The Application of BiGRU-MSTA Based on Multi-Scale Temporal Attention Mechanism in Predicting the Remaining Life of Lithium-Ion Batteries
Abstract
1. Introduction
- Proposition of a novel MSTA: The study introduces a new MSTA mechanism specifically designed to address the complex degradation patterns observed in time series data for lithium-ion battery RUL prediction. This mechanism facilitates the extraction of multi-scale features from the degradation data, capturing both short-term fluctuations and long-term trends effectively. As a result, it significantly improves the model’s ability to represent temporal features.
- Integration of MSTA with BiGRU: The BiGRU-MSTA model merges the bidirectional sequence modeling capability of BiGRU with the multi-scale feature extraction efficiency of MSTA. This innovative architecture allows for the effective learning of both forward and backward temporal dependencies, while simultaneously focusing on critical patterns at varying time scales. This integration markedly enhances the model’s prediction accuracy and robustness.
- Evaluation on the NASA and CALCE lithium-ion battery datasets: For the NASA dataset, three distinct train–test split ratios (3:7, 5:5, and 7:3) were employed. The results consistently indicate that the BiGRU-MSTA model surpasses existing methods across all configurations, underscoring its exceptional predictive accuracy and generalization capability. Furthermore, the CALCE dataset experiment investigates the impact of varying numbers of temporal scales within the MSTA mechanism. The findings reveal that the model achieves optimal performance with an increased number of scales, thereby reinforcing its robustness and superior performance relative to state-of-the-art models.
2. Materials and Methods
2.1. Gated Recurrent Unit (GRU) Methodology
2.2. BiGRU Method
2.3. Multi-Scale Temporal Attention
2.4. BiGRU-MSTA Model
3. Results and Discussion: NASA Dataset
3.1. Dataset Introduction
3.2. Evaluation Metrics
3.3. Model Parameters
3.4. Comparative Analysis of Results
4. Results and Discussion: CALCE Dataset
4.1. Dataset Introduction
4.2. MSTA of Different Quantity Scales
4.3. Compare with Advanced Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, B.; He, X.; Zhang, W.; Ruan, H.; Su, X.; Jiang, J. Study of parameters identification method of Li-ion battery model for EV power profile based on transient characteristics data. IEEE Trans. Intell. Transp. Syst. 2020, 22, 661–672. [Google Scholar] [CrossRef]
- Li, S.; Fang, H.; Shi, B. Remaining useful life estimation of lithium-ion battery based on interacting multiple model particle filter and support vector regression. Reliab. Eng. Syst. Saf. 2021, 210, 107542. [Google Scholar] [CrossRef]
- Sadabadi, K.K.; Jin, X.; Rizzoni, G. Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health. J. Power Sources 2021, 481, 228861. [Google Scholar] [CrossRef]
- Gao, H.; Cui, L.; Dong, Q. Reliability modeling for a two-phase degradation system with a change point based on a Wiener process. Reliab. Eng. Syst. Saf. 2020, 193, 106601. [Google Scholar] [CrossRef]
- Liu, K.; Shang, Y.; Ouyang, Q.; Widanage, W.D. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery. IEEE Trans. Ind. Electron. 2020, 68, 3170–3180. [Google Scholar] [CrossRef]
- Li, D.; Yang, L. Remaining useful life prediction of lithium battery based on sequential CNN–LSTM method. J. Electrochem. Energy Convers. Storage 2021, 18, 041005. [Google Scholar] [CrossRef]
- Hu, X.; Yang, X.; Feng, F.; Liu, K.; Lin, X. A particle filter and long short-term memory fusion technique for lithium-ion battery remaining useful life prediction. J. Dyn. Syst. Meas. Control 2021, 143, 061001. [Google Scholar] [CrossRef]
