Recent Advances in Dendrite Suppression Strategies for Solid-State Lithium Batteries: From Interface Engineering to Material Innovations
Abstract
1. Introduction
2. Understanding Lithium Dendrites in Solid-State Lithium Batteries (SSLBs)
2.1. Mechanism of Dendrite Formation
2.2. Impact on Battery Performance and Safety
3. Dendrite Suppression Strategies
3.1. Material Innovations
3.1.1. Sulfide-Based Electrolytes
3.1.2. Oxide-Based Electrolytes
3.1.3. Polymer-Based Electrolytes
3.2. Interface Engineering Techniques
3.2.1. Surface Coatings
3.2.2. Artificial Interlayers
- (i).
- Lithiophilic materials serve to reduce the energy barrier for lithium nucleation and guide uniform lithium deposition. Metals such as silver (Ag), zinc (Zn), and tin (Sn), or their alloys, are widely employed due to their favorable interactions with lithium. For example, Zhang et al. reported a layer-by-layer lithiophilic–electron-blocking interfacial design consisting of Sn, LiF, and Li2CO3, which effectively guided lithium nucleation while suppressing electron leakage and parasitic reactions, enabling long-term cycling in Li/SSE cells even at elevated temperatures [58]. Pang et al. explored an alternative strategy by introducing silver nanoparticles at the interface between Li6PS5Cl and metallic lithium, enabling a detailed study of interfacial behavior [59]. The Ag nanoparticles promote the suppression of lithium dendrites via the formation of Li–Ag alloy phases [59].
- (ii).
- Ion Conductivity: Effective interlayers must also facilitate fast and homogeneous lithium-ion transport. To this end, ion-conductive ceramics (e.g., Li3N, Li1.5Al0.5Ge1.5 (PO4)3, or Li7La3Zr2O12 nanoparticles) and solid polymer electrolytes (e.g., PEO-LiTFSI, Li-rich SEI layers) have been employed as interlayers. For instance, Wan et al. developed a composite interlayer composed of a Li3N–polymer hybrid that exhibited high ionic conductivity (~10−3 S·cm−1) and formed a stable Li3N-based SEI during cycling, significantly enhancing Li/SSE interfacial compatibility [60]. Similarly, Hoang et al. developed a low-cost method to spontaneously form protective polymer layers on lithium metal using acrylonitrile, extending the anode’s lifetime sixfold under high current cycling [61]. The treated Li anodes showed improved interfacial stability and reduced overpotential when paired with LGPS solid-state electrolytes [61].
- (iii).
- Mechanical Compliance: Flexible interlayers can accommodate volume changes during cycling, maintaining intimate contact between the anode and SSE. In situ construction of a flexible interlayer has been reported to enhance the durability of solid-state lithium metal batteries [62].
- (iv).
- Multifunctional Composite Interlayers: The most effective interlayers often combine multiple features. A representative example is the dual-component LiSn–Li3N interlayer reported by Ren et al., which forms in situ at the Li/SSE interface [63]. The LiSn alloy promotes uniform lithium deposition via its high lithium diffusivity, while the Li3N component contributes both ionic conductivity and mechanical reinforcement. This multifunctional interface not only blocked dendrite propagation but also reduced interfacial resistance and enhanced battery stability over extended cycles [63,64]. Another example is the use of a TiO2–polyimide nanofiber interfacial layer, which provides ionic pathways, mechanical flexibility, and lithiophilicity simultaneously, reducing the onset voltage of lithium nucleation and eliminating voids that lead to dendrite growth [65].
3.2.3. Electrolyte–Electrode Modifications
- (i).
- Electron-Blocking Interlayers
- Introducing interlayers that are ionically conductive but electronically insulating can prevent electron leakage, which is a precursor to dendrite formation. For example, a study demonstrated that a lithiophilic and electron-blocking multilayer interlayer substantially enhanced the performance of lithium metal batteries by suppressing dendrite growth and improving interfacial stability [58]. In another recent work, Li3N-based interlayers deposited between Li and garnet SSEs acted as fast-ion conductors while blocking electron tunneling, resulting in lower interfacial impedance and extended cycling life [63].
- (ii).
- Mechanical Reinforcement
- Enhancing the mechanical strength of the SSE or incorporating reinforcing agents can resist dendrite penetration. Materials with higher mechanical moduli can better withstand the stresses induced during lithium plating and stripping, thereby suppressing dendrite propagation. For instance, the use of amorphous Li-La-Zr-O coatings has been shown to act as effective dendrite-blocking layers due to their grain-boundary-free microstructure and high electronic insulation [70].
- (iii).
- Uniform Current Distribution
- Ensuring a uniform current distribution across the electrode surface can minimize hotspots that lead to dendrite initiation. Strategies such as designing electrodes with uniform pore sizes and incorporating materials that facilitate homogeneous lithium-ion flux can contribute to uniform current distribution. For example, Zhang et al. demonstrated that a gradient Li3BO3 gradient coating effectively distributed the current density and suppressed dendritic protrusions by creating a favorable lithium-ion conduction gradient and increasing the cell capacity [71]. In another study, the construction of a three-dimensional continuous Li+-conducting and electron-blocking grain boundary network based on Li1.3Al0.3Ti1.7 (PO4)3 enhanced ion transport while preventing electronic shorting, leading to stable cycling at high current densities [72].
