Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery
Abstract
1. The State of the Art
2. A New Approach for the Stabilization of Inorganic Solid Electrolyte
2.1. Material
2.2. Fluorination
- -
- Static fluorination at room temperature (RT) with a F2 pressure of 300 mbar for 1 h (Stat-1 h);
- -
- Dynamic fluorination at RT for 1 h (Dyn-1 h);
- -
- Dynamic fluorination at RT for 2 h (Dyn-2 h).
2.3. Physicochemical Characterization
3. Results
3.1. Fluorination Is Limited to the Outmost Surface
3.2. Fluorination Allows for Long-Term Stabilization
4. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, X.-B.; Zhao, C.-Z.; Yao, Y.-X.; Liu, H.; Zhang, Q. Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes. Chem 2019, 5, 74–96. [Google Scholar] [CrossRef]
- Meabe, L.; Aldalur, I.; Lindberg, S.; Arrese-Igor, M.; Armand, M.; Martinez-Ibañez, M.; Zhang, H. Solid-State Electrolytes for Safe Rechargeable Lithium Metal Batteries: A Strategic View. Mater. Futures 2023, 2, 33501. [Google Scholar] [CrossRef]
- Wang, C.; Wang, C.; Li, M.; Zhang, S.; Zhang, C.; Chou, S.; Mao, J.; Guo, Z. Design of Thin Solid-State Electrolyte Films for Safe and Energy-Dense Batteries. Mater. Today 2024, 72, 235–254. [Google Scholar] [CrossRef]
- Aurbach, D.; Talyosef, Y.; Markovsky, B.; Markevich, E.; Zinigrad, E.; Asraf, L.; Gnanaraj, J.S.; Kim, H.-J. Design of Electrolyte Solutions for Li and Li-Ion Batteries: A Review. Electrochim. Acta 2004, 50, 247–254. [Google Scholar] [CrossRef]
- Xi, G.; Xiao, M.; Wang, S.; Han, D.; Li, Y.; Meng, Y. Polymer-Based Solid Electrolytes: Material Selection, Design, and Application. Adv. Funct. Mater. 2021, 31, 2007598. [Google Scholar] [CrossRef]
- Chen, Z.; Kim, G.-T.; Wang, Z.; Bresser, D.; Qin, B.; Geiger, D.; Kaiser, U.; Wang, X.; Shen, Z.X.; Passerini, S. 4-V Flexible All-Solid-State Lithium Polymer Batteries. Nano Energy 2019, 64, 103986. [Google Scholar] [CrossRef]
- Mauger, A.; Julien, C.M. Solid Polymer Electrolytes for Lithium Batteries: A Tribute to Michel Armand. Inorganics 2022, 10, 110. [Google Scholar] [CrossRef]
- Manthiram, A.; Yu, X.; Wang, S. Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Knauth, P. Inorganic Solid Li Ion Conductors: An Overview. Solid State Ion. 2009, 180, 911–916. [Google Scholar] [CrossRef]
- Zheng, F.; Kotobuki, M.; Song, S.; Lai, M.O.; Lu, L. Review on Solid Electrolytes for All-Solid-State Lithium-Ion Batteries. J. Power Sources 2018, 389, 198–213. [Google Scholar] [CrossRef]
- Zhao, N.; Khokhar, W.; Bi, Z.; Shi, C.; Guo, X.; Fan, L.-Z.; Nan, C.-W. Solid Garnet Batteries. Joule 2019, 3, 1190–1199. [Google Scholar] [CrossRef]
- Keller, M.; Varzi, A.; Passerini, S. Hybrid Electrolytes for Lithium Metal Batteries. J. Power Sources 2018, 392, 206–225. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, T.; Zhao, B.; Shen, F.; Jin, H.; Han, X. Recent Advances in Organic-Inorganic Composite Solid Electrolytes for All-Solid-State Lithium Batteries. Energy Storage Mater. 2021, 34, 388–416. [Google Scholar] [CrossRef]
- Bhardwaj, R.K.; Zitoun, D. Recent Progress in Solid Electrolytes for All-Solid-State Metal(Li/Na)–Sulfur Batteries. Batteries 2023, 9, 110. [Google Scholar] [CrossRef]
- Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H. Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chem. Rev. 2020, 120, 6820–6877. [Google Scholar] [CrossRef] [PubMed]
- Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angew. Chemie Int. Ed. 2007, 46, 7778–7781. [Google Scholar] [CrossRef] [PubMed]
- Ramakumar, S.; Janani, N.; Murugan, R. Influence of Lithium Concentration on the Structure and Li+ Transport Properties of Cubic Phase Lithium Garnets. Dalt. Trans. 2015, 44, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Awaka, J.; Kijima, N.; Hayakawa, H.; Akimoto, J. Synthesis and Structure Analysis of Tetragonal Li7La3Zr2O12 with the Garnet-Related Type Structure. J. Solid State Chem. 2009, 182, 2046–2052. [Google Scholar] [CrossRef]
- Thangadurai, V.; Kaack, H.; Weppner, W.J.F. Novel Fast Lithium Ion Conduction in Garnet-Type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc. 2003, 86, 437–440. [Google Scholar] [CrossRef]
- Cheng, L.; Crumlin, E.J.; Chen, W.; Qiao, R.; Hou, H.; Franz Lux, S.; Zorba, V.; Russo, R.; Kostecki, R.; Liu, Z.; et al. The Origin of High Electrolyte–Electrode Interfacial Resistances in Lithium Cells Containing Garnet Type Solid Electrolytes. Phys. Chem. Chem. Phys. 2014, 16, 18294–18300. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Park, J.S.; Hou, H.; Zorba, V.; Chen, G.; Richardson, T.; Cabana, J.; Russo, R.; Doeff, M. Effect of Microstructure and Surface Impurity Segregation on the Electrical and Electrochemical Properties of Dense Al-Substituted Li7La3Zr2O12. J. Mater. Chem. A 2014, 2, 172–181. [Google Scholar] [CrossRef]
- Sharafi, A.; Yu, S.; Naguib, M.; Lee, M.; Ma, C.; Meyer, H.M.; Nanda, J.; Chi, M.; Siegel, D.J.; Sakamoto, J. Impact of Air Exposure and Surface Chemistry on Li–Li7La3Zr2O12 Interfacial Resistance. J. Mater. Chem. A 2017, 5, 13475–13487. [Google Scholar] [CrossRef]
- Lim, H.-D.; Park, J.-H.; Shin, H.-J.; Jeong, J.; Kim, J.T.; Nam, K.-W.; Jung, H.-G.; Chung, K.Y. A Review of Challenges and Issues Concerning Interfaces for All-Solid-State Batteries. Energy Storage Mater. 2020, 25, 224–250. [Google Scholar] [CrossRef]
- Janek, J.; Zeier, W.G. A Solid Future for Battery Development. Nat. Energy 2016, 1, 16141. [Google Scholar] [CrossRef]
- Chen, Y.; Qian, J.; Li, L.; Wu, F.; Chen, R. Advances in Inorganic Solid-State Electrolyte/Li Interface. Chem. A Eur. J. 2024, 30, e202303454. [Google Scholar] [CrossRef] [PubMed]
- Afyon, S.; Kravchyk, K.V.; Wang, S.; Broek, J.V.D.; Hänsel, C.; Kovalenko, M.V.; Rupp, J.L.M. Building Better All-Solid-State Batteries with Li-Garnet Solid Electrolytes and Metalloid Anodes. J. Mater. Chem. A 2019, 7, 21299–21308. [Google Scholar] [CrossRef]
- Lou, S.; Zhang, F.; Fu, C.; Chen, M.; Ma, Y.; Yin, G.; Wang, J. Interface Issues and Challenges in All-Solid-State Batteries: Lithium, Sodium, and Beyond. Adv. Mater. 2021, 33, 2000721. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.C.; Xia, X.H.; Zhang, S.Z.; Xie, D.; Wang, X.L.; Tu, J.P. Interfacial Challenges and Progress for Inorganic All-Solid-State Lithium Batteries. Electrochim. Acta 2018, 284, 177–187. [Google Scholar] [CrossRef]
- Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Structural Change of Li2S–P2S5 Sulfide Solid Electrolytes in the Atmosphere. Solid State Ion. 2011, 182, 116–119. [Google Scholar] [CrossRef]
- Simon, D.; Kelder, E.; Wagemaker, M.; Mulder, F.; Schoonman, J. Characterization of Proton Exchanged Li4Ti5O12 Spinel Material. Solid State Ion. 2006, 177, 2759–2768. [Google Scholar] [CrossRef]
- Samson, A.J.; Hofstetter, K.; Bag, S.; Thangadurai, V. A Bird’s-Eye View of Li-Stuffed Garnet-Type Li7La3Zr2O12 Ceramic Electrolytes for Advanced All-Solid-State Li Batteries. Energy Environ. Sci. 2019, 12, 2957–2975. [Google Scholar] [CrossRef]
- Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C. Electrochemical Stability of Li10 GeP2 S12 and Li7 La3 Zr2 O12 Solid Electrolytes. Adv. Energy Mater. 2016, 6, 1501590. [Google Scholar] [CrossRef]
- Famprikis, T.; Canepa, P.; Dawson, J.A.; Islam, M.S.; Masquelier, C. Fundamentals of Inorganic Solid-State Electrolytes for Batteries. Nat. Mater. 2019, 18, 1278–1291. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- von Aspern, N.; Röschenthaler, G.-V.; Winter, M.; Cekic-Laskovic, I. Fluorine and Lithium: Ideal Partners for High-Performance Rechargeable Battery Electrolytes. Angew. Chemie Int. Ed. 2019, 58, 15978–16000. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Matz, J.; Dong, P.; Shen, J.; Ye, M. A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase. Adv. Energy Mater. 2021, 11, 2100046. [Google Scholar] [CrossRef]
- Wang, T.; Duan, J.; Zhang, B.; Luo, W.; Ji, X.; Xu, H.; Huang, Y.; Huang, L.; Song, Z.; Wen, J.; et al. A Self-Regulated Gradient Interphase for Dendrite-Free Solid-State Li Batteries. Energy Environ. Sci. 2022, 15, 1325–1333. [Google Scholar] [CrossRef]
- Tan, Y.-H.; Lu, G.-X.; Zheng, J.-H.; Zhou, F.; Chen, M.; Ma, T.; Lu, L.-L.; Song, Y.-H.; Guan, Y.; Wang, J.; et al. Lithium Fluoride in Electrolyte for Stable and Safe Lithium-Metal Batteries. Adv. Mater. 2021, 33, 2102134. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Liu, Y.; Liu, T.; Wang, Y.; Nai, J.; Lin, Z.; Xu, H.; Duan, D.; Yue, K.; Tao, X. Fluorinated Strategies Among All-Solid-State Lithium Metal Batteries from Microperspective. Small Struct. 2023, 4, 2200122. [Google Scholar] [CrossRef]
- Ganesan, P.; Soans, M.; Cambaz, M.A.; Zimmermanns, R.; Gond, R.; Fuchs, S.; Hu, Y.; Baumgart, S.; Sotoudeh, M.; Stepien, D.; et al. Fluorine-Substituted Halide Solid Electrolytes with Enhanced Stability toward the Lithium Metal. ACS Appl. Mater. Interfaces 2023, 15, 38391–38402. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Liang, J.; Luo, L.; Wang, L.; Zhao, F.; Xu, G.; Bai, X.; Yang, R.; Zhao, S.; Wang, J.; et al. Superionic Fluorinated Halide Solid Electrolytes for Highly Stable Li-Metal in All-Solid-State Li Batteries. Adv. Energy Mater. 2021, 11, 2101915. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, X.-Q.; Cheng, X.-B.; Peng, H.-J.; Zhao, C.-Z.; Yan, C.; Huang, J.-Q. Artificial Soft–Rigid Protective Layer for Dendrite-Free Lithium Metal Anode. Adv. Funct. Mater. 2018, 28, 1705838. [Google Scholar] [CrossRef]
- Lu, Y.; Meng, X.; Alonso, J.A.; Fernández-Díaz, M.T.; Sun, C. Effects of Fluorine Doping on Structural and Electrochemical Properties of Li6.25Ga0.25La3Zr2O12 as Electrolytes for Solid-State Lithium Batteries. ACS Appl. Mater. Interfaces 2019, 11, 2042–2049. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, B.; Xu, H.; Duan, H.; Lü, X.; Xin, S.; Zhou, W.; Xue, L.; Fu, G.; Manthiram, A.; et al. Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries. Angew. Chemie Int. Ed. 2017, 56, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Haworth, A.R.; Yeandel, S.R.; Stockham, M.P.; James, M.S.; Xiu, J.; Wang, D.; Goddard, P.; Johnston, K.E.; Slater, P.R. Halogenation of Li7La3Zr2O12 Solid Electrolytes: A Combined Solid-State NMR, Computational and Electrochemical Study. J. Mater. Chem. A 2022, 10, 11172–11185. [Google Scholar] [CrossRef]