- Šeruga, D.; Gosar, A.; Sweeney, C.A.; Jaguemont, J.; Van Mierlo, J.; Nagode, M. Continuous modelling of cyclic ageing for lithium-ion batteries. Energy 2021, 215, 119079. [Google Scholar] [CrossRef]
- Yang, R.; Xiong, R.; Ma, S.; Lin, X. Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks. Appl. Energy 2020, 260, 114253. [Google Scholar] [CrossRef]
- Wang, F.K.; Huang, C.Y.; Mamo, T. Ensemble model based on stacked long short-term memory model for cycle life prediction of lithium–ion batteries. Appl. Sci. 2020, 10, 3549. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, D. Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms. Reliab. Eng. Syst. Saf. 2023, 230, 108947. [Google Scholar] [CrossRef]
- Qian, C.; He, N.; He, L.; Li, H.; Cheng, F. State of health estimation of lithium-ion battery using energy accumulation-based feature extraction and improved relevance vector regression. J. Energy Storage 2023, 68, 107754. [Google Scholar] [CrossRef]
- Li, W.; Sengupta, N.; Dechent, P.; Howey, D.; Annaswamy, A.; Sauer, D.U. Online capacity estimation of lithium-ion batteries with deep long short-term memory networks. J. Power Sources 2021, 482, 228863. [Google Scholar] [CrossRef]
- Chen, L.; Wang, H.; Liu, B.; Wang, Y.; Ding, Y.; Pan, H. Battery state-of-health estimation based on a metabolic extreme learning machine combining degradation state model and error compensation. Energy 2021, 215, 119078. [Google Scholar] [CrossRef]
- Zhang, K.; Peng, Z.; Canfei, S.; Youren, W.; Zewang, C. Remaining useful life prediction of aircraft lithium-ion batteries based on F-distribution particle filter and kernel smoothing algorithm. Chin. J. Aeronaut. 2020, 33, 1517–1531. [Google Scholar] [CrossRef]
- Ma, J.; Xu, S.; Shang, P.; Qin, W.; Cheng, Y.; Lu, C.; Su, Y.; Chong, J.; Jin, H.; Lin, Y.; et al. Cycle life test optimization for different Li-ion power battery formulations using a hybrid remaining-useful-life prediction method. Appl. Energy 2020, 262, 114490. [Google Scholar] [CrossRef]
- Han, T.; Wang, Z.; Meng, H. End-to-end capacity estimation of Lithium-ion batteries with an enhanced long short-term memory network considering domain adaptation. J. Power Sources 2022, 520, 230823. [Google Scholar] [CrossRef]
- Ma, Y.; Shan, C.; Gao, J.; Chen, H. A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction. Energy 2022, 251, 123973. [Google Scholar] [CrossRef]
- Hu, X.; Che, Y.; Lin, X.; Deng, Z. Health prognosis for electric vehicle battery packs: A data-driven approach. IEEE/ASME Trans. Mechatronics 2020, 25, 2622–2632. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, L.; Yu, Q.; Liu, S.; Zhou, G.; Shen, W. State of charge estimation for lithium-ion batteries based on cross-domain transfer learning with feedback mechanism. J. Energy Storage 2023, 70, 108037. [Google Scholar] [CrossRef]
- Li, X.; Yuan, C.; Wang, Z. Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression. J. Power Sources 2020, 467, 228358. [Google Scholar] [CrossRef]
- Peng, S.; Sun, Y.; Liu, D.; Yu, Q.; Kan, J.; Pecht, M. State of health estimation of lithium-ion batteries based on multi-health features extraction and improved long short-term memory neural network. Energy 2023, 282, 128956. [Google Scholar] [CrossRef]
- Han, S.; Tang, Y.; Rahimian, S.K. A numerically efficient method of solving the full-order pseudo-2-dimensional (P2D) Li-ion cell model. J. Power Sources 2021, 490, 229571. [Google Scholar] [CrossRef]
- Wei, Z.; Zhao, J.; Ji, D.; Tseng, K.J. A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model. Appl. Energy 2017, 204, 1264–1274. [Google Scholar] [CrossRef]
- Bizeray, A.M.; Kim, J.H.; Duncan, S.R.; Howey, D.A. Identifiability and parameter estimation of the single particle lithium-ion battery model. IEEE Trans. Control Syst. Technol. 2018, 27, 1862–1877. [Google Scholar] [CrossRef]
