Improvement of Interphase Stability of Hard Carbon for Sodium-Ion Battery by Ionic Liquid Additives
Abstract
:1. Introduction
2. Experimental Section
2.1. Electrolyte and Electrode Preparations
2.1.1. Electrolyte Preparations
2.1.2. Electrode Preparation and Coin Cell Fabrication
2.1.3. Electrochemical Measurements
2.2. Physical Characterization
2.3. Theoretical Calculation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Zhang, W.; Lu, J.; Guo, Z. Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Mater. Today 2021, 50, 400–417. [Google Scholar] [CrossRef]
- Gu, D. Dedication to Clean Power and Promotion of the Energy Revolution. Engineering 2020, 6, 1331–1332. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Wang, Y.-X.; Feng, X.; Chen, W.; Ai, X.; Yang, H.; Cao, Y. Developments and Perspectives on Emerging High-Energy-Density Sodium-Metal Batteries. Chem 2019, 5, 2547–2570. [Google Scholar] [CrossRef]
- Dong, R.; Wu, F.; Bai, Y.; Wu, C. Sodium Storage Mechanism and Optimization Strategies for Hard Carbon Anode of Sodium Ion Batteries. Acta Chim. Sin. 2021, 79, 1461–1476. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, X.; Liu, Y.; Fang, Y.; Zhou, X.; Bao, J. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon 2018, 127, 658–666. [Google Scholar] [CrossRef]
- Zheng, J.; Wu, Y.; Guan, C.; Wang, D.; Lai, Y.; Li, J.; Yang, F.; Li, S.; Zhang, Z. Lignin-derived hard carbon anode with a robust solid electrolyte interphase for boosted sodium storage performance. Carbon Energy 2024, 6, e538. [Google Scholar] [CrossRef]
- Izanzar, I.; Dahbi, M.; Kiso, M.; Doubaji, S.; Komaba, S.; Saadoune, I. Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries. Carbon 2018, 137, 165–173. [Google Scholar] [CrossRef]
- Au, H.; Alptekin, H.; Jensen, A.C.S.; Olsson, E.; O’Keefe, C.A.; Smith, T.; Crespo-Ribadeneyra, M.; Headen, T.F.; Grey, C.P.; Cai, Q.; et al. A revised mechanistic model for sodium insertion in hard carbons. Energy Environ. Sci. 2020, 13, 3469–3479. [Google Scholar] [CrossRef]
- Sun, J.; Sun, Y.; Oh, J.A.S.; Gu, Q.; Zheng, W.; Goh, M.; Zeng, K.; Cheng, Y.; Lu, L. Insight into the structure-capacity relationship in biomass derived carbon for high-performance sodium-ion batteries. J. Energy Chem. 2021, 62, 497–504. [Google Scholar] [CrossRef]
- Chen, F.; Di, Y.; Su, Q.; Xu, D.; Zhang, Y.; Zhou, S.; Liang, S.; Cao, X.; Pan, A. Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries. Carbon Energy 2022, 5, e191. [Google Scholar] [CrossRef]
- Dong, S.; He, X.; Zhang, H.; Xie, X.; Yu, M.; Yu, C.; Xiao, N.; Qiu, J. Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. J. Mater. Chem. A 2018, 6, 15954–15960. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, C.; Yu, Y. A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chin. Chem. Lett. 2024, 35, 108865. [Google Scholar] [CrossRef]
- Li, X.; Yan, P.; Engelhard, M.H.; Crawford, A.J.; Viswanathan, V.V.; Wang, C.; Liu, J.; Sprenkle, V.L. The importance of solid electrolyte interphase formation for long cycle stability full-cell Na-ion batteries. Nano Energy 2016, 27, 664–672. [Google Scholar] [CrossRef]
