2020, 16, 2001323. [Google Scholar] [CrossRef]
- Huang, W.; Huang, Y.; Huang, X.; Shao, F.; Liu, W.; Kang, F. 3D Leaf-Like Copper–Zinc Alloy Enables Dendrite-Free Zinc Anode for Ultra-Long Life Aqueous Zinc Batteries. Small 2024, 20, 2404294. [Google Scholar] [CrossRef]
- Wang, S.-B.; Ran, Q.; Yao, R.-Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X.-Y.; Jiang, Q. Lamella-Nanostructured Eutectic Zinc–Aluminum Alloys as Reversible and Dendrite-Free Anodes for Aqueous Rechargeable Batteries. Nat. Commun. 2020, 11, 1634. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Guo, S.; Chen, M.; Lu, B.; Zhang, X.; Liang, S.; Zhou, J. Tailoring Grain Boundary Stability of Zinc-Titanium Alloy for Long-Lasting Aqueous Zinc Batteries. Nat. Commun. 2023, 14, 7080. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhang, W.; Peng, Z.; Pan, L.; Li, B.; Zhang, Z.; Zhu, J.; Meng, W.; Dai, L.; Wang, L.; et al. Zinc-Tin Binary Alloy Interphase for Zinc Metal Batteries. Chem. Eng. J. 2024, 499, 156521. [Google Scholar] [CrossRef]
- Liang, G.; Mo, F.; Yang, Q.; Huang, Z.; Li, X.; Wang, D.; Liu, Z.; Li, H.; Zhang, Q.; Zhi, C. Commencing an Acidic Battery Based on a Copper Anode with Ultrafast Proton-Regulated Kinetics and Superior Dendrite-Free Property. Adv. Mater. 2019, 31, 1905873. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Li, J.; He, Y.; Wu, M. Toward Stable and Highly Reversible Zinc Anodes for Aqueous Batteries via Electrolyte Engineering. J. Energy Chem. 2023, 83, 209–228. [Google Scholar] [CrossRef]
- Wang, F.; Borodin, O.; Gao, T.; Fan, X.; Sun, W.; Han, F.; Faraone, A.; Dura, J.A.; Xu, K.; Wang, C. Highly Reversible Zinc Metal Anode for Aqueous Batteries. Nat. Mater. 2018, 17, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, K.; Zhou, M.; Zhan, H.; Cheng, S.; Jiang, K. Advanced Low-Cost, High-Voltage, Long-Life Aqueous Hybrid Sodium/Zinc Batteries Enabled by a Dendrite-Free Zinc Anode and Concentrated Electrolyte. ACS Appl. Mater. Interfaces 2018, 10, 22059–22066. [Google Scholar] [CrossRef]
- Chen, S.; Lan, R.; Humphreys, J.; Tao, S. Salt-Concentrated Acetate Electrolytes for a High Voltage Aqueous Zn/MnO2 Battery. Energy Storage Mater. 2020, 28, 205–215. [Google Scholar] [CrossRef]
- Fenta, F.W.; Bouchal, R. Unraveling the Significance of the Zinc Ratio in Water-in-Salt Electrolytes. J. Mater. Chem. A 2024, 12, 25035–25046. [Google Scholar] [CrossRef]
- Cai, S.; Chu, X.; Liu, C.; Lai, H.; Chen, H.; Jiang, Y.; Guo, F.; Xu, Z.; Wang, C.; Gao, C. Water–Salt Oligomers Enable Supersoluble Electrolytes for High-Performance Aqueous Batteries. Adv. Mater. 2021, 33, 2007470. [Google Scholar] [CrossRef]