- Xia, B.; Lao, Z.; Zhang, R.; Tian, Y.; Chen, G.; Sun, Z.; Wang, W.; Sun, W.; Lai, Y.; Wang, M.; et al. Online parameter identification and state of charge estimation of lithium-ion batteries based on forgetting factor recursive least squares and nonlinear Kalman filter. Energies 2017, 11, 3. [Google Scholar] [CrossRef]
- Sun, R.; Chen, J.; Li, B.; Piao, C. State of health estimation for Lithium-ion batteries based on novel feature extraction and BiGRU-Attention model. Energy 2025, 319, 134756. [Google Scholar] [CrossRef]
- Xue, J.; Wei, L.; Sheng, F.; Gao, Y.; Zhang, J. Survival Analysis with Machine Learning for Predicting Li-ion Battery Remaining Useful Life. arXiv 2025, arXiv:2503.13558. [Google Scholar]
- Tarar, M.O.; Naqvi, I.H.; Khalid, Z.; Pecht, M. Accurate prediction of remaining useful life for lithium-ion battery using deep neural networks with memory features. Front. Energy Res. 2023, 11, 1059701. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Z.; Yuan, L.; Xu, Z.; Jin, L.; Zhang, C. State of health estimation of lithium-ion batteries based on multi-feature extraction and temporal convolutional network. J. Energy Storage 2024, 75, 109658. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, W.; Yang, K.; Zhang, S. Remaining useful life prediction of lithium-ion batteries based on attention mechanism and bidirectional long short-term memory network. Measurement 2022, 204, 112093. [Google Scholar] [CrossRef]
- Suh, S.; Mittal, D.A.; Bello, H.; Zhou, B.; Jha, M.S.; Lukowicz, P. Remaining useful life prediction of Lithium-ion batteries using spatio-temporal multimodal attention networks. Heliyon 2024, 10, e36236. [Google Scholar] [CrossRef]
- Chen, D.; Zhou, X. AttMoE: Attention with Mixture of Experts for remaining useful life prediction of lithium-ion batteries. J. Energy Storage 2024, 84, 110780. [Google Scholar] [CrossRef]
- Lee, J.; Heo, S.; Lee, J.H. Extracting key temporal and cyclic features from VIT data to predict lithium-ion battery knee points using attention mechanisms. Comput. Chem. Eng. 2025, 193, 108931. [Google Scholar] [CrossRef]
- Tran, K.; Huynh, B.; Le, T.; Pham, L.; Nguyen, V.R. HybridoNet-Adapt: A Domain-Adapted Framework for Accurate Lithium-Ion Battery RUL Prediction. arXiv 2025, arXiv:2503.21392. [Google Scholar]
- Gao, M.; Fei, Z.; Guo, D.; Xu, Z.; Wang, M. A multi-stage time series processing framework based on attention mechanism for early life prediction of lithium-ion batteries. J. Energy Storage 2024, 84, 110771. [Google Scholar] [CrossRef]
- Huang, J.; He, T.; Zhu, W.; Liao, Y.; Zeng, J.; Xu, Q.; Niu, Y. A lithium-ion battery SOH estimation method based on temporal pattern attention mechanism and CNN-LSTM model. Comput. Electr. Eng. 2025, 122, 109930. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, H.; Meng, Z.; Wang, X. A parallel GRU with dual-stage attention mechanism model integrating uncertainty quantification for probabilistic RUL prediction of wind turbine bearings. Reliab. Eng. Syst. Saf. 2023, 235, 109197. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, B.; Yuan, X.; Liang, P. Remaining useful life prediction via improved CNN, GRU and residual attention mechanism with soft thresholding. IEEE Sens. J. 2022, 22, 15178–15190. [Google Scholar] [CrossRef]
- Zhou, J.; Qin, Y.; Luo, J.; Zhu, T. Remaining useful life prediction by distribution contact ratio health indicator and consolidated memory GRU. IEEE Trans. Ind. Inform. 2022, 19, 8472–8483. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, P.; Xu, M.; Zhang, Y.; Lian, X.; Yu, C. Adaptive GCN and Bi-GRU-Based Dual Branch for Motor Imagery EEG Decoding. Sensors 2025, 25, 1147. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Tian, Y.; Shi, Y.; Jia, J.; Wen, J.; Zeng, J. State of health prediction of lithium-ion batteries based on bidirectional gated recurrent unit and transformer. Energy 2023, 285, 129401. [Google Scholar] [CrossRef]