- Liang, Y.; Song, N.; Zhang, Z.; Chen, W.; Feng, J.; Xi, B.; Xiong, S. Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage. Adv. Mater. 2022, 34, 2202673. [Google Scholar] [CrossRef]
- Dong, R.; Zheng, L.; Bai, Y.; Ni, Q.; Li, Y.; Wu, F.; Ren, H.; Wu, C. Elucidating the Mechanism of Fast Na Storage Kinetics in Ether Electrolytes for Hard Carbon Anodes. Adv. Mater. 2021, 33, 2008810. [Google Scholar] [CrossRef]
- He, Y.; Bai, P.; Gao, S.; Xu, Y. Marriage of an Ether-Based Electrolyte with Hard Carbon Anodes Creates Superior Sodium-Ion Batteries with High Mass Loading. ACS Appl. Mater. Interfaces 2018, 10, 41380–41388. [Google Scholar] [CrossRef]
- Muñoz-Márquez, M.Á.; Saurel, D.; Gómez-Cámer, J.L.; Casas-Cabanas, M.; Castillo-Martinez, E.; Rojo, T. Na-Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation. Adv. Energy Mater. 2017, 7, 1700463. [Google Scholar] [CrossRef]
- Zhao, H.; Qi, J.; Tang, X.; Zhang, K.; Teng, J.; Ding, H.; Tao, Q.; Li, J. Effect of crown ether additive on the compatibility of electrolyte and hard carbon anode in sodium ion battery. J. Alloys Compd. 2023, 948, 169823. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kang, B.; Lee, H. Comparative study of fluoroethylene carbonate and succinic anhydride as electrolyte additive for hard carbon anodes of Na-ion batteries. J. Power Sources 2019, 423, 137–143. [Google Scholar] [CrossRef]
- Song, B.; Xiong, X.; Peng, Y.; Liu, X.; Gao, W.; Wang, T.; Wang, F.; Ma, Y.; Zhong, Y.; Cheng, X.-B.; et al. Review of Electrolyte Additives for Secondary Sodium Batteries. Adv. Energy Mater. 2024, 14, 2401407. [Google Scholar] [CrossRef]
- Rangasamy, V.S.; Thayumanasundaram, S.; Locquet, J.-P. Ionic liquid electrolytes based on sulfonium cation for lithium rechargeable batteries. Electrochim. Acta 2019, 328, 135133. [Google Scholar] [CrossRef]
- Zhao, Y. The Study on New Midazolium Ionic Liquidas Electrolyte Additives for Lithium Ion Battery. Master’s Thesis, Hebei University of Technology, Tianjin, China, 2020. [Google Scholar] [CrossRef]
- Chagas, L.G.; Buchholz, D.; Wu, L.; Vortmann, B.; Passerini, S. Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte. J. Power Sources 2014, 247, 377–383. [Google Scholar] [CrossRef]
- Fukunaga, A.; Nohira, T.; Hagiwara, R.; Numata, K.; Itani, E.; Sakai, S.; Nitta, K.; Inazawa, S. A safe and high-rate negative electrode for sodium-ion batteries: Hard carbon in NaFSA-C1C3pyrFSA ionic liquid at 363 K. J. Power Sources 2014, 246, 387–391. [Google Scholar] [CrossRef]
- Meng, J.; Jia, G.; Yang, H.; Tang, F.; Peng, Z.; Li, J.; Wang, M. High Temperature Performance Study of Piperidine-based Ionic Liquids in Sodium Ion Batteries. J. Salt Lake Res. 2024, 32, 46–51. [Google Scholar] [CrossRef]
- Xue, K.; Zheng, Z.; Su, K.; Zhang, X.; Wang, Y.; Lang, J. Enhancing stability in Acetonitrile-Based Supercapacitors: Implementation of Di-Pyrrolidinium ionic salts. Chem. Eng. J. 2024, 491, 152090. [Google Scholar] [CrossRef]
- Xue, K.; Zhang, X.; Sun, X.; Su, K.; Wang, Y.; Lang, J.; Zheng, Z. Di-imidazolium ionic liquid based electrolytes for high voltage electrochemical double layer capacitors. J. Energy Storage 2024, 83, 110473. [Google Scholar] [CrossRef]
