A Study on Thermal Performance Enhancement of Mini-Channel Cooling Plates with an Interconnected Design for Li-Ion Battery Cooling
Abstract
1. Introduction
2. Numerical Method
2.1. Governing Equations
2.2. Boundary Conditions
2.3. Cooling Plate and Benchmark Design
2.4. Mesh Generation and Grid Sensitivity
3. Results and Discussion
3.1. Numerical Model Validation
3.2. Thermal Performance
3.3. Effect of Additional Inter-Connected Passage
3.4. Effect of Inlet Velocity
3.5. Pressure Drop Consideration
4. Conclusions
- The interconnected (ID) design effectively reduces maximum temperature rise, demonstrating superior thermal performance compared to the baseline (BL) design and achieving comparable cooling efficiency to the best-performing D-series designs.
- The ID design improves temperature uniformity, enhancing thermal safety by reducing the risk of thermal runaway, minimizing localized hotspots, and contributing to a longer battery lifespan through more uniform heat dissipation.
- While certain D-series designs (D4 and D6) demonstrate excellent cooling performance, they experience high pressure drops, resulting in greater energy consumption and increased pumping power requirements.
- The interconnected design achieves a well-balanced compromise, providing enhanced cooling performance while maintaining moderate flow resistance, making it a practical and efficient solution for battery thermal management systems.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
| v | Velocity (m/s) | Greek symbol | |
| T | Temperature (°C) | ρ | Density kg/m3 |
| P | Pressure (Pa) | μ | Viscosity (Pa.s) |
| k | Thermal conductivity (W/mK) | ||
| Q | Power (W) | Subscript | |
| q | Heatflux () | f | Fluid |
| u | Velocity component in the x-dir. (m/s) | b | Battery-body |
| v | Velocity component in the y-dir. (m/s) | max | Maximum temperature at time |
| w | Velocity component in the z-dir. (m/s) | diff | Maximum-minimum temperature |
| Cp | Sensible heat capacity () | w | wall |
| t | Time (s) | ||
References
- Peng, J.; Meng, J.; Chen, D.; Liu, H.; Hao, S.; Sui, X.; Du, X. A review of lithium-ion battery capacity estimation methods for onboard battery management systems: Recent progress and perspectives. Batteries 2022, 8, 229. [Google Scholar] [CrossRef]
- Cao, K.L.A.; Ogi, T. Advanced carbon sphere-based hybrid materials produced by innovative aerosol process for high-efficiency rechargeable batteries. Energy Storage Mater. 2025, 74, 103901. [Google Scholar] [CrossRef]
- Hannan, M.A.; Wali, S.; Ker, P.; Rahman, M.A.; Mansor, M.; Ramachandaramurthy, V.; Muttaqi, K.; Mahlia, T.; Dong, Z. Battery energy-storage system: A review of technologies, optimization objectives, constraints, approaches, and outstanding issues. J. Energy Storage 2021, 42, 103023. [Google Scholar] [CrossRef]
- Wolfram, P.; Lutsey, N. Electric Vehicles: Literature Review of Technology Costs and Carbon Emissions; ICCT: Washington, DC, USA, 2016. [Google Scholar]
- Ahmad, F.; Khalid, M.; Panigrahi, B.K. Development in energy storage system for electric transportation: A comprehensive review. J. Energy Storage 2021, 43, 103153. [Google Scholar] [CrossRef]
- Broussely, M.; Nazri, G.; Pistoia, G. Lithium-Ion batteries for EV, HEV and other applications. In Lithium Batteries; Kluwer Publishers: New York, NY, USA, 2004; Chapter 21. [Google Scholar]
- Bandhauer, T.M.; Garimella, S.; Fuller, T.F. A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 2011, 158, R1. [Google Scholar] [CrossRef]
- Liu, H.; Wei, Z.; He, W.; Zhao, J. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Convers. Manag. 2017, 150, 304–330. [Google Scholar] [CrossRef]
- Deng, T.; Zhang, G.; Ran, Y.; Liu, P. Thermal performance of lithium ion battery pack by using cold plate. Appl. Therm. Eng. 2019, 160, 114088. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, C.; Gao, Q.; Wang, G.; Liu, M.; Guo, Y.; Xiao, C.; Yan, Y. Status and development of electric vehicle integrated thermal management from BTM to HVAC. Appl. Therm. Eng. 2015, 88, 398–409. [Google Scholar] [CrossRef]