- Qian, L.; Zhu, H.; Qin, T.; Yao, R.; Zhao, J.; Kang, F.; Yang, C. Ultralow-Salt-Concentration Electrolyte for High-Voltage Aqueous Zn Metal Batteries. Adv. Funct. Mater. 2023, 33, 2301118. [Google Scholar] [CrossRef]
- Deng, R.; Chen, J.; Chu, F.; Qian, M.; He, Z.; Robertson, A.W.; Maier, J.; Wu, F. “Soggy-Sand” Chemistry for High-Voltage Aqueous Zinc-Ion Batteries. Adv. Mater. 2024, 36, 2311153. [Google Scholar] [CrossRef]
- Li, Y.; Wu, P.; Zhong, W.; Xie, C.; Xie, Y.; Zhang, Q.; Sun, D.; Tang, Y.; Wang, H. A Progressive Nucleation Mechanism Enables Stable Zinc Stripping–Plating Behavior. Energy Environ. Sci. 2021, 14, 5563–5571. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, W.; Wang, L.; Zhang, Y.; Li, S.; Li, X.; Zhao, Z.; Zhang, T.; Jin, H.; Song, X.; et al. Benchmarking Corrosion with Anionic Polarity Index for Stable and Fast Aqueous Batteries Even in Low-Concentration Electrolyte. Adv. Mater. 2025, 37, 2501049. [Google Scholar] [CrossRef]
- Zhu, Y.; Ge, M.; Ma, F.; Wang, Q.; Huang, P.; Lai, C. Multifunctional Electrolyte Additives for Better Metal Batteries. Adv. Funct. Mater. 2024, 34, 2301964. [Google Scholar] [CrossRef]
- Deng, R.; Menon, A.S.; Walker, M.; Piper, L.F.J.; Robertson, A.W.; Wu, F. Bifunctional Oxide Additive Enabling High-Voltage Aqueous Zn/LiCoO2 Hybrid Batteries. Adv. Funct. Mater. 2025, 35, 2424954. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, B.; Zhou, W.; Li, H.; Dong, H.; Jin, H.; Yang, Z.; Li, W.; Zhao, Z.; Zhao, D.; et al. Cation-in-Mesopore Complex for 20 Ah-Level Aqueous Battery. Angew. Chem. Int. Ed. 2025, 64, e202501010. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhu, J.; Yang, M.; Niu, Z. Simultaneous Manipulation of Anions and Water Molecules by Lewis Acid–Base for Highly Stable Zn Anodes. Angew. Chem. Int. Ed. 2025, 64, e202501327. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.; Zhang, L.; Dai, X.; Wang, X.; Niu, Z.; Chen, J. Aqueous Rechargeable Zinc/Sodium Vanadate Batteries with Enhanced Performance from Simultaneous Insertion of Dual Carriers. Nat. Commun. 2018, 9, 1656. [Google Scholar] [CrossRef]
- Chamoun, M.; Brant, W.R.; Tai, C.W.; Karlsson, G.; Noréus, D. Rechargeability of Aqueous Sulfate Zn/MnO2 Batteries Enhanced by Accessible Mn2+ Ions. Energy Storage Mater. 2018, 15, 351–360. [Google Scholar] [CrossRef]
- Liu, S.; Shang, W.; Yang, Y.; Kang, D.; Li, C.; Sun, B.; Kang, L.; Yun, S.; Jiang, F. Effects of I3− Electrolyte Additive on the Electrochemical Performance of Zn Anodes and Zn/MnO2 Batteries. Batter. Supercaps 2022, 5, e202100221. [Google Scholar] [CrossRef]