- Lin, D.; Liu, Y.; Chen, W.; Zhou, G.; Liu, K.; Dunn, B.; Cui, Y. Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon. Nano Lett. 2017, 17, 3731–3737. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liao, L.; Shi, F.; Lei, T.; Chen, G.; Pei, A.; Sun, J.; Yan, K.; Zhou, G.; Xie, J.; et al. Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability. J. Am. Chem. Soc. 2017, 139, 11550–11558. [Google Scholar] [CrossRef] [PubMed]
- Charles-Blin, Y.; Flahaut, D.; Guérin, K.; Dubois, M.; Monconduit, L.; Louvain, N.; Martinez, H. Surface Atomic Layer Fluorination of Li4Ti5O12: Investigation of the Surface Electrode Reactivity and the Outgassing Behavior in LiBs. Appl. Surf. Sci. 2020, 527, 146834. [Google Scholar] [CrossRef]
- Groult, H.; Nakajima, T.; Perrigaud, L.; Ohzawa, Y.; Yashiro, H.; Komaba, S.; Kumagai, N. Surface-Fluorinated Graphite Anode Materials for Li-Ion Batteries. J. Fluor. Chem. 2005, 126, 1111–1116. [Google Scholar] [CrossRef]
- Xiong, C.; Wang, Z.; Peng, X.; Guo, Y.; Xu, S.; Zhao, T. Bifunctional Effect of Laser-Induced Nucleation-Preferable Microchannels and in Situ Formed LiF SEI in MXenes for Stable Lithium-Metal Batteries. J. Mater. Chem. A 2020, 8, 14114–14125. [Google Scholar] [CrossRef]
- Breddemann, U.; Sicklinger, J.; Schipper, F.; Davis, V.; Fischer, A.; Huber, K.; Erickson, E.M.; Daub, M.; Hoffmann, A.; Erk, C.; et al. Fluorination of Ni-Rich Lithium-Ion Battery Cathode Materials by Fluorine Gas: Chemistry, Characterization, and Electrochemical Performance in Full-Cells. Batter. Supercaps 2021, 4, 632–645. [Google Scholar] [CrossRef]
- Kim, S.; Kim, E.J.; Charles-Blin, Y.; Guérin, K.; Dubois, M.; Flahaut, D.; Martinez, H.; Deschamps, M.; Miller, D.N.; Irvine, J.T.S.; et al. Atomic Layer Fluorination of 5 V Class Positive Electrode Material LiCoPO4 for Enhanced Electrochemical Performance. Batter. Supercaps 2020, 3, 1051–1058. [Google Scholar] [CrossRef]
- Son, J.E.; Yim, J.-H.; Lee, J.-W. Fluorination of SiOx as an Effective Strategy to Enhance the Cycling Stability of Lithium-Ion Batteries. Electrochem. Commun. 2023, 152, 107517. [Google Scholar] [CrossRef]
- Charles-Blin, Y.; Flahaut, D.; Ledeuil, J.-B.; Guérin, K.; Dubois, M.; Deschamps, M.; Perbost, A.-M.; Monconduit, L.; Martinez, H.; Louvain, N. Atomic Layer Fluorination of the Li4Ti5O12 Surface: A Multiprobing Survey. ACS Appl. Energy Mater. 2019, 2, 6681–6692. [Google Scholar] [CrossRef]
- Le Mercier, T.; Braida, M.; Buissette, V.; Amisse, R.; Toth, R.; Bertry, L. Method of Preparation of a Garnet-Type Inorganic Material. Patent WO2021023599A1, 11 February 2021. [Google Scholar]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore Suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef]
- Neises, J.; Scheld, W.S.; Seok, A.-R.; Lobe, S.; Finsterbusch, M.; Uhlenbruck, S.; Schmechel, R.; Benson, N. Study of Thermal Material Properties for Ta- and Al-Substituted Li7La3Zr2O12 (LLZO) Solid-State Electrolyte in Dependency of Temperature and Grain Size. J. Mater. Chem. A 2022, 10, 12177–12186. [Google Scholar] [CrossRef]
- Jeong, W.; Park, S.S.; Yun, J.; Shin, H.R.; Moon, J.; Lee, J.-W. Tailoring Grain Boundary Structures and Chemistry of Li7La3Zr2O12 Solid Electrolytes for Enhanced Air Stability. Energy Storage Mater. 2023, 54, 543–552. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Ma, Q.; Dellen, C.; Lobe, S.; Vondahlen, F.; Windmüller, A.; Grüner, D.; Zheng, H.; Uhlenbruck, S.; Finsterbusch, M.; et al. A Garnet Structure-Based All-Solid-State Li Battery without Interface Modification: Resolving Incompatibility Issues on Positive Electrodes. Sustain. Energy Fuels 2019, 3, 280–291. [Google Scholar] [CrossRef]