- Chen, D.; Hong, W.; Zhou, X. Transformer network for remaining useful life prediction of lithium-ion batteries. IEEE Access 2022, 10, 19621–19628. [Google Scholar] [CrossRef]
- Bao, G.; Liu, X.; Zou, B.; Yang, K.; Zhao, J.; Zhang, L.; Chen, M.; Qiao, Y.; Wang, W.; Tan, R.; et al. Collaborative framework of Transformer and LSTM for enhanced state-of-charge estimation in lithium-ion batteries. Energy 2025, 322, 135548. [Google Scholar] [CrossRef]
Category | Parameters |
---|---|
Model Architecture |
|
Training Configuration |
|
Model | MSE | RMSE | MAE | MAPE | |
---|---|---|---|---|---|
LSTM | 0.0025 ± 0.0002 | 0.05 ± 0.0031 | 0.0309 ± 0.0021 | 0.02210 ± 0.0011 | 0.9345 ± 0.0045 |
BiGRU | 0.0024 ± 0.0001 | 0.0489 ± 0.0032 | 0.0322 ± 0.0023 | 0.02115 ± 0.0012 | 0.9310 ± 0.0047 |
CNN-LSTM | 0.0058 ± 0.0005 | 0.0762 ± 0.0043 | 0.0541 ± 0.0035 | 0.03523 ± 0.0026 | 0.8320 ± 0.0093 |
BiGRU-Attention | 0.0013 ± 0.0002 | 0.0361 ± 0.0029 | 0.0152 ± 0.0015 | 0.00919 ± 0.0008 | 0.9795 ± 0.0028 |
BiGRU-MSTA | ± | ± | ± | ± | ± |
Model | MSE | RMSE | MAE | MAPE | |
---|---|---|---|---|---|
LSTM | 0.0216 ± 0.0021 | 0.1471 ± 0.0080 | 0.1224 ± 0.0062 | 0.08329 ± 0.0055 | 0.4033 ± 0.0156 |
BiGRU | 0.0232 ± 0.0023 | 0.1526 ± 0.0085 | 0.1269 ± 0.0074 | 0.08672 ± 0.0046 | 0.3551 ± 0.0174 |
CNN-LSTM | 0.0311 ± 0.0032 | 0.1752 ± 0.0105 | 0.1449 ± 0.0085 | 0.09923 ± 0.0067 | 0.1548 ± 0.0213 |
BiGRU-Attention | 0.0229 ± 0.0024 | 0.1517 ± 0.0082 | 0.1247 ± 0.0070 | 0.08609 ± 0.0043 | 0.3634 ± 0.0165 |
BiGRU-MSTA | ± | ± | ± | ± | ± |
Battery Number | num_scales = 2 | num_scales = 4 | num_scales = 8 |
---|---|---|---|
CS-35 | 0.0420 ± 0.0010 | 0.0656 ± 0.0020 | |
CS-36 | 0.0548 ± 0.0012 | 0.0868 ± 0.0027 | |
CS-37 | 0.0411 ± 0.0009 | 0.0650 ± 0.0009 | |
CS-38 | 0.0397 ± 0.0011 | 0.0619 ± 0.0022 |
Battery Number | Model | RMSE | MAPE | |
---|---|---|---|---|
CS-35 | Transformer | 0.0386 ± 0.0023 | 0.0527 ± 0.0031 | 0.9651 ± 0.0015 |
LSTM–Transformer | 0.0294 ± 0.0018 | 0.0402 ± 0.0025 | 0.9797 ± 0.0012 | |
BiGRU-MSTA | ||||
CS-36 | Transformer | 0.0533 ± 0.0029 | 0.1184 ± 0.0042 | 0.9472 ± 0.0018 |
LSTM–Transformer | 0.0333 ± 0.0021 | 0.0684 ± 0.0033 | 0.9794 ± 0.0013 | |
BiGRU-MSTA | ||||
CS-37 | Transformer | 0.0388 ± 0.0024 | 0.0577 ± 0.0035 | 0.9628 ± 0.0016 |
LSTM–Transformer | 0.0269 ± 0.0017 | 0.0402 ± 0.0026 | 0.9821 ± 0.0012 | |
BiGRU-MSTA | ||||
CS-38 | Transformer | 0.0370 ± 0.0022 | 0.0505 ± 0.0022 | 0.9657 ± 0.0017 |
LSTM–Transformer | 0.0275 ± 0.0019 | 0.0351 ± 0.0024 | 0.9809 ± 0.0014 | |
BiGRU-MSTA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, S. The Application of BiGRU-MSTA Based on Multi-Scale Temporal Attention Mechanism in Predicting the Remaining Life of Lithium-Ion Batteries. Batteries 2025, 11, 223. https://doi.org/10.3390/batteries11060223
Wang L, Wang S. The Application of BiGRU-MSTA Based on Multi-Scale Temporal Attention Mechanism in Predicting the Remaining Life of Lithium-Ion Batteries. Batteries. 2025; 11(6):223. https://doi.org/10.3390/batteries11060223
Chicago/Turabian StyleWang, Luping, and Shanze Wang. 2025. "The Application of BiGRU-MSTA Based on Multi-Scale Temporal Attention Mechanism in Predicting the Remaining Life of Lithium-Ion Batteries" Batteries 11, no. 6: 223. https://doi.org/10.3390/batteries11060223
APA StyleWang, L., & Wang, S. (2025). The Application of BiGRU-MSTA Based on Multi-Scale Temporal Attention Mechanism in Predicting the Remaining Life of Lithium-Ion Batteries. Batteries, 11(6), 223. https://doi.org/10.3390/batteries11060223