- Wang, S.; Li, T.; Yin, Y.; Chang, N.; Zhang, H.; Li, X. High-Energy-Density Aqueous Zinc-Based Hybrid Supercapacitor-Battery with Uniform Zinc Deposition Achieved by Multifunctional Decoupled Additive. Nano Energy 2022, 96, 107120. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, F.; Zhao, Y.; Wang, H.; Huang, Y.; Wu, F.; Chen, R.; Li, L. A Self-Regulated Electrostatic Shielding Layer toward Dendrite-Free Zn Batteries. Adv. Mater. 2022, 34, 2203104. [Google Scholar] [CrossRef]
- Ren, B.; Zhang, X.; Wei, H.; Jiang, J.; Chen, G.; Li, H.; Liu, Z. Suppressing Zinc Metal Corrosion by an Effective and Durable Corrosion Inhibitor for Stable Aqueous Zinc Batteries. Adv. Funct. Mater. 2025, 35, 2418594. [Google Scholar] [CrossRef]
- Zhang, J.; Li, P.; Wang, Y.; Zhao, Z.; Peng, Z. Linking Interfacial Hydrogen-Bond Network to Electrochemical Performance of Zinc Anode in Aqueous Solution. Adv. Funct. Mater. 2023, 33, 2305804. [Google Scholar] [CrossRef]
- Peng, Z.; Li, S.; Tang, L.; Zheng, J.; Tan, L.; Chen, Y. Water-Shielding Electric Double Layer and Stable Interphase Engineering for Durable Aqueous Zinc-Ion Batteries. Nat. Commun. 2025, 16, 4490. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, R.; Gao, Y.; Zhang, S.; Wan, J.; Mao, J.; Zhang, L.; Li, H.; Hao, J.; Li, G.; et al. Low-Cost Multi-Function Electrolyte Additive Enabling Highly Stable Interfacial Chemical Environment for Highly Reversible Aqueous Zinc Ion Batteries. Adv. Funct. Mater. 2023, 33, 2308463. [Google Scholar] [CrossRef]
- Feng, D.; Cao, F.; Hou, L.; Li, T.; Jiao, Y.; Wu, P. Immunizing Aqueous Zn Batteries against Dendrite Formation and Side Reactions at Various Temperatures via Electrolyte Additives. Small 2021, 17, 2103195. [Google Scholar] [CrossRef]
- Meng, C.; He, W.; Jiang, L.; Huang, Y.; Zhang, J.; Liu, H.; Wang, J. Ultra-Stable Aqueous Zinc Batteries Enabled by β-Cyclodextrin: Preferred Zinc Deposition and Suppressed Parasitic Reactions. Adv. Funct. Mater. 2022, 32, 2207732. [Google Scholar] [CrossRef]
- Wang, H.; Wang, K.; Liang, B.; Wei, M.; Xiong, J.; Zhong, D.; Pei, P. Solvation Modification and Interfacial Chemistry Regulation Via Amphoteric Amino Acids for Long-Cycle Zinc Batteries. Adv. Energy Mater. 2024, 14, 2402123. [Google Scholar] [CrossRef]
- Geng, Y.; Han, Y.; Zhang, T.; Zhang, L.; Xin, W.; Peng, H.; Yan, Z.; Zhu, Z. Resolving the Zincophilicity-Desolvation Dilemma of Electrolyte Additives via Molecular Engineering for Achieving High-Rate Zinc Anodes with Minimized Polarization. Adv. Funct. Mater. 2025, 35, 2501537. [Google Scholar] [CrossRef]
- Hao, J.; Yuan, L.; Ye, C.; Chao, D.; Davey, K.; Guo, Z.; Qiao, S. Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents. Angew. Chem. Int. Ed. 2021, 60, 7366–7375. [Google Scholar] [CrossRef]
