Multi-Level Thermal Modeling and Management of Battery Energy Storage Systems
Abstract
1. Introduction
2. Experiments and Model
2.1. Construction of the Cell Thermal Model
2.2. Construction of Battery Module and Battery Clusters Thermal Model
2.2.1. Construction of System Thermal Load
2.2.2. Construction of Cluster-Level Simulation Model
- ρ—Fluid density;
- u—Velocity vector;
- p—Static pressure;
- ueff—Effective dynamic viscosity;
- Cp—Specific heat capacity;
- T—Temperature;
- keff—Effective thermal conductivity;
- Smomentum—Momentum source term;
- Senergy—Energy source term.
2.3. Construction of Container Thermal Model
- (1)
- Natural convection is used for convection heat transfer between the container wall and the external environment, considering heat radiation;
- (2)
- An anisotropic thermal conductivity model is implemented for battery cells to characterize direction-dependent heat transfer properties;
- (3)
- Polyhedral mesh combined with prismatic boundary layers is generated using fluent meshing for the container structure;
- (4)
- Variable grid sizing is applied across domains to resolve high-velocity gradients while minimizing total mesh count;
- (5)
- The SST k-ω turbulence model is adopted to precisely capture the viscous sublayer characteristics, thereby enabling the precise evaluation of system heat dissipation capacity.
3. Results and Discussion
3.1. Heating Power Model of the Battery Cell
- Constant-temperature chamber (±0.1 °C accuracy).
- Multi-channel data acquisition system.
- Heat flux density sensor array.
- Vacuum insulation layer.
- (1)
- Sample installation: Assemble the thermal equalization block, heating plate, and battery according to specifications to ensure optimal interfacial contact.
- (2)
- Thermal coupling: Fill interfacial gaps with thermal grease (thermal resistance < 0.05 K·m2/W, based on the product specifications).
- (3)
- Parameter setup: Configure test conditions based on the operational matrix in the table.
- (4)
- Data acquisition: Synchronously record temperature, voltage, current, and heat flux data (sampling frequency: 10 Hz).
3.2. Simulation Results of Battery Module Cluster Model
3.3. Simulation Results of Container Model
3.4. Model Accuracy Verification Under Actual Operating Conditions
3.5. Optimization of System Control Strategy Based on Comprehensive System Benefit
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, N.; Chen, Y.; Lin, B.; Li, J.; Zhou, X. Experimental assessment and comparison of single-phase versus two-phase liquid cooling battery thermal management systems. J. Energy Storage 2023, 72, 108727. [Google Scholar] [CrossRef]
- Song, F.; Cui, J.; Yu, Y. Dynamic volatility spillover effects between wind and solar power generations: Implications for hedging strategies and a sustainable power sector. Econ. Model. 2022, 116, 106036. [Google Scholar] [CrossRef]
- Mohd Razif, A.S.; Ab Aziz, N.F.; Ab Kadir, M.Z.A.; Kamil, K. Accelerating energy transition through battery energy storage systems deployment: A review on current status, potential and challenges in Malaysia. Energy Strategy Rev. 2024, 52, 101346. [Google Scholar] [CrossRef]
- Al Khafaf, N.; Rezaei, A.A.; Moradi Amani, A.; Jalili, M.; McGrath, B.; Meegahapola, L.; Vahidnia, A. Impact of battery storage on residential energy consumption: An Australian case study based on smart meter data. Renew. Energy 2022, 182, 390–400. [Google Scholar] [CrossRef]
