State-of-Health Estimation for Lithium-Ion Batteries Based on Lightweight DimConv-GFNet
Abstract
:1. Introduction
2. Methodology
2.1. DimConv
2.2. GFNet
2.2.1. Discrete Fourier Transform
2.2.2. Global Filter Design
2.3. Overview of DimConv-GFNet
3. Experiment
3.1. Datasets Description
3.2. Data Processing
3.3. Experimental Settings
4. Result and Discussion
4.1. Evaluation Criteria
4.2. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SOH | State of health |
DimConv | Dimension-wise convolutions |
GFNet | Global filter network |
FLOPs | Floating point operations |
Params | Parameters |
References
- Vignesh, S.; Che, H.S.; Selvaraj, J.; Tey, K.S.; Lee, J.W.; Shareef, H.; Errouissi, R. State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges. Appl. Energy 2024, 369, 123542. [Google Scholar]
- Masias, A.; Marcicki, J.; Paxton, W.A. Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 2021, 6, 621–630. [Google Scholar] [CrossRef]
- Costa, C.M.; Barbosa, J.C.; Gonçalves, R.; Castro, H.; Del Campo, F.; Lanceros-Méndez, S. Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. Energy Storage Mater. 2021, 37, 433–465. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, C.; Jiang, J.; Zhang, W.; Zhang, L.; Wang, Y. Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications. J. Clean. Prod. 2021, 314, 128015. [Google Scholar] [CrossRef]
- Gu, X.; See, K.W.; Li, P.; Shan, K.; Wang, Y.; Zhao, L.; Lim, K.C.; Zhang, N. A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model. Energy 2023, 262, 125501. [Google Scholar] [CrossRef]
- Cao, Z.; Gao, W.; Fu, Y.; Kurdkandi, N.V.; Mi, C. A general framework for lithium-ion battery state of health estimation: From laboratory tests to machine learning with transferability across domains. Appl. Energy 2025, 262, 125086. [Google Scholar] [CrossRef]
- Chen, L.; Xie, S.; Lopes, A.M.; Li, H.; Bao, X.; Zhang, C.; Li, P. A new SOH estimation method for Lithium-ion batteries based on model-data-fusion. Energy 2024, 286, 129597. [Google Scholar] [CrossRef]
- Ding, P.; Liu, X.; Li, H.; Huang, Z.; Zhang, K.; Shao, L.; Abedinia, O. Useful life prediction based on wavelet packet decomposition and two-dimensional convolutional neural network for lithium-ion batteries. Renew. Sustain. Energy Rev. 2021, 148, 111287. [Google Scholar] [CrossRef]
- Demirci, O.; Taskin, S.; Schaltz, E.; Demirci, B.A. Review of battery state estimation methods for electric vehicles-Part II: SOH estimation. J. Energy Storage 2024, 96, 112703. [Google Scholar] [CrossRef]
- Ma, Y.; Shan, C.; Gao, J.; Chen, H. A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction. Energy 2022, 251, 123973. [Google Scholar] [CrossRef]
- Fu, S.; Tao, S.; Fan, H.; He, K.; Liu, X.; Tao, Y.; Zuo, J.; Zhang, X.; Wang, Y.; Sun, Y. Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method. Appl. Energy 2024, 353, 121991. [Google Scholar] [CrossRef]
- Che, Y.; Hu, X.; Lin, X.; Guo, J.; Teodorescu, R. Health prognostics for lithium-ion batteries: Mechanisms, methods, and prospects. Energy Environ. Sci. 2023, 16, 338–371. [Google Scholar] [CrossRef]
- Chen, S.-Z.; Liu, J.; Yuan, H.; Tao, Y.; Xu, F.; Yang, L. AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation. Appl. Energy 2025, 381, 125116. [Google Scholar] [CrossRef]
- Magri, L.; Sequino, L.; Ferrari, C. Simulating the Electrochemical-Thermal Behavior of a Prismatic Lithium-Ion Battery on the Market under Various Discharge Cycles. Batteries 2023, 9, 397. [Google Scholar] [CrossRef]
- Tran, M.-K.; Mathew, M.; Janhunen, S.; Panchal, S.; Raahemifar, K.; Fraser, R.; Fowler, M. A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters. J. Energy Storage 2021, 16, 103252. [Google Scholar] [CrossRef]