- Qiao, H.; Xie, Z.; Zhu, X.; Wang, Y.; Ye, M.; Shen, J. Molecular Structure Regulation Elicits Steric Hindrance of Ketone Additives with High Adsorbability for Oriented Deposition of Zn Anode. Small 2025, 21, 2502564. [Google Scholar] [CrossRef]
- Tan, H.; Lu, K.; Yuan, G.; Wang, X.; Huang, Y.; Wang, P.; Ye, J.; Zhou, W.; Huang, L.; Chao, D. Polydentate Ligand Stabilizes Electrolyte and Interface Layer for Anti-Corrosion and Selective-Deposited Zn Metal Aqueous Batteries. Adv. Funct. Mater. 2025, 35, 2423945. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, Z.; Zhuang, Q.; Kim, J.-K.; Kang, F.; Zhang, B. Anti-Fatigue Hydrogel Electrolyte for All-Flexible Zn-Ion Batteries. Adv. Mater. 2023, 35, 2300498. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, W.; Yin, H.; Guo, F.; Mi, H.; Liang, Y.; Qiu, J. Gradient Solid Electrolyte Interphase Exerted by Robust Hydrogel Electrolyte-Zn Interface and Alkaloid Additive Enables Reversible and Durable Zn Anodes. Chem. Eng. J. 2024, 497, 154787. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Y.; Liu, B.; Li, Z.; Zhang, J.; Yang, G.; Hiralal, P.; Jin, S.; Zhou, H. Flexible and Anti-Freezing Zinc-Ion Batteries Using a Guar-Gum/Sodium-Alginate/Ethylene-Glycol Hydrogel Electrolyte. Energy Storage Mater. 2021, 41, 599–605. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, C.; Zeng, L.; Lin, H.; He, L.; Xiao, F.; Luo, L.; Xiong, P.; Yang, X.; Chen, Q.; et al. A Hydrogel Electrolyte with High Adaptability over a Wide Temperature Range and Mechanical Stress for Long-Life Flexible Zinc-Ion Batteries. Small 2024, 20, 2312116. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jia, Y.; Li, C.; Cui, H.; Zhang, R.; Hong, H.; Li, Q.; Wang, D.; Zhi, C. Progress in Developing Polymer Electrolytes for Advanced Zn Batteries. Small Methods 2025, 9, 2500031. [Google Scholar] [CrossRef]
- Mo, F.; Ruan, J.; Sun, S.; Lian, Z.; Yang, S.; Yue, X.; Song, Y.; Zhou, Y.-N.; Fang, F.; Sun, G.; et al. Inside or Outside: Origin of Lithium Dendrite Formation of All Solid-State Electrolytes. Adv. Energy Mater. 2019, 9, 1902123. [Google Scholar] [CrossRef]
- Lv, Y.; Xiao, Y.; Ma, L.; Zhi, C.; Chen, S. Recent Advances in Electrolytes for “Beyond Aqueous” Zinc-Ion Batteries. Adv. Mater. 2022, 34, 2106409. [Google Scholar] [CrossRef]
- Nancy, A.C.; Suthanthiraraj, S.A. Preparation and Characterization of a New PEO-PPG Blend Polymer Electrolyte System. Ionics 2016, 22, 2399–2408. [Google Scholar] [CrossRef]
- Wang, D.; Guo, X.; Chen, Z.; Zhao, Y.; Li, Q.; Zhi, C. Ionic Liquid-Softened Polymer Electrolyte for Anti-Drying Flexible Zinc Ion Batteries. ACS Appl. Mater. Interfaces 2022, 14, 27287–27293. [Google Scholar] [CrossRef]