- Rosewater, D.; Ferreira, S.; Schoenwald, D.; Hawkins, J.; Santoso, S. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy. IEEE Trans. Smart Grid 2019, 10, 2453–2462. [Google Scholar] [CrossRef]
- Yudhistira, R.; Khatiwada, D.; Sanchez, F. A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage. J. Clean. Prod. 2022, 358, 131999. [Google Scholar] [CrossRef]
- Song, L.; Zheng, Y.; Xiao, Z.; Wang, C.; Long, T. Review on Thermal Runaway of Lithium-Ion Batteries for Electric Vehicles. J. Electron. Mater. 2021, 51, 30–46. [Google Scholar] [CrossRef]
- Li, H.; Xiao, X.; Wang, Y.; Lian, C.; Li, Q.; Wang, Z. Performance investigation of a battery thermal management system with microencapsulated phase change material suspension. Appl. Therm. Eng. 2020, 180, 115795. [Google Scholar] [CrossRef]
- Qi, W.; Lan, P.; Yang, J.; Chen, Y.; Zhang, Y.; Wang, G.; Peng, F.; Hong, J. Multi-U-Style micro-channel in liquid cooling plate for thermal management of power batteries. Appl. Therm. Eng. 2024, 256, 123984. [Google Scholar] [CrossRef]
- Wang, D.; Tang, M.; Wu, C.; Huang, C. Design and Numerical Study of Microchannel Liquid Cooling Structures for Lithium Batteries. Energy Technol. 2024, 12, 2301646. [Google Scholar] [CrossRef]
- Khoshvaght-Aliabadi, M.; Ghodrati, P.; Kang, Y.T. Developing a novel battery thermal management system utilizing supercritical CO2 as the cooling medium. Appl. Energy 2025, 381, 125207. [Google Scholar] [CrossRef]
- Khoshvaght-Aliabadi, M.; Ghodrati, P.; Kang, Y.T. Performance analysis of supercritical carbon dioxide as a coolant in cold plate systems. Energy 2025, 314, 134301. [Google Scholar] [CrossRef]
- Hussain, A.; Abidi, I.H.; Tso, C.Y.; Chan, K.C.; Luo, Z.; Chao, C.Y. Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials. Int. J. Therm. Sci. 2018, 124, 23–35. [Google Scholar] [CrossRef]
- Perez, H.D.; Grossmann, I.E. Recent Advances in Computational Models for the Discrete and Continuous Optimization of Industrial Process Systems. In Advances on Links Between Mathematics and Industry; Springer: Cham, Switzerland, 2021; pp. 1–31. [Google Scholar]
- Bernardi, D.M.; Pawlikowski, E.M.; Newman, J. A General Energy Balance for Battery Systems. J. Electrochem. Soc. 1984, 132, 5–12. [Google Scholar] [CrossRef]
- Damay, N.; Forgez, C.; Bichat, M.-P.; Friedrich, G. Thermal modeling of large prismatic LiFePO4 /graphite battery. Coupled thermal and heat generation models for characterization and simulation. J. Power Sources 2015, 283, 37–45. [Google Scholar] [CrossRef]
- Du, S.; Lai, Y.; Ai, L.; Ai, L.; Cheng, Y.; Tang, Y.; Jia, M. An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method. Appl. Therm. Eng. 2017, 121, 501–510. [Google Scholar] [CrossRef]
- Chen, G.; Xia, X.; Zhao, X.; Zeng, X.; Ouyang, T.; Feng, H. A balanced SOH-SOC control strategy for multiple battery energy storage units based on battery lifetime change laws. Electr. Eng. 2025, 1–12. [Google Scholar] [CrossRef]
- Zhao, W.; Meng, C.; Zhao, Y.; Xie, S.; Wang, X.; Jiang, C.; Li, W.; Jing, R. Research on aging-thermal characteristics coupling and aging thermal management analysis of large-capacity LiFePO4 battery. J. Energy Storage 2025, 114, 115675. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, Y.; Zhang, Z.; Wang, W.; Yang, L.; Du, X. Charge and discharge strategies of lithium-ion battery based on electrochemical-mechanical-thermal coupling aging model. J. Energy Storage 2024, 99, 113484. [Google Scholar] [CrossRef]