3.3. Mechanical Design Approaches for Dendrite Suppression
3.3.1. Nanomaterials and Composite Structures for Reinforcement and Ion Transport
3.3.2. Self-Healing Materials and Adaptive Interfaces
3.3.3. Gradient and Multilayer Electrolytes
3.3.4. 3D-Structured Anodes and Current Collectors
3.4. Advanced Characterization Techniques
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFM | Atomic Force Microscopy |
ALD | Atomic Layer Deposition |
ASSLBs | All-Solid-State Lithium Batteries |
DFT | Density Functional Theory |
EIS | Electrochemical Impedance Spectroscopy |
ETEM | Environmental Transmission Electron Microscopy |
FEC | Fluoroethylene Carbonate |
GCSE | Gradient Composite Solid Electrolyte |
GO | Graphene Oxide |
LLZO | Li7La3Zr2O12 |
LATP | Li–Al–Ti–P oxide |
LFP | LiFePO4 |
LiTFSI | Lithium bis(trifluoromethanesulfonyl)imide |
LLZTO | Li6.4La3Zr1.4Ta0.6O12 |
LIBs | Lithium-Ion Batteries |
LiPON | Lithium Phosphorus Oxynitride |
MRI | Magnetic Resonance Imaging |
MPa | Megapascal |
MoS2 | Molybdenum Disulfide |
NCM811 | LiNi0.8Co0.1Mn0.1O2 |
NMR | Nuclear Magnetic Resonance |
PEO | Polyethylene Oxide |
PSE | Polymer-Based Solid Electrolytes |
PVDF-TrFE | Poly(vinylidene fluoride-co-trifluoroethylene) |
rGO | Reduced Graphene Oxide |
SEI | Solid Electrolyte Interphase |
SEM | Scanning Electron Microscopy |
SHE | Standard Hydrogen Electrode |
SSE | Solid-State Electrolyte |
SSLBs | Solid-State Lithium Batteries |
TEM | Transmission Electron Microscopy |
ToF-SIMS | Time-of-Flight Secondary Ion Mass Spectrometry |
XPS | X-ray Photoelectron Spectroscopy |
References
- Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and Challenges in Enabling the Lithium Metal Electrode for High-Energy and Low-Cost Rechargeable Batteries. Nat. Energy 2017, 3, 16–21. [Google Scholar] [CrossRef]
- Janek, J.; Zeier, W.G. A Solid Future for Battery Development. Nat. Energy 2016, 1, 16141. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Singh, P. Review—Solid Electrolytes in Rechargeable Electrochemical Cells. J. Electrochem. Soc. 2015, 162, A2387–A2392. [Google Scholar] [CrossRef]
- Famprikis, T.; Canepa, P.; Dawson, J.A.; Islam, M.S.; Masquelier, C. Fundamentals of Inorganic Solid-State Electrolytes for Batteries. Nat. Mater. 2019, 18, 1278–1291. [Google Scholar] [CrossRef] [PubMed]
- Kerman, K.; Luntz, A.; Viswanathan, V.; Chiang, Y.-M.; Chen, Z. Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries. J. Electrochem. Soc. 2017, 164, A1731–A1744. [Google Scholar] [CrossRef]
- Nzereogu, P.U.; Oyesanya, A.; Ogba, S.N.; Ayanwunmi, S.O.; Sobajo, M.S.; Chimsunum, V.C.; Ayanwunmi, V.O.; Amoo, M.O.; Adefemi, O.T.; Chukwudi, C.C. Solid-State Lithium-Ion Battery Electrolytes: Revolutionizing Energy Density and Safety. Hybrid. Adv. 2025, 8, 100339. [Google Scholar] [CrossRef]
- Li, Y.; Kim, C.; Cho, Y.; Musgrove, A.L.; Parker, G.D.; Su, Y.-F.; Sacci, R.L.; Yu, X.-Y.; Zawodzinski, T.; Nanda, J.; et al. Promising Performance of Sulfide Catholytes Compared to Halide Alternatives in NMC811 Cathodes for Sheet-Type Sulfide Solid-State Batteries. Energy Storage Mater. 2025, 80, 104385. [Google Scholar] [CrossRef]
- Maurel, A.; Armand, M.; Grugeon, S.; Fleutot, B.; Davoisne, C.; Tortajada, H.; Courty, M.; Panier, S.; Dupont, L. Poly (Ethylene Oxide)—LiTFSI Solid Polymer Electrolyte Filaments for Fused Deposition Modeling Three-Dimensional Printing. J. Electrochem. Soc. 2020, 167, 070536. [Google Scholar] [CrossRef]
- Mindemark, J.; Lacey, M.J.; Bowden, T.; Brandell, D. Beyond PEO—Alternative Host Materials for Li+—Conducting Solid Polymer Electrolytes. Prog. Polym. Sci. 2018, 81, 114–143. [Google Scholar] [CrossRef]
- Zhu, Y.; He, X.; Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 2016, 4, 3253–3266. [Google Scholar] [CrossRef]
- Zhang, Z.; Shao, Y.; Lotsch, B.; Hu, Y.-S.; Li, H.; Janek, J.; Nazar, L.F.; Nan, C.-W.; Maier, J.; Armand, M.; et al. New Horizons for Inorganic Solid State Ion Conductors. Energy Environ. Sci. 2018, 11, 1945–1976. [Google Scholar] [CrossRef]
- Wang, C.; Fu, K.; Kammampata, S.P.; McOwen, D.W.; Samson, A.J.; Zhang, L.; Hitz, G.T.; Nolan, A.M.; Wachsman, E.D.; Mo, Y.; et al. Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. Chem. Rev. 2020, 120, 4257–4300. [Google Scholar] [CrossRef] [PubMed]
- Burton, M.; Narayanan, S.; Jagger, B.; Olbrich, L.F.; Dhir, S.; Shibata, M.; Lain, M.J.; Astbury, R.; Butcher, N.; Copley, M.; et al. Techno-Economic Assessment of Thin Lithium Metal Anodes for Solid-State Batteries. Nat. Energy 2024, 10, 135–147. [Google Scholar] [CrossRef]
- Machín, A.; Morant, C.; Márquez, F. Advancements and Challenges in Solid-State Battery Technology: An In-Depth Review of Solid Electrolytes and Anode Innovations. Batteries 2024, 10, 29. [Google Scholar] [CrossRef]
- Ningappa, N.G.; Vishweswariah, K.; Bouguern, M.D.; Anil Kumar, M.R.; Amine, K.; Zaghib, K. Mechanistic Insights and Materials Strategies for Dendrite-Free Metal Anodes in Alkali and Zinc Batteries. Nano Energy 2025, 141, 111144. [Google Scholar] [CrossRef]
- Zhang, B.; Yuan, B.; Yan, X.; Han, X.; Zhang, J.; Tan, H.; Wang, C.; Yan, P.; Gao, H.; Liu, Y. Atomic Mechanism of Lithium Dendrite Penetration in Solid Electrolytes. Nat. Commun. 2025, 16, 1906. [Google Scholar] [CrossRef]
- An, Y.; Hu, T.; Pang, Q.; Xu, S. Observing Li Nucleation at Li Metal-Solid Electrolyte Interface in All-Solid-State Batteries. arXiv 2024, arXiv:2412.12611. [Google Scholar] [CrossRef]