- Hansen, E.J.; Wu, Z.; Olfatbakhsh, T.; Milani, A.; Liu, J. The Role of Glass Fiber Separators on the Cycling of Zinc Metal Anodes. J. Membr. Sci. 2023, 688, 122130. [Google Scholar] [CrossRef]
- Wang, T.; Xiao, Y.; Xiang, W.; Tang, S.; Yu, J.S. Stable Zinc Electrode/Separator Interface Enabled by Phthalocyanine-Modified Separator for Advanced Zinc Metal Batteries. Small 2022, 14, 2503907. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Lu, H.; Hu, Z.; Liu, L.; Tang, Z.; Han, C.; Li, W. Multifunctional Separator Design for Regulating Zn2+ Ion Flux and Zn Stripping in Anode-Less Zn Metal Batteries. Nano Lett. 2025, 25, 11961–11969. [Google Scholar] [CrossRef]
- Yang, X.; Wu, W.; Liu, Y.; Lin, Z.; Sun, X. Chitosan Modified Filter Paper Separators with Specific Ion Adsorption to Inhibit Side Reactions and Induce Uniform Zn Deposition for Aqueous Zn Batteries. Chem. Eng. J. 2022, 450, 137902. [Google Scholar] [CrossRef]
- Ilyas, F.; Li, W.; Iqbal, A.; Kong, W.; Zhao, L.; Han, X.; Zhu, H.; Wen, Z. Highly Reversible Zinc Anode Enabled by Composite Tailored Polyimide Separator. Nano Energy 2024, 128, 109807. [Google Scholar] [CrossRef]
- Wang, L.; Wang, F.; Ding, Z.; Liu, Y.; Zhang, Z.; Yang, C.; Loh, K.P.; Yang, Q.-H. Bilayer Separator Enabling Dendrite-Free Zinc Anode with Ultralong Lifespan > 5000 h. Green Energy Environ. 2024, 9, 771–776. [Google Scholar] [CrossRef]
- Fang, Y.; Xie, X.; Zhang, B.; Chai, Y.; Lu, B.; Liu, M.; Zhou, J.; Liang, S. Regulating Zinc Deposition Behaviors by the Conditioner of PAN Separator for Zinc-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2109671. [Google Scholar] [CrossRef]
- Wu, G.; Zhu, R.; Yang, W.; Yang, Y.; Okagaki, J.; Lu, Z.; Sun, J.; Yang, H.; Yoo, E. Extension of Aqueous Zinc Battery Life Using a Robust and Hydrophilic Polymer Separator. Adv. Funct. Mater. 2024, 34, 2316619. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, Y.-J.; Yu, H.-P.; Wang, Z.-Y.; Cheng, L.; Li, D.-D.; Tao, J.; He, G.; Li, H. A Five Micron Thick Aramid Nanofiber Separator Enables Highly Reversible Zn Anode for Energy-Dense Aqueous Zinc-Ion Batteries. Adv. Energy Mater. 2024, 14, 2401858. [Google Scholar] [CrossRef]
- Xu, J.; Yang, Y.; Dai, Q.; Zheng, Z.; Cao, Y.; Cheng, Y.; Peng, B.; Ma, L.; Wang, Y. Towards Ultra-Stable Wide-Temperature Zinc-Ion Batteries by Using Ion-Sieving Organic Framework Membrane. Angew. Chem. Int. Ed. 2025, 64, e202423118. [Google Scholar] [CrossRef]
- Ma, H.; Chen, H.; Chen, M.; Li, A.; Han, X.; Ma, D.; Zhang, P.; Chen, J. Biomimetic and Biodegradable Separator with High Modulus and Large Ionic Conductivity Enables Dendrite-Free Zinc-Ion Batteries. Nat. Commun. 2025, 16, 1014. [Google Scholar] [CrossRef] [PubMed]