- Dubarry, M.; Baure, G.; Devie, A. Durability and Reliability of EV Batteries under Electric Utility Grid Operations: Path Dependence of Battery Degradation. J. Electrochem. Soc. 2018, 165, A773. [Google Scholar] [CrossRef]
- Richardson, R.R.; Osborne, M.A.; Howey, D.A. Gaussian process regression for forecasting battery state of health. J. Power Sources 2017, 357, 209–219. [Google Scholar] [CrossRef]
- Mura, R.; Utkin, V.; Onori, S. Energy Management Design in Hybrid Electric Vehicles: A Novel Optimality and Stability Framework. IEEE Trans. Control. Syst. Technol. 2015, 23, 1307–1322. [Google Scholar] [CrossRef]
- Bashash, S.; Moura, S.J.; Forman, J.C.; Fathy, H.K. Plug-in hybrid electric vehicle charge pattern optimization for energy cost and battery longevity. J. Power Sources 2011, 196, 541–549. [Google Scholar] [CrossRef]
- Anderson, J. Computational Fluid Dynamics: The Basics with Applications. Master’s Thesis, Tsinghua University Press, Beijing, China, 2002. [Google Scholar]
- Byron Bird, R.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1960. [Google Scholar]
- Kays, W.M.; Crawford, M.E.; Weigand, B. Convective Heat and Mass Transfer; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Lv, Z.; Si, H.; Yang, Z.; Cui, J.; He, Z.; Wang, L.; Li, Z.; Zhang, J. Simplified Mechanistic Aging Model for Lithium Ion Batteries in Large-Scale Applications. Materials 2025, 18, 1342. [Google Scholar] [CrossRef]
Number | Parameter Name | Technical Indicator |
---|---|---|
1 | Battery type | prismatic lithium iron phosphate |
2 | Rated voltage | 3.2 V |
3 | Nominal capacity | 280 Ah |
4 | Mass | 5340.0 g |
5 | Energy density | 167.8 Wh/kg |
6 | Test ambient temperature | 15/20/25/30/35/40 °C |
Parameter | Tmax-Sim | Tmax-Meas | Tmin-Sim | Tmin-Meas | ΔT-Sim | ΔT-Meas |
---|---|---|---|---|---|---|
maximum | 36.2 °C | 34.4 °C | 31.6 °C | 30.2 °C | 4.6 °C | 4.9 °C |
minimum | 26.0 °C | 26.0 °C | 23.8 °C | 23.1 °C | 2.0 °C | 1.9 °C |
mean | 30.3 °C | 30.0 °C | 26.7 °C | 26.3 °C | 3.6 °C | 3.7 °C |
Error Metric | Tmax (Simulation vs. Measured) | Tmin (Simulation vs. Measured) | ΔT (Simulation vs. Measured) |
---|---|---|---|
maximum absolute error | 2.3 °C | 2.5 °C | 1.30 °C |
mean absolute error | 0.74 °C | 0.85 °C | 0.32 °C |
No. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | ∞ |
---|---|---|---|---|---|---|---|---|
Start T, | Not Running | 35 | 35 | 34 | 33 | 32 | 31 | Persistent Running |
End T. | 34 | 32 | 31 | 30 | 29 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Z.; Sun, Z.; Wang, L.; Liu, Q.; Zhang, J. Multi-Level Thermal Modeling and Management of Battery Energy Storage Systems. Batteries 2025, 11, 219. https://doi.org/10.3390/batteries11060219
Lv Z, Sun Z, Wang L, Liu Q, Zhang J. Multi-Level Thermal Modeling and Management of Battery Energy Storage Systems. Batteries. 2025; 11(6):219. https://doi.org/10.3390/batteries11060219
Chicago/Turabian StyleLv, Zhe, Zhonghao Sun, Lei Wang, Qi Liu, and Jianbo Zhang. 2025. "Multi-Level Thermal Modeling and Management of Battery Energy Storage Systems" Batteries 11, no. 6: 219. https://doi.org/10.3390/batteries11060219
APA StyleLv, Z., Sun, Z., Wang, L., Liu, Q., & Zhang, J. (2025). Multi-Level Thermal Modeling and Management of Battery Energy Storage Systems. Batteries, 11(6), 219. https://doi.org/10.3390/batteries11060219