- Guo, W.; Wang, A.; He, X.; Lei, Y.; Li, Y.; Zhou, Z.; Li, C.; Lv, X.; Wang, H.; Shen, F.; et al. Unveiling the Mechanism of Lithium Dendrite Infiltration into Solid State Electrolyte through the Coupling of Electrochemical and In-Situ Optical Characterization. Electrochim. Acta 2024, 508, 145294. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Chien, P.-H.; Amouzandeh, G.; Hou, D.; Truong, E.; Oyekunle, I.P.; Bhagu, J.; Holder, S.W.; Xiong, H.; et al. Dendrite Formation in Solid-State Batteries Arising from Lithium Plating and Electrolyte Reduction. Nat. Mater. 2025, 24, 581–588. [Google Scholar] [CrossRef]
- Yildirim, C.; Flatscher, F.; Ganschow, S.; Lassnig, A.; Gammer, C.; Todt, J.; Keckes, J.; Rettenwander, D. Understanding the Origin of Lithium Dendrite Branching in Li6.5La3Zr1.5Ta0.5O12 Solid-State Electrolyte via Microscopy Measurements. Nat. Commun. 2024, 15, 8207. [Google Scholar] [CrossRef]
- Wang, Y.; Richards, W.D.; Ong, S.P.; Miara, L.J.; Kim, J.C.; Mo, Y.; Ceder, G. Design Principles for Solid-State Lithium Superionic Conductors. Nat. Mater. 2015, 14, 1026–1031. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, X.; Pang, Q.; Fowler, M.; Lian, Y.; Ouyang, M.; Burke, A.F. Battery Safety: Machine Learning-Based Prognostics. Prog. Energy Combust. Sci. 2024, 102, 101142. [Google Scholar] [CrossRef]
- Misiani, A.N.; Oni, B.A. A Review on Challenges in Low Temperature Lithium-Ion Cells and Future Prospects. Appl. Energy 2025, 393, 125987. [Google Scholar] [CrossRef]
- Reisecker, V.; Flatscher, F.; Porz, L.; Fincher, C.; Todt, J.; Hanghofer, I.; Hennige, V.; Linares-Moreau, M.; Falcaro, P.; Ganschow, S.; et al. Effect of Pulse-Current-Based Protocols on the Lithium Dendrite Formation and Evolution in All-Solid-State Batteries. Nat. Commun. 2023, 14, 2432. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Wang, Y.; Kang, Y.; Zhao, Y.; Tian, Y.; Wang, X.; Tan, Y.; Liang, Z.; Wozny, J.; Li, T.; et al. Side Reactions/Changes in Lithium-Ion Batteries: Mechanisms and Strategies for Creating Safer and Better Batteries. Adv. Mater. 2024, 36, 2401482. [Google Scholar] [CrossRef]
- Krauskopf, T.; Richter, F.H.; Zeier, W.G.; Janek, J. Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. Chem. Rev. 2020, 120, 7745–7794. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, D.; Li, Y.C.; Yu, Z.; Mallouk, T.E.; Wang, D. Salt-Based Organic–Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10 GeP2 S12 Solid Electrolyte Interface. Angew. Chem. Int. Ed. 2018, 57, 13608–13612. [Google Scholar] [CrossRef]
- Yao, M.; Shi, J.; Luo, A.; Zhang, Z.; Zhu, G.; Xu, H.; Xu, J.; Jiang, L.; Jiang, K. Advances in Sulfide Solid–State Electrolytes for Lithium Batteries. Energy Storage Mater. 2025, 75, 104018. [Google Scholar] [CrossRef]
- Xu, C.; Chen, L.; Wu, F. Unveiling the Power of Sulfide Solid Electrolytes for Next-Generation All-Solid-State Lithium Batteries. Next Mater. 2025, 6, 100428. [Google Scholar] [CrossRef]
- Man, B.; Zeng, Y.; Liu, Q.; Chen, Y.; Li, X.; Luo, W.; Zhang, Z.; He, C.; Jie, M.; Liu, S. A Comprehensive Review of Sulfide Solid-State Electrolytes: Properties, Synthesis, Applications, and Challenges. Crystals 2025, 15, 492. [Google Scholar] [CrossRef]
- Apelt, S.; Höhne, S.; Mehner, E.; Böhm, C.; Malanin, M.; Eichhorn, K.; Jehnichen, D.; Uhlmann, P.; Bergmann, U. Poly (Vinylidene Fluoride-co-trifluoroethylene) Thin Films after Dip- and Spin-Coating. Macromol. Mater. Eng. 2022, 307, 2200296. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, L.; Han, J.; Wen, K.; Guan, S.; Xue, C.; Zhang, Z.; Xu, B.; Lin, Y.; Shen, Y.; et al. Super Long-Cycling All-Solid-State Battery with Thin Li6 PS5 Cl-Based Electrolyte. Adv. Energy Mater. 2022, 12, 2200660. [Google Scholar] [CrossRef]
- Liu, M.; Hong, J.J.; Sebti, E.; Zhou, K.; Wang, S.; Feng, S.; Pennebaker, T.; Hui, Z.; Miao, Q.; Lu, E.; et al. Surface Molecular Engineering to Enable Processing of Sulfide Solid Electrolytes in Humid Ambient Air. arXiv 2024, arXiv:2412.04633. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.; Kim, S.Y.; Hwang, J.; Han, J.; Yu, S.; Yim, T.; Oh, S.H. Design Principles for Moisture-Tolerant Sulfide-Based Solid Electrolytes and Associated Effect on the Electrochemical Performance of All-Solid-State Battery. J. Electrochem. Sci. Technol. 2024, 15, 437–458. [Google Scholar] [CrossRef]
- Umair, M.; Zhou, S.; Li, W.; Rana, H.T.H.; Yang, J.; Cheng, L.; Li, M.; Yu, S.; Wei, J. Oxide Solid Electrolytes in Solid-State Batteries. Batter. Supercaps 2024, 8, e202400667. [Google Scholar] [CrossRef]
- Gonzalez Puente, P.M.; Song, S.; Cao, S.; Rannalter, L.Z.; Pan, Z.; Xiang, X.; Shen, Q.; Chen, F. Garnet-Type Solid Electrolyte: Advances of Ionic Transport Performance and Its Application in All-Solid-State Batteries. J. Adv. Ceram. 2021, 10, 933–972. [Google Scholar] [CrossRef]
- Neises, J.; Scheld, W.S.; Seok, A.-R.; Lobe, S.; Finsterbusch, M.; Uhlenbruck, S.; Schmechel, R.; Benson, N. Study of Thermal Material Properties for Ta- and Al-Substituted Li7 La3 Zr2 O12 (LLZO) Solid-State Electrolyte in Dependency of Temperature and Grain Size. J. Mater. Chem. A 2022, 10, 12177–12186. [Google Scholar] [CrossRef]
- Ni, J.E.; Case, E.D.; Sakamoto, J.S.; Rangasamy, E.; Wolfenstine, J.B. Room Temperature Elastic Moduli and Vickers Hardness of Hot-Pressed LLZO Cubic Garnet. J. Mater. Sci. 2012, 47, 7978–7985. [Google Scholar] [CrossRef]
- Wolfenstine, J.; Allen, J.L.; Sakamoto, J.; Siegel, D.J.; Choe, H. Mechanical Behavior of Li-Ion-Conducting Crystalline Oxide-Based Solid Electrolytes: A Brief Review. Ionics 2018, 24, 1271–1276. [Google Scholar] [CrossRef]