- Ganti, S.V.S.; Wölfel, L.; Kuenneth, C. AI-Driven Discovery of High Performance Polymer Electrodes for Next-Generation Batteries. J. Polym. Sci. 2025. [Google Scholar] [CrossRef]
- Raza, Y.; Raza, H.; Ahmed, A.; Quazi, M.M.; Jamshaid, M.; Anwar, M.T.; Bashir, M.N.; Younas, T.; Jafry, A.T.; Soudagar, M.E.M. Integration of Response Surface Methodology (RSM), Machine Learning (ML), and Artificial Intelligence (AI) for Enhancing Properties of Polymeric Nanocomposites-A Review. Polym. Compos. 2025. [Google Scholar] [CrossRef]
Modification Strategy | Electrode | Electrolyte | Current Density/Areal Capacity (mA cm−2/mAh cm−2) | Cycle Life | CE (%) | Ref. |
---|---|---|---|---|---|---|
3.1.1. Oxides Coatings | 100Al2O3@Zn | 3 M Zn(SO3CF3)2 | 1.0/1.0 | 500 h | ≈100 | [43] |
SiO2-Zn | 2 M ZnSO4 | 0.1/0.1 | 1600 h | 99.8 | [47] | |
4.0/2.0 | 1200 h | |||||
Sc2O3-coated Zn | 2 M ZnSO4 + 0.1 M MnSO4 | 2.0/2.0 | 240 h | 99.85 | [48] | |
Nb2O5@Zn | 2 M ZnSO4 | 10.0/2.5 | 490 h | 97 | [49] | |
20.0/5.0 | 120 h | |||||
Nb2O5@Zn | 2 M ZnSO4 | 1.0/0.5 | 1000 h | 98.43 | [51] | |
3.1.2. Natural Minerals Coatings | Nano-CaCO3-coated Zn | 3 M ZnSO4 + 0.1 M MnSO4 | 0.25/0.05 | 836 h | 84.7 | [52] |
MMT-Zn | 2 M ZnSO4 | 1.0/0.25 | 1000 cycles | 96.3 | [56] | |
10.0/45.0 | 1000 h | |||||
MMT@Zn | 2 M ZnSO4 | 0.5/0.125 | 5600 h | ≈100 | [57] | |
5.0/1.25 | 1800 h | |||||
UMMT@Zn | 2 M ZnSO4 | 1.0/0.5 | 2000 h | 99.7 | [53] | |
6.0/3.0 | 1300 h | |||||
KL-Zn | 2 M ZnSO4 + 0.1 M MnSO4 | 4.4/1.1 | 800 h | ≈100 | [54] | |
3.2.1. Synthetic Organic Coatings | COF@Zn | 2 M ZnSO4 | 1.0/1.0 | 420 h | 99.9 | [59] |
cPANZ-Zn | 2 M ZnSO4 | 0.5/- | 600 h | ≈100 | [60] | |
PVB@Zn | 1 M ZnSO4 | 0.5/0.5 | 2200 h | 99.4 | [61] | |
Zn@CDs | 2 M ZnSO4 | 1.0/1.0 | 3000 h | 99.6 | [65] | |
4.0/1.0 | 850 h | |||||
Zn@NSIC | 2 M ZnSO4 | 10.0/5.0 | 1000 h | 99.9 | [66] | |
20.0/1.0 | 3000 h | |||||
Zn@pgBTTT | 2 M ZnSO4 | 2.0/1.0 | 1700 h | 99.75 | [67] | |
5.0/1.0 | 500 h | |||||
3.2.2. Natural Organic Coatings | Reed interlayer-coated Zn | 2 M ZnSO4 | 3.0/1.5 | 1450 h | 99.77 | [70] |
5.0/5.0 | 260 h | |||||
(CS/SA)4-Zn | 2 M ZnSO4 | 1.0/1.0 | 6500 h | ≈100 | [71] | |
5.0/2.5 | 1750 h | |||||
3.2.3. Organic Coatings with Halogens | ZnBOF/Zn | 2 M ZnSO4 + 0.05 M ZnF2 | 2.0/1.0 | 5000 h | 99.6 | [72] |
10.0/1.0 | 2500 h | |||||
TpBD-2F@Zn | 2 M ZnSO4 | 2.0/2.0 | 1200 h | 99.5 | [73] | |
FCOF@Zn | 2 M ZnSO4 | 5.0./1.0 | 1700 h | 98.4 | [74] | |
40.0/1.0 | 700 h | |||||
3.3. Alloying Anodes | 3D NP Zn-Cu | 2 M KOH + 0.02 M Zn(CH3COO)2 | 2.0/- | 300 h | ≈100 | [75] |
3D leaf-like Cu@Zn | 2 M ZnSO4 | 0.5/0.5 | 1300 h | 81.6 | [76] | |
Zn88Al12 | 2 M ZnSO4 | 0.5/ | 2000 h | ≈100 | [77] | |
Zn-Ti | 3 M ZnSO4 | 2.0/2.0 | 1100 h | 99.85 | [78] | |