- Weng, S.; Zhang, X.; Yang, G.; Zhang, S.; Ma, B.; Liu, Q.; Liu, Y.; Peng, C.; Chen, H.; Yu, H.; et al. Temperature-dependent interphase formation and Li+ transport in lithium metal batteries. Nat. Commun. 2023, 14, 4474. [Google Scholar] [CrossRef] [PubMed]
- Pires, J.; Timperman, L.; Jacquemin, J.; Balducci, A.; Anouti, M. Density, conductivity, viscosity, and excess properties of (pyrrolidinium nitrate-based Protic Ionic Liquid+propylene carbonate) binary mixture. J. Chem. Thermodyn. 2013, 59, 10–19. [Google Scholar] [CrossRef]
- Do, M.P.; Bucher, N.; Nagasubramanian, A.; Markovits, I.; Bingbing, T.; Fischer, P.J.; Loh, K.P.; Kühn, F.E.; Srinivasan, M. Effect of Conducting Salts in Ionic Liquid Electrolytes for Enhanced Cyclability of Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 23972–23981. [Google Scholar] [CrossRef]
- Li, C.; Liang, Z.; Wang, L.; Cao, D.; Yin, Y.-C.; Zuo, D.; Chang, J.; Wang, J.; Liu, K.; Li, X.; et al. Superwettable Electrolyte Engineering for Fast Charging Li-Ion Batteries. ACS Energy Lett. 2024, 9, 1295–1304. [Google Scholar] [CrossRef]
- Ji, X.; Wei, Y.; Yang, H.; Lu, Z.; Jin, S.; Jin, H.; Kong, X.; Ji, H. Extended Plateau Capacity of Hard Carbon Anode for High Energy Lithium-Ion Batteries. Small 2024, 20, 2402616. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zeng, F.; Huang, H.; Yu, Y.; Xu, M.; Xing, L.; Li, W. Enhanced interphasial stability of hard carbon for sodium-ion battery via film-forming electrolyte additive. Nano Res. 2022, 16, 3823–3831. [Google Scholar] [CrossRef]
- Che, H.; Liu, J.; Wang, H.; Wang, X.; Zhang, S.S.; Liao, X.-Z.; Ma, Z.-F. Rubidium and cesium ions as electrolyte additive for improving performance of hard carbon anode in sodium-ion battery. Electrochem. Commun. 2017, 83, 20–23. [Google Scholar] [CrossRef]
- Zhang, Q.; Pan, J.; Lu, P.; Liu, Z.; Verbrugge, M.W.; Sheldon, B.W.; Cheng, Y.-T.; Qi, Y.; Xiao, X. Synergetic Effects of Inorganic Components in Solid Electrolyte Interphase on High Cycle Efficiency of Lithium Ion Batteries. Nano Lett. 2016, 16, 2011–2016. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Dong, Y.; Zhao, D.; Ma, X.; Qiu, M.; Xu, J.; Jiao, L.; Cheng, F.; Zhang, N. Microsized Antimony as a Stable Anode in Fluoroethylene Carbonate Containing Electrolytes for Rechargeable Lithium-/Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 12, 3554–3562. [Google Scholar] [CrossRef]
- Ma, L.A.; Naylor, A.J.; Nyholm, L.; Younesi, R. Strategies for Mitigating Dissolution of Solid Electrolyte Interphases in Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2021, 60, 4855–4863. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ma, F.; Wei, X.; Lan, J.L.; Liu, Y.; Yu, Y.; Yang, X.; Park, H.S. Ionic-Conducting and Robust Multilayered Solid Electrolyte Interphases for Greatly Improved Rate and Cycling Capabilities of Sodium Ion Full Cells. Adv. Energy Mater. 2020, 10, 2001418. [Google Scholar] [CrossRef]