- Yi, B.; Du, X.; Zhang, J.; Wu, X.; Hu, Q.; Jiang, W.; Hu, X.; Song, Z. Bias-compensated state of charge and state of health joint estimation for lithium iron phosphate batteries. IEEE Trans. Power Electron. 2024, 40, 3033–3042. [Google Scholar] [CrossRef]
- Mu, A.X.; Zhang, B.J.; Li, C.G.; Xiao, D.Z.; Zeng, E.F.; Liu, F.J. Estimating SOC and SOH of energy storage battery pack based on voltage inconsistency using reference-difference model and dual extended Kalman filter. J. Energy Storage 2024, 81, 110221. [Google Scholar] [CrossRef]
- Hu, C.; Jain, G.; Zhang, P.; Schmidt, C.; Gomadam, P.; Gorka, T. Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery. Appl. Energy 2014, 129, 49–55. [Google Scholar] [CrossRef]
- Li, Y.; Zou, C.; Berecibar, M.; Nanini-Maury, E.; Chan, J.C.-W.; Van den Bossche, P.; Van Mierlo, J.; Omar, N. Random forest regression for online capacity estimation of lithium-ion batteries. Appl. Energy 2018, 232, 197–210. [Google Scholar] [CrossRef]
- Kang, S.-H.; Noh, T.-W.; Lee, B.-K. Machine learning-based SOH estimation algorithm using a linear regression analysis. Trans. Korean Inst. Power Electron. 2021, 26, 241–248. [Google Scholar]
- Zhang, Y.; Liu, Y.; Wang, J.; Zhang, T. State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression. Energy 2022, 239, 121986. [Google Scholar] [CrossRef]
- Cai, L.; Lin, J. A charging-feature-based estimation model for state of health of lithium-ion batteries. Expert Syst. Appl. 2024, 238, 122034. [Google Scholar] [CrossRef]
- Sui, X.; He, S.; Teodorescu, R. Small-sample-learning-based lithium-ion batteries health assessment: An optimized ensemble framework. IEEE Trans. Ind. Appl. 2024, 60, 4366–4380. [Google Scholar] [CrossRef]
- Zhao, J.; Han, X.; Ouyang, M.; Burke, A.F. Specialized deep neural networks for battery health prognostics: Opportunities and challenges. J. Energy Chem. 2023, 87, 416–438. [Google Scholar] [CrossRef]
- Yuan, Z.; Tian, T.; Hao, F.; Li, G.; Tang, R.; Liu, X. A hybrid neural network based on variational mode decomposition denoising for predicting state-of-health of lithium-ion batteries. J. Power Sources 2024, 609, 234697. [Google Scholar] [CrossRef]
- Guo, R.; Zhang, K.; He, S.; Tao, S.; Zhang, X.; Liu, K.; Li, X.; Tian, J.; Shen, W.; Chung, C.Y. Robust Health Monitoring for Lithium-Ion Batteries under Guidance of Proxy Labels: A Deep Multi-Task Learning Approach. IEEE Trans. Power Electron. 2025. [Google Scholar] [CrossRef]
- Yang, N.; Song, Z.; Hofmann, H.; Sun, J. Robust State of Health estimation of lithium-ion batteries using convolutional neural network and random forest. J. Energy Storage 2022, 48, 103857. [Google Scholar] [CrossRef]
- Xu, H.; Wu, L.; Xiong, S.; Li, W.; Garg, A.; Gao, L. An improved CNN-LSTM model-based state-of-health estimation approach for lithium-ion batteries. Energy 2023, 276, 127585. [Google Scholar] [CrossRef]
- Mazzi, Y.; Sassi, H.B.; Errahimi, F. Lithium-ion battery state of health estimation using a hybrid model based on a convolutional neural network and bidirectional gated recurrent unit. Eng. Appl. Artif. Intell. 2024, 127, 107199. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, Y.; Yang, L.; Liu, Q.; Yan, K.; Du, Y. Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism. IEEE Access 2019, 7, 78063–78074. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z. Specialized convolutional transformer networks for estimating battery health via transfer learning. Energy Storage Mater. 2024, 71, 103668. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Kollar, Z.; Plesznik, F.; Trumpf, S. Observer-based recursive sliding discrete Fourier transform [tips & tricks]. IEEE Signal Process. Mag. 2018, 35, 100–106. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Liu, Y.; Yu, R.; Wang, J.; Zhao, X.; Wang, Y.; Tang, Y.; Yang, Y. Global spectral filter memory network for video object segmentation. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 648–665. [Google Scholar]