- Ding, H.; Wang, M.; Shan, X.; Yang, G.; Tian, M. Advancements in Active Filler-Contained Polymer Solid-State Electrolytes for Lithium-Metal Batteries: A Concise Review. Supramol. Mater. 2025, 4, 100097. [Google Scholar] [CrossRef]
- Irfan, M.; Yang, Z.; Su, J.; Zhang, W. Polymer-Based Solid-State Electrolytes. In ACS Symposium Series; Gupta, R.K., Ed.; American Chemical Society: Washington, DC, USA, 2022; Volume 1413, pp. 201–232. ISBN 978-0-8412-9768-5. [Google Scholar]
- Lee, T.K.; Zaini, N.F.M.; Mobarak, N.N.; Hassan, N.H.; Noor, S.A.M.; Mamat, S.; Loh, K.S.; KuBulat, K.H.; Su’ait, M.S.; Ahmad, A. PEO Based Polymer Electrolyte Comprised of Epoxidized Natural Rubber Material (ENR50) for Li-Ion Polymer Battery Application. Electrochim. Acta 2019, 316, 283–291. [Google Scholar] [CrossRef]
- Xue, Z.; He, D.; Xie, X. Poly (Ethylene Oxide)-Based Electrolytes for Lithium-Ion Batteries. J. Mater. Chem. A 2015, 3, 19218–19253. [Google Scholar] [CrossRef]
- Appetecchi, G.B.; Hassoun, J.; Scrosati, B.; Croce, F.; Cassel, F.; Salomon, M. Hot-Pressed, Solvent-Free, Nanocomposite, PEO-Based Electrolyte Membranes. J. Power Sources 2003, 124, 246–253. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Y.; Du, W.; Shen, K.; Chen, B.; Pan, H.; Wu, Y.; Lu, Y. Controlled Radical Polymerization-Derived Solid-State Polymer Electrolytes for Lithium Batteries. EnergyChem 2025, 7, 100160. [Google Scholar] [CrossRef]
- Croce, F.; Appetecchi, G.B.; Persi, L.; Scrosati, B. Nanocomposite Polymer Electrolytes for Lithium Batteries. Nature 1998, 394, 456–458. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.-M. Building Better Batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Cho, W.-J.; Kang, T.H.; Lee, M.; Yi, G.-R. Nanostructured Polymer Electrolytes for Lithium-Ion Batteries. Macromol. Res. 2021, 29, 509–518. [Google Scholar] [CrossRef]
- Luo, S.; Liu, X.; Gao, L.; Deng, N.; Sun, X.; Li, Y.; Zeng, Q.; Wang, H.; Cheng, B.; Kang, W. A Review on Modified Polymer Composite Electrolytes for Solid-State Lithium Batteries. Sustain. Energy Fuels 2022, 6, 5019–5044. [Google Scholar] [CrossRef]
- Chae, W.; Kim, B.; Ryoo, W.S.; Earmme, T. A Brief Review of Gel Polymer Electrolytes Using In Situ Polymerization for Lithium-Ion Polymer Batteries. Polymers 2023, 15, 803. [Google Scholar] [CrossRef]
- Chattopadhyay, J.; Pathak, T.S.; Santos, D.M.F. Applications of Polymer Electrolytes in Lithium-Ion Batteries: A Review. Polymers 2023, 15, 3907. [Google Scholar] [CrossRef]
- Li, Y.; Canepa, P.; Gorai, P. Role of Electronic Passivation in Stabilizing the Lithium—LixPOyNz Solid-Electrolyte Interphase. PRX Energy 2022, 1, 023004. [Google Scholar] [CrossRef]
- Cao, D.; Sun, X.; Li, Q.; Natan, A.; Xiang, P.; Zhu, H. Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations. Matter 2020, 3, 57–94. [Google Scholar] [CrossRef]
- Cheng, D.; Wynn, T.A.; Wang, X.; Wang, S.; Zhang, M.; Shimizu, R.; Bai, S.; Nguyen, H.; Fang, C.; Kim, M.; et al. Unveiling the Stable Nature of the Solid Electrolyte Interphase between Lithium Metal and LiPON via Cryogenic Electron Microscopy. arXiv 2020, arXiv:2006.12764. [Google Scholar] [CrossRef]
- LaCoste, J.; Li, Z.; Xu, Y.; He, Z.; Matherne, D.; Zakutayev, A.; Fei, L. Investigating the Effects of Lithium Phosphorous Oxynitride Coating on Blended Solid Polymer Electrolytes. ACS Appl. Mater. Interfaces 2020, 12, 40749–40758. [Google Scholar] [CrossRef] [PubMed]
- Klorman, J.A.; Guo, Q.; Lau, K.C. First-Principles Study of Amorphous Al2O3 ALD Coating in Li-S Battery Electrode Design. Energies 2022, 15, 390. [Google Scholar] [CrossRef]
- Zhou, H.; Yu, S.; Liu, H.; Liu, P. Protective Coatings for Lithium Metal Anodes: Recent Progress and Future Perspectives. J. Power Sources 2020, 450, 227632. [Google Scholar] [CrossRef]
- Lee, S.; Lee, K.; Kim, S.; Yoon, K.; Han, S.; Lee, M.H.; Ko, Y.; Noh, J.H.; Kim, W.; Kang, K. Design of a Lithiophilic and Electron-Blocking Interlayer for Dendrite-Free Lithium-Metal Solid-State Batteries. Sci. Adv. 2022, 8, eabq0153. [Google Scholar] [CrossRef]
- Pang, B.; Wu, Z.; Zhang, W.; Huang, H.; Gan, Y.; Xia, Y.; He, X.; Xia, X.; Zhang, J. Ag Nanoparticles Incorporated Interlayer Enables Ultrahigh Critical Current Density for Li6PS5Cl-Based All-Solid-State Lithium Batteries. J. Power Sources 2023, 563, 232836. [Google Scholar] [CrossRef]
- Wan, J.; Liu, X.; Diemant, T.; Wan, M.; Passerini, S.; Paillard, E. Single-Ion Conducting Interlayers for Improved Lithium Metal Plating. Energy Storage Mater. 2023, 63, 103029. [Google Scholar] [CrossRef]
- Hoang, B.; Damircheli, R.; Ferrari, V.C.; Stewart, D.M.; Brausch, M.; Nguyen, N.; Lin, C.-F. Highly Effective Polyacrylonitrile-Rich Artificial Solid-Electrolyte-Interphase for Dendrite-Free Li-Metal/Solid-State Battery. ACS Appl. Mater. Interfaces 2024, 16, 63703–63712. [Google Scholar] [CrossRef]
- Ci, N.; Zhang, L.; Li, J.; Li, D.; Cheng, J.; Sun, Q.; Xi, Z.; Xu, Z.; Zhao, G.; Ci, L. In Situ Construction of a Flexible Interlayer for Durable Solid-State Lithium Metal Batteries. Carbon 2022, 187, 13–21. [Google Scholar] [CrossRef]
- Ren, P.; Wang, X.; Huang, B.; Liu, Z.; Liu, R. Li3N Interlayer Enables Stable Long-Term Cycling for Sulfide-Based All-Solid-State Li Metal Batteries. J. Energy Storage 2024, 82, 110200. [Google Scholar] [CrossRef]