ZnSn | 2 M ZnSO4 | 0.5/0.25 | 1000 h | ≈100 | [79] |
Modification Strategy | Electrolyte | Additives | Current Density/Areal Capacity (mA cm−2/mAh cm−2) | Cycle Life | CE (%) | Ref. |
---|---|---|---|---|---|---|
4.2.1. Inorganic Additives | 1 M Zn(OAc)2 + 4 M LiOAc + NH3·H2O | Al2O3 nanoparticle | 1.0/0.5 | 1000 h | 99.2 | [92] |
2.0/1.0 | 500 h | |||||
2 M ZnSO4 | Single-mesopore hollow SiO2 (smSiO2) | 2.0/2.0 | 2000 h | 99.93 | [93] | |
4.0/2.0 | 1600 h | |||||
20.0/1.0 | 1200 h | |||||
10.0/5.5 | 300 h | |||||
2 M ZnSO4 | Fumed silica (FS) | 1.0/1.0 | 3000 h | 99.58 | [94] | |
2 M ZnSO4 | Al2O3 nanoparticle and SiO2 | 1.0/0.5 | 2500 h | 99.52 | [88] | |
1.0/5.0 | 1100 h | |||||
10.0/5.0 | 1000 h | |||||
2 M ZnSO4 | 1.75/0.585 | 1430 h | 98.83 | [97] | ||
2 M ZnSO4 | Br− | 5.0/1.0 | 150 h | 99.96 | [98] | |
1 M ZnSO4 | Ce2(SO4)3 | 5.0/1.0 | 700 h | ≈100 | [89] | |
2 M ZnSO4 | CeCl3 | 2.0/1.0 | 2600 h | 99.8 | [99] | |
40.0/10.0 | 170 h | |||||
4.2.2. Organic Additives | 1 M ZnSO4 | Fucoidan (FCD) | 1.0/1.0 | 2700 h | 99.5 | [100] |
10.0/10.0 | 400 h | |||||
2 M ZnSO4 | (Aminomethyl)phosphonic acid (AMPA) | 5.0/2.5 | 900 h | 99.8 | [101] | |
1 M Zn(OTf)2 | Polysorbate (PS) | 1.0/1.0 | 8060 h | 99.2 | [102] | |
5.0/5.0 | 4554 h | |||||
10.0/10.0 | 1930 h | |||||
1 M ZnSO4 | Cetyltrimethyl ammonium bromide (CTAB) | 1.0/0.5 | 2500 h | 99.7 | [103] | |
2.0/1.0 | 2000 h | |||||
4.0/4.0 | 400 h | |||||
2 M ZnSO4 | Dimethyl sulfoxide (DMSO) | 1.0/1.0 (20 °C) | 2100 h | 99.73 | [104] | |
0.5/1.0 (−20 °C) | 1200 h | |||||
2 M ZnSO4 | β-cyclodextrin (β-CD) | 4.0/2.0 | 1700 h | 99.56 | [105] | |
20.0/20.0 | 120 h | |||||
40.0/20.0 | 77 h | |||||
6 M KOH + 0.2 M Zn(OAc)2 | Glycine | 5.0/- | 174 h | - | [106] | |
Valine | 5.0/- | 204 h | ||||
2 M ZnSO4 | N,N-di-(2-picolyl)ethylenediamine (NDPA) | 2.0/2.0 | 2000 h | 99.61 | [107] | |
20.0/20.0 | 550 h | |||||
60.0/1.0 | 300 h | |||||
2 M ZnSO4 | Methanol | - | - | 99.7 | [108] | |
2 M ZnSO4 | Butane-2,3-dione (BD) | 1.0/1.0 | 2827 h | 99.7 | [109] | |
5.0/2.5 | 1276 h | |||||
50.0/50.0 | 423 h | |||||
2 M ZnSO4 | β-Alanyl-L-histidine (AH) | 1.0/1.0 | 6000 h | 99.28 | [110] | |
10.0/1.0 | 2000 h | |||||
4.3. Hydrogel Electrolytes | Zn(ClO4)2-PAM/CS hydrogel electrolyte (C-PAMCS) | - | 5.0/5.0 | 2700 h | 99.9 | [111] |
10.0/10.0 | 1500 h | |||||
Betaine-containing gelatin/PAM/Zn(BF4)2 (gel-BT) | - | 2.0/0.5 | 2400 h | 98.2 | [112] | |
5.0/10.0 | 450 h | |||||
GG/SA/EG/ZnSO4/MnSO4 hydrogel electrolyte | - | 0.2/- (0 °C) | 200 h | ≈100 | [113] | |
0.2/- (−20 °C) | 200 h | |||||
PAM/ZnSO4/N,N-dimethylformamide (PZD) | - | 1.0/1.0 | 1600 h | ≈100 | [114] | |
0.5/0.5 | 5600 h | |||||