- Xu, M.; Wu, F.; Zhang, Y.; Yao, Y.; Zhu, G.; Li, X.; Chen, L.; Jia, G.; Wu, X.; Huang, Y.; et al. Kinetically matched C–N coupling toward efficient urea electrosynthesis enabled on copper single-atom alloy. Nat. Commun. 2023, 14, 6994. [Google Scholar] [CrossRef]
- Wei, J.; Xia, D.; Wei, Y.; Zhu, X.; Li, J.; Gan, L. Probing the Oxygen Reduction Reaction Intermediates and Dynamic Active Site Structures of Molecular and Pyrolyzed Fe–N–C Electrocatalysts by In Situ Raman Spectroscopy. ACS Catal. 2022, 12, 7811–7820. [Google Scholar] [CrossRef]
- Haghkhah, H.; Ghalami Choobar, B.; Amjad-Iranagh, S. Effect of salt concentration on properties of mixed carbonate-based electrolyte for Li-ion batteries: A molecular dynamics simulation study. J. Mol. Model. 2020, 26, 220. [Google Scholar] [CrossRef]
- Lan, X.; Yang, S.; Meng, T.; Zhang, C.; Hu, X. A Multifunctional Electrolyte Additive With Solvation Structure Regulation and Electrode/Electrolyte Interface Manipulation Enabling High-Performance Li-Ion Batteries in Wide Temperature Range. Adv. Energy Mater. 2023, 13, 2203449. [Google Scholar] [CrossRef]
- Ren, Q.; Wang, Q.; Li, Y.; Song, X.; Shangguan, X.; Li, F. High Voltage Electrolytes for Lithium Batteries. Prog. Chem. 2023, 35, 1077–1096. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Hess, B.; Kutzner, C.; Spoel, D.v.d.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- York, D.M.; Darden, T.A.; Pedersen, L.G. The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods. J. Chem. Phys. 1993, 99, 8345–8348. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Silva, A.W.S.d.; Vranken, W.F. ACPYPE-Antechamber python parser interface. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef]
- Li, Z.L.; Li, W.T.; Zhang, C.; Liu, W.; Peng, J.; An, S.L.; Qiu, X.P. Effect of Electrolyte on the Hard Carbon Anode of Sodium Ion Battery. Telecom Power Technology. 2020, 37, 40–45. [Google Scholar] [CrossRef]
- Su, K.; Chen, J.; Zhang, X.; Feng, J.; Xu, Y.; Pu, Y.; Wang, C.; Ma, P.; Wang, Y.; Lang, J. Inhibition of zinc dendrites by dopamine modified hexagonal boron nitride electrolyte additive for zinc-ion batteries. J. Power Sources 2022, 548, 232074. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, D.; Bian, Z.; Su, K.; Wang, Y.; Lu, Z.; Cai, E.; Lang, J. Improvement of Interphase Stability of Hard Carbon for Sodium-Ion Battery by Ionic Liquid Additives. Batteries 2025, 11, 102. https://doi.org/10.3390/batteries11030102
Meng D, Bian Z, Su K, Wang Y, Lu Z, Cai E, Lang J. Improvement of Interphase Stability of Hard Carbon for Sodium-Ion Battery by Ionic Liquid Additives. Batteries. 2025; 11(3):102. https://doi.org/10.3390/batteries11030102
Chicago/Turabian StyleMeng, Dexi, Zongkun Bian, Kailimai Su, Yan Wang, Zhibin Lu, Enlin Cai, and Junwei Lang. 2025. "Improvement of Interphase Stability of Hard Carbon for Sodium-Ion Battery by Ionic Liquid Additives" Batteries 11, no. 3: 102. https://doi.org/10.3390/batteries11030102
APA StyleMeng, D., Bian, Z., Su, K., Wang, Y., Lu, Z., Cai, E., & Lang, J. (2025). Improvement of Interphase Stability of Hard Carbon for Sodium-Ion Battery by Ionic Liquid Additives. Batteries, 11(3), 102. https://doi.org/10.3390/batteries11030102