- You, X.; Chen, N.; Xie, G.; Xu, S.; Buriak, J.; Sang, L. Dual-Component Interlayer Enables Uniform Lithium Deposition and Dendrite Suppression for Solid-State Batteries. ACS Appl. Mater. Interfaces 2024, 16, 35761–35770. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Dong, N.; Liu, B.; Tian, G.; Qi, S.; Wu, D. Ultrathin Inorganic-Nanoshell Encapsulation: TiO2 Coated Polyimide Nanofiber Membrane Enabled by Layer-by-Layer Deposition for Advanced and Safe High-Power LIB Separator. J. Membr. Sci. 2020, 601, 117884. [Google Scholar] [CrossRef]
- Sang, J.; Tang, B.; Pan, K.; He, Y.-B.; Zhou, Z. Current Status and Enhancement Strategies for All-Solid-State Lithium Batteries. Acc. Mater. Res. 2023, 4, 472–483. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J. Stabilizing the Cathode-Electrolyte Interphase for Superior Li-Ion Batteries. Green Chem. Eng. 2025, in press S2666952825000470. [Google Scholar] [CrossRef]
- Nogales, P.M.; Lee, S.; Yang, S.; Yang, I.; Choi, S.H.; Park, S.-M.; Lee, J.H.; Kim, C.J.; An, J.-C.; Jeong, S.-K. Stabilizing the Solid Electrolyte Interphase of SiOx Negative Electrodes: The Role of Fluoroethylene Carbonate in Enhancing Electrochemical Performance. Batteries 2024, 10, 385. [Google Scholar] [CrossRef]
- Park, S.K.; Copic, D.; Zhao, T.Z.; Rutkowska, A.; Wen, B.; Sanders, K.; He, R.; Kim, H.-K.; De Volder, M. 3D Porous Cu-Composites for Stable Li-Metal Battery Anodes. ACS Nano 2023, 17, 14658–14666. [Google Scholar] [CrossRef]
- Sastre, J.; Futscher, M.H.; Pompizi, L.; Aribia, A.; Priebe, A.; Overbeck, J.; Stiefel, M.; Tiwari, A.N.; Romanyuk, Y.E. Blocking Lithium Dendrite Growth in Solid-State Batteries with an Ultrathin Amorphous Li-La-Zr-O Solid Electrolyte. Commun. Mater. 2021, 2, 76. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Z.; Mei, Y.; Xiao, Y.; Xiang, X.; Luo, D.; Deng, J. Study on the Electrochemical Performance of All-Solid-State Lithium Battery Based on Li3BO3 Gradient Coated LiCoO2 Cathode. Appl. Surf. Sci. 2023, 630, 157488. [Google Scholar] [CrossRef]
- Du, C.; Li, Z.; Fang, Z.; Fang, X.; Ji, X.; Zhao, Z.; Liu, D.; Li, R.; Xiang, X.; Yang, H. Constructing a Three-Dimensional Continuous Grain Boundary with Lithium Ion Conductivity and Electron Blocking Property in LLZO to Suppress Lithium Dendrites. J. Alloys Compd. 2024, 1003, 175769. [Google Scholar] [CrossRef]
- Huang, J.; Li, C.; Jiang, D.; Gao, J.; Cheng, L.; Li, G.; Luo, H.; Xu, Z.; Shin, D.; Wang, Y.; et al. Solid-State Electrolytes for Lithium Metal Batteries: State-of-the-Art and Perspectives. Adv. Funct. Mater. 2025, 35, 2411171. [Google Scholar] [CrossRef]
- Pervez, S.A.; Madinehei, M.; Moghimian, N. Graphene in Solid-State Batteries: An Overview. Nanomaterials 2022, 12, 2310. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zheng, J.; Cheng, Q.; Hu, Y.-Y.; Chan, C.K. Composite Polymer Electrolytes with Li7 La3 Zr2 O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology. ACS Appl. Mater. Interfaces 2017, 9, 21773–21780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bao, W.; Hu, Z.; Wang, Y.; Jiang, J.; Huo, S.; Fan, W.; Chen, W.; Jing, X.; Long, X. Poly (Ionic Liquid)-Functionalized Graphene Oxide Towards Ambient Temperature Operation of All-Solid-State Peo-Based Polymer Electrolyte Lithium Metal Batteries. Chem. Eng. J. 2022, 437, 135420. [Google Scholar] [CrossRef]
- Otabil, A.; Kharbatli, A.-R.; Siddique, S.K.; Liao, K.; Schiffer, A. Recent Developments in the Incorporation of 1D/2D Nanofillers in Polymer Derived Ceramics—A Review. Adv. Compos. Hybrid. Mater. 2025, 8, 267. [Google Scholar] [CrossRef]
- Athanasiou, C.E.; Jin, M.Y.; Ramirez, C.; Padture, N.P.; Sheldon, B.W. High-Toughness Inorganic Solid Electrolytes via the Use of Reduced Graphene Oxide. Matter 2020, 3, 212–229. [Google Scholar] [CrossRef]
- Safian, M.T.; Umar, K.; Ibrahim, M.N.M. Synthesis and Scalability of Graphene and Its Derivatives: A Journey towards Sustainable and Commercial Material. J. Clean. Prod. 2021, 318, 128603. [Google Scholar] [CrossRef]
- Soldano, C.; Mahmood, A.; Dujardin, E. Production, Properties and Potential of Graphene. Carbon 2010, 48, 2127–2150. [Google Scholar] [CrossRef]
- Cha, E.; Kim, D.K.; Choi, W. Advances of 2D MoS2 for High-Energy Lithium Metal Batteries. Front. Energy Res. 2021, 9, 645403. [Google Scholar] [CrossRef]
- Fu, J.; Yu, P.; Zhang, N.; Ren, G.; Zheng, S.; Huang, W.; Long, X.; Li, H.; Liu, X. In Situ Formation of a Bifunctional Interlayer Enabled by a Conversion Reaction to Initiatively Prevent Lithium Dendrites in a Garnet Solid Electrolyte. Energy Environ. Sci. 2019, 12, 1404–1412. [Google Scholar] [CrossRef]
- He, Y.; Wang, C.; Zhang, R.; Zou, P.; Chen, Z.; Bak, S.-M.; Trask, S.E.; Du, Y.; Lin, R.; Hu, E.; et al. A Self-Healing Plastic Ceramic Electrolyte by an Aprotic Dynamic Polymer Network for Lithium Metal Batteries. Nat. Commun. 2024, 15, 10015. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Y.; Shi, L.; Yu, W.; Sun, Z.; Zhou, Y.; Liu, S.; Mao, H.; Zhang, D.; Lu, T.; et al. Phase-Locked Constructing Dynamic Supramolecular Ionic Conductive Elastomers with Superior Toughness, Autonomous Self-Healing and Recyclability. Nat. Commun. 2022, 13, 4868. [Google Scholar] [CrossRef]
- Liu, F.-Q.; Wang, W.-P.; Yin, Y.-X.; Zhang, S.-F.; Shi, J.-L.; Wang, L.; Zhang, X.-D.; Zheng, Y.; Zhou, J.-J.; Li, L.; et al. Upgrading Traditional Liquid Electrolyte via in Situ Gelation for Future Lithium Metal Batteries. Sci. Adv. 2018, 4, eaat5383. [Google Scholar] [CrossRef]
- Le Mong, A.; Kim, D. Self-Healable, Super Li-Ion Conductive, and Flexible Quasi-Solid Electrolyte for Long-Term Safe Lithium Sulfur Batteries. J. Mater. Chem. A 2023, 11, 6503–6521. [Google Scholar] [CrossRef]