- Leng, F.; Tan, C.M.; Pecht, M. Effect of temperature on the aging rate of Li ion battery operating above room temperature. Sci. Rep. 2015, 5, 12967. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Chen, M.; Bai, F.; Lin, S.; Chen, Y.; Feng, Z. Non-uniform effect on the thermal/aging performance of Lithium-ion pouch battery. Appl. Therm. Eng. 2018, 128, 1165–1174. [Google Scholar] [CrossRef]
- Sun, H.; Dixon, R. Development of cooling strategy for an air cooled lithium-ion battery pack. J. Power Sources 2014, 272, 404–414. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.; Negnevitsky, M.; Zhang, H. A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles. J. Power Sources 2021, 501, 230001. [Google Scholar] [CrossRef]
- Liu, H.; Chika, E.; Zhao, J. Investigation into the effectiveness of nanofluids on the mini-channel thermal management for high power lithium ion battery. Appl. Therm. Eng. 2018, 142, 511–523. [Google Scholar] [CrossRef]
- Mondal, B.; Lopez, C.F.; Mukherjee, P.P. Exploring the efficacy of nanofluids for lithium-ion battery thermal management. Int. J. Heat Mass Transf. 2017, 112, 779–794. [Google Scholar] [CrossRef]
- Adhikari, N.; Bhandari, R.; Joshi, P. Thermal analysis of lithium-ion battery of electric vehicle using different cooling medium. Appl. Energy 2024, 360, 122781. [Google Scholar] [CrossRef]
- Farzaneh, F.; Zhang, Q.; Jung, S. Enhancing electric vehicle battery safety and performance: Aluminum tubes filled with PCM. J. Energy Storage 2024, 97, 112922. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Maghrabie, H.M.; Abo-Khalil, A.G.; Adhari, O.H.K.; Sayed, E.T.; Radwan, A.; Rezk, H.; Jouhara, H.; Olabi, A. Thermal management systems based on heat pipes for batteries in EVs/HEVs. J. Energy Storage 2022, 51, 104384. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Q.; Wang, G.; Lu, P.; Zhao, M.; Bao, W. A review on research status and key technologies of battery thermal management and its enhanced safety. Int. J. Energy Res. 2018, 42, 4008–4033. [Google Scholar] [CrossRef]
- Zhao, L.; Li, W.; Wang, G.; Cheng, W.; Chen, M. A novel thermal management system for lithium-ion battery modules combining direct liquid-cooling with forced air-cooling. Appl. Therm. Eng. 2023, 232, 120992. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, Z.; Xie, Y.; Wang, C.; Hu, Y.; Liu, J.; Cai, S. Integrated pulsed cooling with non-uniform channel liquid plate and phase change material for high-energy-density battery thermal management. Int. J. Heat Mass Transf. 2025, 247, 127191. [Google Scholar] [CrossRef]
- Khaboshan, H.N.; Jaliliantabar, F.; Abdullah, A.A.; Panchal, S. Improving the cooling performance of cylindrical lithium-ion battery using three passive methods in a battery thermal management system. Appl. Therm. Eng. 2023, 227, 120320. [Google Scholar] [CrossRef]
- Akbarzadeh, M.; Kalogiannis, T.; Jaguemont, J.; Jin, L.; Karimi, D.; Beheshti, H.; Van Mierlo, J.; Berecibar, M. A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module. Appl. Therm. Eng. 2021, 198, 117503. [Google Scholar] [CrossRef]
- Trimbake, A.; Singh, C.P.; Krishnan, S. Mineral oil immersion cooling of lithium-ion batteries: An experimental investigation. J. Electrochem. Energy Convers. Storage 2022, 19, 021007. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, J.; Kim, G.-H.; Yang, C.; Pesaran, A. Comparison of different cooling methods for lithium ion battery cells. Appl. Therm. Eng. 2016, 94, 846–854. [Google Scholar] [CrossRef]
- Panchal, S.; Khasow, R.; Dincer, I.; Agelin-Chaab, M.; Fraser, R.; Fowler, M. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery. Appl. Therm. Eng. 2017, 122, 80–90. [Google Scholar] [CrossRef]
- Amalesh, T.; Narasimhan, N.L. Introducing new designs of minichannel cold plates for the cooling of Lithium-ion batteries. J. Power Sources 2020, 479, 228775. [Google Scholar] [CrossRef]