4.4. All-Solid-State Electrolytes | PEO/1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([Emim]OTF)/Zn(OTF)2 | ZnO | 0.1/0.1 | 1800 h | ≈95 | [119] |
Modification Strategy | Electrolyte | Separator | Current Density/Areal Capacity (mA cm−2/mAh cm−2) | Cycle Life | CE (%) | Ref. |
---|---|---|---|---|---|---|
5.1. Modification of Conventional Separators | 2 M ZnSO4 | Phthalocyanine-modified glass fiber (Pc-GF) | 2.0/2.0 | 700 h | ≈100 | [121] |
5.0/5.0 | 160 h | |||||
20.0/1.0 | 500 h | |||||
2 M ZnSO4 | Hydrated titanic acid-modified GF (HTO@GF) | 1.0/1.0 | 1400 h | 99.78 | [122] | |
2.95/2.95 | 300 h | |||||
1 M ZnSO4 | Chitosan-coated filter paper (CS-filter paper) | 0.5/0.5 | 2900 h | 99.6 | [123] | |
5.0/1.0 | 450 h | |||||
0.5 M Zn(CF3SO3)2 in TMP (Trimethyl phosphate) | Tailored polyimide-coated GF (PI@GF) | 1.0/1.0 | 6000 h | 99.7 | [124] | |
2.0/1.0 | 3000 h | |||||
6.0/1.0 | 1200 h | |||||
2 M ZnSO4 | Butter paper and GF membrane (GF/BP) | 0.5/0.5 | 5000 h | 99.0 | [125] | |
2.0/2.0 | 1600 h | |||||
5.2. Construction of Novel Separators | 2 M ZnSO4 | Polyacrylonitrile (PAN) nanofiber film | 0.283/- | 800 h | 99.3 | [126] |
2 M ZnSO4 | Polytetrafluoroethylene (PTFE) membrane | 0.5/0.25 | 3000 h | 99.5 | [127] | |
1.0/1.0 | 1300 h | |||||
10.0/1.0 | 900 h | |||||
2 M ZnSO4 | Quasi-single-ion conducting COF-based separator (COF-Zn) | 1.0/1.0 | 350 h | 98.3 | [129] | |
0.2/0.2 | 2900 h | |||||
2 M ZnSO4 | Anisotropic separator (V-NFC-CS) | 5.0/25.0 | 300 h | 99.0 | [130] | |
10.0/2.0 | 1000 h | |||||
3 M Zn(CF3SO3)2 + 0.1 M MnSO4 | Ultrathin (5 µm) aramid nanofiber (ANF) | 2.0/1.0 | 1470 h | 99.22 | [128] | |
5.0/2.5 | 850 h | |||||
10.0/5.0 | 375 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, X.; Wang, W.; Liang, Z.; Wang, D.; Deng, J.; Zhu, Y.; Zhou, H.; Yu, J.; Yang, G. Designing Highly Reversible and Stable Zn Anodes for Next-Generation Aqueous Batteries. Batteries 2025, 11, 331. https://doi.org/10.3390/batteries11090331
Yue X, Wang W, Liang Z, Wang D, Deng J, Zhu Y, Zhou H, Yu J, Yang G. Designing Highly Reversible and Stable Zn Anodes for Next-Generation Aqueous Batteries. Batteries. 2025; 11(9):331. https://doi.org/10.3390/batteries11090331
Chicago/Turabian StyleYue, Xinzu, Weibao Wang, Zhongqi Liang, Dongping Wang, Jie Deng, Yachao Zhu, Hang Zhou, Jun Yu, and Guoshen Yang. 2025. "Designing Highly Reversible and Stable Zn Anodes for Next-Generation Aqueous Batteries" Batteries 11, no. 9: 331. https://doi.org/10.3390/batteries11090331
APA StyleYue, X., Wang, W., Liang, Z., Wang, D., Deng, J., Zhu, Y., Zhou, H., Yu, J., & Yang, G. (2025). Designing Highly Reversible and Stable Zn Anodes for Next-Generation Aqueous Batteries. Batteries, 11(9), 331. https://doi.org/10.3390/batteries11090331