- He, Y.; Wang, C.; Lin, R.; Hu, E.; Trask, S.E.; Li, J.; Xin, H.L. A Self-Healing, Flowable, Yet Solid Electrolyte Suppresses Li-Metal Morphological Instabilities. Adv. Mater. 2024, 36, 2406315. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, H.; Wang, N.; Xiao, Y.; Liang, S.; Yang, J.; Huang, X. Gradual Gradient Distribution Composite Solid Electrolyte for Solid-State Lithium Metal Batteries with Ameliorated Electrochemical Performance. J. Colloid Interface Sci. 2024, 658, 836–845. [Google Scholar] [CrossRef] [PubMed]
- Afauly, R.A.P.; Habibi, M.F.; Budiman, B.A. Review on Manufacturing Methods of Functionally Graded Material of Solid-State Batteries. In Proceedings of the 2021 3rd International Symposium on Material and Electrical Engineering Conference (ISMEE), Bandung, Indonesia, 10–11 November 2021; pp. 236–241. [Google Scholar]
- Deng, J.; Ren, X.; Lin, H.; Hu, L.; Bai, Y.; Yu, X.; Mo, J.; Zhang, Q.; Kang, F.; Li, B. Functionally Gradient Materials for Sustainable and High-Energy Rechargeable Lithium Batteries: Design Principles, Progress, and Perspectives. J. Energy Chem. 2024, 99, 426–449. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Yun, J.; Choi, S.H.; Han, S.A.; Moon, J.; Kim, J.H.; Lee, J.; Park, M. Functionality of Dual-Phase Lithium Storage in a Porous Carbon Host for Lithium-Metal Anode. Adv. Funct. Materials 2020, 30, 1910538. [Google Scholar] [CrossRef]
- Chen, L.; Liu, H.; Li, M.; Zhou, S.; Mo, F.; Yu, S.; Wei, J. Boosting the Performance of Lithium Metal Anodes with Three-Dimensional Lithium Hosts: Recent Progress and Future Perspectives. Batteries 2023, 9, 391. [Google Scholar] [CrossRef]
- Pathak, R.; Chen, K.; Wu, F.; Mane, A.U.; Bugga, R.V.; Elam, J.W.; Qiao, Q.; Zhou, Y. Advanced Strategies for the Development of Porous Carbon as a Li Host/Current Collector for Lithium Metal Batteries. Energy Storage Mater. 2021, 41, 448–465. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, B.; Hitz, E.; Luo, W.; Yao, Y.; Li, Y.; Dai, J.; Chen, C.; Wang, Y.; Yang, C.; et al. A Carbon-Based 3D Current Collector with Surface Protection for Li Metal Anode. Nano Res. 2017, 10, 1356–1365. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, X.; Rao, M.; Lin, D.; Yan, K.; Du, R.; Xu, J.; Zhang, Y.; Ye, D.; Yang, S.; et al. High Energy Density Lithium Metal Batteries Enabled by a Porous Graphene/MgF2 Framework. Energy Storage Mater. 2020, 26, 73–82. [Google Scholar] [CrossRef]
- Lee, J.; Won, E.-S.; Kim, D.-M.; Kim, H.; Kwon, B.; Park, K.; Jo, S.; Lee, S.; Lee, J.-W.; Lee, K.T. Three-Dimensional Porous Frameworks for Li Metal Batteries: Superconformal versus Conformal Li Growth. ACS Appl. Mater. Interfaces 2021, 13, 33056–33065. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xia, S.; Zhang, X.; Pang, Y.; Xu, F.; Yang, J.; Sun, L.; Zheng, S. Highly Lithiophilic Copper-Reinforced Scaffold Enables Stable Li Metal Anode. ACS Appl. Mater. Interfaces 2021, 13, 20240–20250. [Google Scholar] [CrossRef]
- Chen, H.; Pei, A.; Wan, J.; Lin, D.; Vilá, R.; Wang, H.; Mackanic, D.; Steinrück, H.-G.; Huang, W.; Li, Y.; et al. Tortuosity Effects in Lithium-Metal Host Anodes. Joule 2020, 4, 938–952. [Google Scholar] [CrossRef]
- Yan, X.; Lin, L.; Chen, Q.; Xie, Q.; Qu, B.; Wang, L.; Peng, D. Multifunctional Roles of Carbon-based Hosts for Li-metal Anodes: A Review. Carbon Energy 2021, 3, 303–329. [Google Scholar] [CrossRef]
- Nkosi, F.P.; Valvo, M.; Mindemark, J.; Dzulkurnain, N.A.; Hernández, G.; Mahun, A.; Abbrent, S.; Brus, J.; Kobera, L.; Edström, K. Garnet-Poly (ε-Caprolactone-Co-Trimethylene Carbonate) Polymer-in-Ceramic Composite Electrolyte for All-Solid-State Lithium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 2531–2542. [Google Scholar] [CrossRef]
- Rizvi, S.; Aladhyani, I.; Ding, Y.; Zhang, Q. Recent Advances in Doping Na3Zr2Si2PO12 (NASICON) Solid-State Electrolyte for Sodium-Ion Batteries. Nano Energy 2024, 129, 110009. [Google Scholar] [CrossRef]
- Sayed, S.Y.; Reese, C.; Kim, Y.; Sachdev, A.K. 3D Current Collectors for Lithium Metal Anodes: A Review on Concepts of Performance. Int. Mater. Rev. 2025, 70, 139–204. [Google Scholar] [CrossRef]
- Vilá, R.A.; Boyle, D.T.; Dai, A.; Zhang, W.; Sayavong, P.; Ye, Y.; Yang, Y.; Dionne, J.A.; Cui, Y. LiH Formation and Its Impact on Li Batteries Revealed by Cryogenic Electron Microscopy. Sci. Adv. 2023, 9, eadf3609. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Ai, X.; Wang, H.; Li, W.; Wei, P.; Cheng, Y.; Gui, S.; Yang, H.; Yang, Y.; Wang, M.-S. Visualizing the Failure of Solid Electrolyte under GPa-Level Interface Stress Induced by Lithium Eruption. Nat. Commun. 2022, 13, 5050. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Feng, M.; Wu, C.; Guo, L.; Chen, Z.; Risal, S.; Ai, Q.; Lou, J.; Fan, Z.; Qi, Y.; et al. Imaging the Evolution of Lithium-Solid Electrolyte Interface Using Operando Scanning Electron Microscopy. Nat. Commun. 2025, 16, 4283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, T.; Du, C.; Liu, Q.; Tang, Y.; Zhao, J.; Wang, B.; Chen, T.; Sun, Y.; Jia, P.; et al. Lithium Whisker Growth and Stress Generation in an in Situ Atomic Force Microscope–Environmental Transmission Electron Microscope Set-Up. Nat. Nanotechnol. 2020, 15, 94–98. [Google Scholar] [CrossRef]
- Zaccarine, S. In-Situ XPS: Investigating Stable Interfaces for Improved Solid-State Battery Performance. Available online: https://www.phi.com/news-and-articles/insitu-battery-spotlight.html (accessed on 22 June 2025).