- Rao, Y.; Zhao, W.; Zhu, Z.; Lu, J.; Zhou, J. Global filter networks for image classification. Adv. Neural Inf. Process. Syst. 2021, 34, 980–993. [Google Scholar]
- Li, Y.; Gan, J.; Lin, X.; Qiu, Y.; Zhan, H.; Tian, H. DS-TDNN: Dual-stream time-delay neural network with global-aware filter for speaker verification. IEEE/ACM Trans. Audio, Speech, Lang. Process. 2024, 32, 2814–2827. [Google Scholar] [CrossRef]
- Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 2019, 4, 383–391. [Google Scholar] [CrossRef]
- Attia, P.M.; Grover, A.; Jin, N.; Severson, K.A.; Markov, T.M.; Liao, Y.-H.; Chen, M.H.; Cheong, B.; Perkins, N.; Yang, Z. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 2020, 578, 397–402. [Google Scholar] [CrossRef]
- Kim, S.; Jung, H.; Lee, M.; Choi, Y.Y.; Choi, J.-I. Model-free reconstruction of capacity degradation trajectory of lithium-ion batteries using early cycle data. eTransportation 2023, 17, 100243. [Google Scholar] [CrossRef]
- Zhu, C.; Gao, M.; He, Z.; Wu, H.; Sun, C.; Zhang, Z.; Bao, Z. State of health prediction for li-ion batteries with end-to-end deep learning. J. Energy Storage 2023, 65, 107218. [Google Scholar] [CrossRef]
- Wang, S.; Takyi-Aninakwa, P.; Jin, S.; Yu, C.; Fernandez, C.; Stroe, D.-I. An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation. Energy 2022, 254, 124224. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, X.; He, Y.; Zhang, S.; Cai, Y. Edge–cloud collaborative estimation lithium-ion battery SOH based on MEWOA-VMD and Transformer. J. Energy Storage 2024, 99, 113388. [Google Scholar] [CrossRef]
Work Step | Details |
---|---|
Input source data | Voltage, current, temperature, time |
Data processing | Resample 480 sampling points and normalize to [−1, 1] |
DimConv | Multi-scale fused local features |
GFNet | Global weighted features |
Average pooling | Compressed features |
Mlp output | SOH |
Optimizer | Adam |
Learning rate | 0.00097 |
Epoch | 130 |
Batch size | 32 |
Dropout rate | 0.119 |
Depth | 2 |
Embedding dim | 236 |
Feed forward network dim | 2.5 × 236 |
Mlp hidden size | 190 |
Model | RMSE (%) | MAE (%) | MAPE (%) |
---|---|---|---|
CNN-GRU | 0.632 | 0.479 | 0.472 |
CNN-LSTM | 0.612 | 0.462 | 0.454 |
CNN-Transformer | 0.365 | 0.242 | 0.240 |
DimConv-Transformer | 0.227 | 0.146 | 0.144 |
DimConv-GFNet (ours) | 0.335 | 0.233 | 0.230 |
Model | FLOPs | Params |
---|---|---|
DimConv-Transformer | 208703559 | 2093737 |
DimConv-GFNet (ours) | 54141494 | 656048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.; Kang, J.; Wang, J.V.; Wang, Q.; Wu, O. State-of-Health Estimation for Lithium-Ion Batteries Based on Lightweight DimConv-GFNet. Batteries 2025, 11, 174. https://doi.org/10.3390/batteries11050174
Huang K, Kang J, Wang JV, Wang Q, Wu O. State-of-Health Estimation for Lithium-Ion Batteries Based on Lightweight DimConv-GFNet. Batteries. 2025; 11(5):174. https://doi.org/10.3390/batteries11050174
Chicago/Turabian StyleHuang, Kehao, Jianqiang Kang, Jing V. Wang, Qian Wang, and Oukai Wu. 2025. "State-of-Health Estimation for Lithium-Ion Batteries Based on Lightweight DimConv-GFNet" Batteries 11, no. 5: 174. https://doi.org/10.3390/batteries11050174
APA StyleHuang, K., Kang, J., Wang, J. V., Wang, Q., & Wu, O. (2025). State-of-Health Estimation for Lithium-Ion Batteries Based on Lightweight DimConv-GFNet. Batteries, 11(5), 174. https://doi.org/10.3390/batteries11050174