- Jiang, Z.; Xuan, W.; Ma, R.; Xu, C.; Yu, B.; Wang, D.; Shi, J.; Chen, J. A high-efficiency immersion cooling system with integrated flow distribution plates for vehicle-scale high-energy-density battery modules. Energy 2025, 330, 136885. [Google Scholar] [CrossRef]
- Sun, Y.; Bai, R.; Ma, J. Design and thermal analysis of a new topological cooling plate for prismatic lithium battery thermal management. Appl. Therm. Eng. 2023, 219, 119547. [Google Scholar] [CrossRef]
- Zhan, S.; Liang, L.; Li, Z.; Yu, C.; Wang, F. Topology optimization of liquid cooling plate for lithium battery heat dissipation based on a bionic leaf-vein structure. Int. J. Heat Mass Transf. 2024, 231, 125898. [Google Scholar] [CrossRef]
- Pan, C.; Wu, J.; Wang, J.; Wang, L.; Liu, L. Topology optimization-based design and performance analysis of liquid cooling plates for lithium-ion batteries. J. Energy Storage 2025, 124, 116842. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, H.; Wang, C.; Zhou, L.; Yuan, S.; Zhang, W. A review of topology optimization for additive manufacturing: Status and challenges. Chin. J. Aeronaut. 2021, 34, 91–110. [Google Scholar] [CrossRef]
- ANSYS. ANSYS Fluent 18.1 Theory Guide; Ansys Inc.: Canonsburg, PA, USA, 2017. [Google Scholar]
- Lai, Y.; Ding, J.; Liu, L. Numerical investigation on the cooling performance of lithium-ion battery using liquid cooled-plate with integrated grooves and secondary microchannel structures. Int. J. Therm. Sci. 2025, 217, 110094. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Y.; Hu, H. Topological approach for optimization of liquid cooled plate with different inlet/outlet parameters. Case Stud. Therm. Eng. 2025, 71, 106201. [Google Scholar] [CrossRef]
- Shah, R.K.; London, A.L. Thermal boundary conditions and some solutions for laminar duct flow forced convection. J. Heat Transf. 1974, 96, 159–165. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. Mater. Int. 2018, 28, 653–666. [Google Scholar] [CrossRef]










| Discharge Rate | A1 | A2 | A3 | A4 | A5 | A6 | A7 |
|---|---|---|---|---|---|---|---|
| 1C | 4.9132 × 10−16 | −3.7742 × 10−12 | 1.0679 × 10−8 | −1.3417 × 10−5 | 0.0076 | −2.2208 | 17,151.7482 |
| 2C | 1.2578 × 10−13 | −4.8310 × 10−10 | 6.8347 × 10−7 | −4.2934 × 10−4 | 0.12160 | −17.763 | 66,623.3365 |
| 3C | 3.2235 × 10−12 | −8.2542 × 10−5 | 7.7851 × 10−6 | −3.2303 × 10−3 | 0.61570 | −59.961 | 148,414 |
| Category | Location | Condition Type | Specification/Value |
|---|---|---|---|
| Initial Condition | Entire Domain | Temperature | 25 °C |
| Flow Condition | Inlet | Velocity | Uniform velocity at y-axis (0.08; 0.10; 0.12; 0.14; 0.16 m/s) |
| Outlet | Pressure | 0 Pa | |
| Fluid–solid walls | No-slip condition | - | |
| Thermal Conditions | Inlet | Temperature | 25 °C |
| Battery–coolant interface | Coupled condition | - | |
| Symmetry plane | Symmetry condition | - | |
| External battery surface | Adiabatic wall | Zero heat flux (Equation (11)) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simanjuntak, A.P.; Bae, J.; Simamora, B.F.; Lee, J.Y. A Study on Thermal Performance Enhancement of Mini-Channel Cooling Plates with an Interconnected Design for Li-Ion Battery Cooling. Batteries 2025, 11, 461. https://doi.org/10.3390/batteries11120461
Simanjuntak AP, Bae J, Simamora BF, Lee JY. A Study on Thermal Performance Enhancement of Mini-Channel Cooling Plates with an Interconnected Design for Li-Ion Battery Cooling. Batteries. 2025; 11(12):461. https://doi.org/10.3390/batteries11120461
Chicago/Turabian StyleSimanjuntak, Armanto P., Joohan Bae, Benrico Fredi Simamora, and Jae Young Lee. 2025. "A Study on Thermal Performance Enhancement of Mini-Channel Cooling Plates with an Interconnected Design for Li-Ion Battery Cooling" Batteries 11, no. 12: 461. https://doi.org/10.3390/batteries11120461
APA StyleSimanjuntak, A. P., Bae, J., Simamora, B. F., & Lee, J. Y. (2025). A Study on Thermal Performance Enhancement of Mini-Channel Cooling Plates with an Interconnected Design for Li-Ion Battery Cooling. Batteries, 11(12), 461. https://doi.org/10.3390/batteries11120461