- Huo, H.; Jiang, M.; Mogwitz, B.; Sann, J.; Yusim, Y.; Zuo, T.; Moryson, Y.; Minnmann, P.; Richter, F.H.; Veer Singh, C.; et al. Interface Design Enabling Stable Polymer/Thiophosphate Electrolyte Separators for Dendrite-Free Lithium Metal Batteries. Angew. Chem. Int. Ed. 2023, 62, e202218044. [Google Scholar] [CrossRef]
- Zhu, C.; Fuchs, T.; Weber, S.A.L.; Richter, F.H.; Glasser, G.; Weber, F.; Butt, H.-J.; Janek, J.; Berger, R. Understanding the Evolution of Lithium Dendrites at Li6.25Al0.25La3Zr2O12 Grain Boundaries via Operando Microscopy Techniques. Nat. Commun. 2023, 14, 1300. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, C.-Z.; Hu, J.-K.; Sun, S.; Yuan, H.; Fu, Z.-H.; Chen, X.; Huang, J.-Q.; Ouyang, M.; Zhang, Q. The Void Formation Behaviors in Working Solid-State Li Metal Batteries. Sci. Adv. 2022, 8, eadd0510. [Google Scholar] [CrossRef]
- Thomas, C.; Zhang, W.; Chancey, M.R.; Di Michiel, M.; Garman, K.; Wang, Y.; Harris, S.; Finegan, D.P.; Wang, Y.; Ban, C. Stress engineering for crack and dendrite prevention in solid electrolytes via ion implantation. Cell Rep. Phys. Sci. 2025, 6, 102544. [Google Scholar] [CrossRef]
- Hu, J.; Sun, Z.; Gao, Y.; Li, P.; Wu, Y.; Chen, S.; Wang, R.; Li, N.; Yang, W.; Shen, Y.; et al. 3D Stress Mapping Reveals the Origin of Lithium-Deposition Heterogeneity in Solid-State Lithium-Metal Batteries. Cell Rep. Phys. Sci. 2022, 3, 100938. [Google Scholar] [CrossRef]
- Sun, H.; Celadon, A.; Cloutier, S.G.; Al-Haddad, K.; Sun, S.; Zhang, G. Lithium Dendrites in All-solid-state Batteries: From Formation to Suppression. Battery Energy 2024, 3, 20230062. [Google Scholar] [CrossRef]
- Maity, A.; Svirinovsky-Arbeli, A.; Buganim, Y.; Oppenheim, C.; Leskes, M. Tracking Dendrites and Solid Electrolyte Interphase Formation with Dynamic Nuclear Polarization—NMR Spectroscopy. Nat. Commun. 2024, 15, 9956. [Google Scholar] [CrossRef]
- Liang, Z.; Xiang, Y.; Wang, K.; Zhu, J.; Jin, Y.; Wang, H.; Zheng, B.; Chen, Z.; Tao, M.; Liu, X.; et al. Understanding the Failure Process of Sulfide-Based All-Solid-State Lithium Batteries via Operando Nuclear Magnetic Resonance Spectroscopy. Nat. Commun. 2023, 14, 259. [Google Scholar] [CrossRef]
- Jena, A.; Tong, Z.; Bazri, B.; Iputera, K.; Chang, H.; Hu, S.-F.; Liu, R.-S. In Situ/Operando Methods of Characterizing All-Solid-State Li-Ion Batteries: Understanding Li-Ion Transport during Cycle. J. Phys. Chem. C 2021, 125, 16921–16937. [Google Scholar] [CrossRef]
- Banerjee, A.; Wang, X.; Fang, C.; Wu, E.A.; Meng, Y.S. Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. Chem. Rev. 2020, 120, 6878–6933. [Google Scholar] [CrossRef]
- Wenzel, S.; Weber, D.A.; Leichtweiss, T.; Busche, M.R.; Sann, J.; Janek, J. Interphase Formation and Degradation of Charge Transfer Kinetics between a Lithium Metal Anode and Highly Crystalline Li7P3S11 Solid Electrolyte. Solid State Ion. 2016, 286, 24–33. [Google Scholar] [CrossRef]
- Cheng, Q.; Wei, L.; Liu, Z.; Ni, N.; Sang, Z.; Zhu, B.; Xu, W.; Chen, M.; Miao, Y.; Chen, L.-Q.; et al. Operando and Three-Dimensional Visualization of Anion Depletion and Lithium Growth by Stimulated Raman Scattering Microscopy. Nat. Commun. 2018, 9, 2942. [Google Scholar] [CrossRef]
- Talian, S.D.; Kapun, G.; Moškon, J.; Dominko, R.; Gaberšček, M. Operando Impedance Spectroscopy with Combined Dynamic Measurements and Overvoltage Analysis in Lithium Metal Batteries. Nat. Commun. 2025, 16, 2030. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fu, J.; Guo, X. How to Commercialize Solid-State Batteries: A Perspective from Solid Electrolytes. Natl. Sci. Open 2023, 2, 20220036. [Google Scholar] [CrossRef]
- Wan, H.; Wang, Z.; Liu, S.; Zhang, B.; He, X.; Zhang, W.; Wang, C. Critical Interphase Overpotential as a Lithium Dendrite-Suppression Criterion for All-Solid-State Lithium Battery Design. Nat. Energy 2023, 8, 473–481. [Google Scholar] [CrossRef]
- Kato, Y.; Hori, S.; Kanno, R. Li10GeP2S12—Type Superionic Conductors: Synthesis, Structure, and Ionic Transportation. Adv. Energy Mater. 2020, 10, 2002153. [Google Scholar] [CrossRef]
- Yuan, C.; Sheldon, B.W.; Xu, J. Heterogeneous Reinforcements to Mitigate Li Penetration through Solid Electrolytes in All-Solid-State Batteries. Adv. Energy Mater. 2022, 12, 2201804. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, S.; Ning, Z.; Spencer-Jolly, D.; Melvin, D.L.R.; Gao, X.; Perera, J.; Pu, S.D.; Rees, G.J.; Wang, L.; et al. Deflecting Lithium Dendritic Cracks in Multi-Layered Solid Electrolytes. Joule 2024, 8, 2623–2638. [Google Scholar] [CrossRef]
- Ning, Z.; Li, G.; Melvin, D.L.R.; Chen, Y.; Bu, J.; Spencer-Jolly, D.; Liu, J.; Hu, B.; Gao, X.; Perera, J.; et al. Dendrite Initiation and Propagation in Lithium Metal Solid-State Batteries. Nature 2023, 618, 287–293. [Google Scholar] [CrossRef]