- Xia, W.; Xu, B.; Duan, H.; Tang, X.; Guo, Y.; Kang, H.; Li, H.; Liu, H. Reaction Mechanisms of Lithium Garnet Pellets in Ambient Air: The Effect of Humidity and CO2. J. Am. Ceram. Soc. 2017, 100, 2832–2839. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Liu, Y.; Wang, H.; Yu, C.; Zeng, H.; Wang, L.; Xu, B. Interface-Engineered Li7La3Zr2O12-Based Garnet Solid Electrolytes with Suppressed Li-Dendrite Formation and Enhanced Electrochemical Performance. ChemSusChem 2018, 11, 3774–3782. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Golmohammad, M.; SharifiRad, A.; Alizadeh, S.M. Surface Modification and Chemical Stability of Garnet LLZO Solid Electrolyte by ZnO Coating through a Facile and Practical Method. Mater. Chem. Phys. 2023, 308, 128235. [Google Scholar] [CrossRef]
- Scheld, W.S.; Collette, Y.; Schwab, C.; Ihrig, M.; Uhlenbruck, S.; Finsterbusch, M.; Fattakhova-Rohlfing, D. Ga-Ion Migration during Co-Sintering of Heterogeneous Ta- and Ga-Substituted LLZO Solid-State Electrolytes. J. Eur. Ceram. Soc. 2025, 45, 116936. [Google Scholar] [CrossRef]
- Zhu, Y.; Chon, M.; Thompson, C.V.; Rupp, J.L.M. Time-Temperature-Transformation (TTT) Diagram of Battery-Grade Li-Garnet Electrolytes for Low-Temperature Sustainable Synthesis. Angew. Chemie Int. Ed. 2023, 62, e202304581. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, M.; Liu, S.; Chen, H.; Li, B.; Li, G.; Zhang, S.; Wen, Y.; Qiu, J.; Chen, J.; et al. Direct Wetting of Li7La3Zr2O12 Electrolyte with Molten Li Anode and Its Application in Solid-State Lithium Batteries. J. Power Sources 2024, 593, 233977. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, N.; Li, Y.; Guo, X.; Feng, X.; Liu, X.; Liu, Z.; Cui, G.; Zheng, H.; Gu, L.; et al. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes. Sci. Rep. 2017, 7, 41217. [Google Scholar] [CrossRef] [PubMed]
- Gennick, I.; Harmon, K.M. Hydrogen Bonding. VI. Structural and Infrared Spectral Analysis of Lithium Hydroxide Monohydrate and Cesium and Rubidium Hydroxide Hydrates. Inorg. Chem. 1975, 14, 2214–2219. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herraiz, M.; Moumen, S.; Lemoine, K.; Jouffret, L.; Guérin, K.; Petit, E.; Gaillard, N.; Bertry, L.; Toth, R.; Le Mercier, T.; et al. Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery. Batteries 2025, 11, 268. https://doi.org/10.3390/batteries11070268
Herraiz M, Moumen S, Lemoine K, Jouffret L, Guérin K, Petit E, Gaillard N, Bertry L, Toth R, Le Mercier T, et al. Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery. Batteries. 2025; 11(7):268. https://doi.org/10.3390/batteries11070268
Chicago/Turabian StyleHerraiz, Michael, Saida Moumen, Kevin Lemoine, Laurent Jouffret, Katia Guérin, Elodie Petit, Nathalie Gaillard, Laure Bertry, Reka Toth, Thierry Le Mercier, and et al. 2025. "Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery" Batteries 11, no. 7: 268. https://doi.org/10.3390/batteries11070268
APA StyleHerraiz, M., Moumen, S., Lemoine, K., Jouffret, L., Guérin, K., Petit, E., Gaillard, N., Bertry, L., Toth, R., Le Mercier, T., Buissette, V., & Dubois, M. (2025). Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery. Batteries, 11(7), 268. https://doi.org/10.3390/batteries11070268