- Wang, Z.-X.; Lu, Y.; Zhao, C.-Z.; Huang, W.-Z.; Huang, X.-Y.; Kong, W.-J.; Li, L.-X.; Wang, Z.-Y.; Yuan, H.; Huang, J.-Q.; et al. Suppressing Li Voids in All-Solid-State Lithium Metal Batteries through Li Diffusion Regulation. Joule 2024, 8, 2794–2810. [Google Scholar] [CrossRef]
- Tao, J.; Chen, Y.; Bhardwaj, A.; Wen, L.; Li, J.; Kolosov, O.V.; Lin, Y.; Hong, Z.; Huang, Z.; Mathur, S. Combating Li Metal Deposits in All-Solid-State Battery via the Piezoelectric and Ferroelectric Effects. Proc. Natl. Acad. Sci. USA 2022, 119, e2211059119. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Gu, R.; Xu, J.; Gong, S.; Guo, S.; Xu, Q.; Shi, P.; Min, Y. Heterojunction Ferroelectric Materials Enhance Ion Transport and Fast Charging of Polymer Solid Electrolytes for Lithium Metal Batteries. Adv. Energy Mater. 2025, 15, 2405220. [Google Scholar] [CrossRef]
- Sung, J.; Heo, J.; Kim, D.-H.; Jo, S.; Ha, Y.-C.; Kim, D.; Ahn, S.; Park, J.-W. Recent Advances in All-Solid-State Batteries for Commercialization. Mater. Chem. Front. 2024, 8, 1861–1887. [Google Scholar] [CrossRef]
- Avadanii, D.; Ganschow, S.; Stypa, M.; Müller, S.; Lang, S.; Kramer, D.; Kirchlechner, C.; Mönig, R. Disconnected Lithium Metal Damages Solid-State Electrolytes. ACS Energy Lett. 2025, 10, 2061–2067. [Google Scholar] [CrossRef]
- Antony Jose, S.; Gallant, A.; Gomez, P.L.; Jaggers, Z.; Johansson, E.; LaPierre, Z.; Menezes, P.L. Solid-State Lithium Batteries: Advances, Challenges, and Future Perspectives. Batteries 2025, 11, 90. [Google Scholar] [CrossRef]
- Nikodimos, Y.; Huang, C.-J.; Taklu, B.W.; Su, W.-N.; Hwang, B.J. Chemical Stability of Sulfide Solid-State Electrolytes: Stability toward Humid Air and Compatibility with Solvents and Binders. Energy Environ. Sci. 2022, 15, 991–1033. [Google Scholar] [CrossRef]
Strategy | Main Advantage | Key Challenge | Main Limitation | Reference |
---|---|---|---|---|
Interface Coatings | Enhances chemical stability at the Li/SSE interface | Maintaining ionic conductivity across coating layer | Coatings may delaminate or crack during cycling; non-uniform layers may create local resistances | [57] |
Electron-Blocking Interlayers | Suppresses electron flow, blocks dendrite growth | Complex fabrication and interface compatibility | Added layers can increase interfacial resistance; limited thermal/mechanical stability under extended cycling | [58] |
Polymer–Ceramic Composite Electrolytes | Combines mechanical flexibility and ionic conductivity | Achieving uniform dispersion and phase stability | Inhomogeneous ceramic distribution may cause local stress or poor Li+ transport; processing complexity | [100] |
Doping of SSEs | Improves ionic conductivity and structural robustness | Controlling dopant homogeneity and effects | Excessive or poorly distributed dopants can destabilize phase purity or reduce mechanical strength | [101] |
3D-Host Architectures | Reduces local current density, directs Li deposition | Fabrication scalability and maintaining conductivity | May reduce volumetric energy density; mechanical degradation or clogging of pores over long-term cycling | [102] |
LiH Mitigation | Avoids formation of electronically insulating LiH phases | Complete elimination of hydrogen sources is difficult | Residual moisture or parasitic reactions may still generate LiH; suppression is not fully effective in ambient setups | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machín, A.; Díaz, F.; Cotto, M.C.; Ducongé, J.; Márquez, F. Recent Advances in Dendrite Suppression Strategies for Solid-State Lithium Batteries: From Interface Engineering to Material Innovations. Batteries 2025, 11, 304. https://doi.org/10.3390/batteries11080304
Machín A, Díaz F, Cotto MC, Ducongé J, Márquez F. Recent Advances in Dendrite Suppression Strategies for Solid-State Lithium Batteries: From Interface Engineering to Material Innovations. Batteries. 2025; 11(8):304. https://doi.org/10.3390/batteries11080304
Chicago/Turabian StyleMachín, Abniel, Francisco Díaz, María C. Cotto, José Ducongé, and Francisco Márquez. 2025. "Recent Advances in Dendrite Suppression Strategies for Solid-State Lithium Batteries: From Interface Engineering to Material Innovations" Batteries 11, no. 8: 304. https://doi.org/10.3390/batteries11080304
APA StyleMachín, A., Díaz, F., Cotto, M. C., Ducongé, J., & Márquez, F. (2025). Recent Advances in Dendrite Suppression Strategies for Solid-State Lithium Batteries: From Interface Engineering to Material Innovations. Batteries, 11(8), 304. https://doi.org/10.3390/batteries11080304