Review of Recent Advances in Lithium-Ion Batteries: Sources, Extraction Methods, and Industrial Uses
Abstract
1. Introduction
- The era of portable electronics in the early 1990s
- Diversification of applications such as drones, medical devices, and stationary energy expanded their demand into new sectors from the late 2000s to early 2010s.
- During this phase, a significant new driver called EVs led to a much sharper and faster increase in demand for LIB, serving as the inflection point from the mid-2010s to early 2020s.
- Phase 4 involves rapid acceleration by 2030 and increased demands in aerospace, defense, mass EV adoption, large grid storage, and circular supply or recycling chains.
2. Geological Background and Supply
3. Lithium as a Critical Mineral
4. Hardrock Mining Extraction Methods
4.1. Dense Media Separation (DMS)
4.2. Magnetic Separation
- Ferrimagnetic minerals (magnetite, maghemite, pyrrhotite) retain strong magnetic attraction even after the magnetic fields are removed [49].
- Paramagnetic minerals (such as hematite and ilmenite) found in iron (Fe) lithium-bearing ores like zinnwaldite and some lepidolites, unlike ferrimagnetic minerals, do not retain their magnetic property after the magnetic field is removed.
- Diamagnetic minerals (spodumene, petalite, quartz) are important lithium carriers. Because of their weak magnetic properties, they generally do not respond to magnetic separation methods.
4.3. Froth Flotation
4.4. Thermal Conversion (Calcination)
4.5. Chemical Extraction (Sulfuric Acid Roasting)
4.6. Product Recovery (Carbonization/Refining)
5. Brine Extraction Methods
5.1. Sedimentary Brine (Oil Field Brine)
5.2. Geothermal Brine
5.3. Solar Evaporation Method
6. Direct Lithium Extraction (DLE)
7. Extraction of Lithium from Other Non-Traditional Resources
7.1. Seawater
7.2. Hectorite Clay
8. Lithium Recycling Processes
8.1. Case Study: Biomass Energy Systems Inc-BESI
- Volume reduction: nearly complete conversion of organics and carbon.
- Deployability: the compact system can be installed near battery collection points, reducing the need for offshore shipping.
- Energy integration: syngas combustion cuts process energy demands, improving economic viability.
- Compatibility with small and distributed feedstocks: enabling recycling at regional or military locations.
8.2. Byproducts, Effluent Management, and Environmetal Considerations
9. Role of Battery Chemistry
10. Industrial Uses of Lithium-Ion Batteries
10.1. Automotive Applications
10.2. Consumer Electronics Applications
10.2.1. Compact Form Factor and Energy-to-Weight Ratio
10.2.2. Recent Advancements in Fast Charging and AI-Enabled Battery Optimization
10.3. Aerospace Applications
10.3.1. General Aerospace Use-Cases
10.3.2. Drones and UAVs
10.4. Comparative Analysis Across Industries
11. Supply Chain and Recycling Challenges of LIBs
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- A Brief History of Lithium; International Lithium Association: London, UK, 2023.
- Scrosati, B. History of Lithium Batteries. J. Solid State Electrochem. 2011, 15, 1623–1630. [Google Scholar] [CrossRef]
- Pelegov, D.V.; Pontes, J. Main Drivers of Battery Industry Changes: Electric Vehicles—A Market Overview. Batteries 2018, 4, 65. [Google Scholar] [CrossRef]
- Marchese, D.; Giosuè, C.; Staffolani, A.; Conti, M.; Orcioni, S.; Soavi, F.; Cavalletti, M.; Stipa, P. An Overview of the Sustainable Recycling Processes Used for Lithium-Ion Batteries. Batteries 2024, 10, 27. [Google Scholar] [CrossRef]
- Roy, J.J.; Phuong, D.M.; Verma, V.; Chaudhary, R.; Carboni, M.; Meyer, D.; Cao, B.; Srinivasan, M. Direct Recycling of Li-Ion Batteries from Cell to Pack Level: Challenges and Prospects on Technology, Scalability, Sustainability, and Economics. Carbon Energy 2024, 6, e492. [Google Scholar] [CrossRef]
- Jaskular, B. Mineral Commodity Summaries 2024; U.S. Geological Survey: Reston, VA, USA, 2024; p. 216.
- Jaskular, B. Lithium; USGS: Reston, VA, USA, 2025; p. 2.
- Bowell, R.J.; Lagos, L.; De Los Hoyos, C.R.; Declercq, J. Classification and Characteristics of Natural Lithium Resources. Elements 2020, 16, 259–264. [Google Scholar] [CrossRef]
- Sykes, J.P.; Schodde, R.; Davies, R.S. A Global Overview of the Geology and Economics of Lithium Production. In Proceedings of the Australasian Institute of Mining and Metallurgy (AusIMM) Lithium Conference, Perth, Australia, 3 July 2019. [Google Scholar] [CrossRef]
- Flexer, V.; Baspineiro, C.F.; Galli, C.I. Lithium Recovery from Brines: A Vital Raw Material for Green Energies with a Potential Environmental Impact in Its Mining and Processing. Sci. Total Environ. 2018, 639, 1188–1204. [Google Scholar] [CrossRef] [PubMed]
- Partington, G.A. The Greenbushes tin, tantalum and lithium deposit. In AusIMM Monograph 32 Geology of Australian Ore Deposits; AusIMM: Carlton South, Australia, 2017; pp. 153–157. [Google Scholar]
- Alyabyev, S.; Edstein, M.; Krauze, A.; Jensen, M.Y. Australia’s Potential in the Lithium Mining Market|McKinsey. Available online: https://www.mckinsey.com/industries/metals-and-mining/our-insights/australias-potential-in-the-lithium-market (accessed on 1 September 2025).
- Benson, T.R.; Jowitt, S.M.; Simon, A.C. Special Issues on the Geology and Origin of Lithium Deposits—Introduction: Lithium Deposit Types, Sizes, and Global Distribution. Econ. Geol. 2025, 120, 503–511. [Google Scholar] [CrossRef]
- Stringfellow, W.T.; Dobson, P.F. Technology for the Recovery of Lithium from Geothermal Brines. Energies 2021, 14, 6805. [Google Scholar] [CrossRef]
- Lithium Extraction Methods—Lithium Harvest. Available online: https://lithiumharvest.com/knowledge/lithium-extraction/lithium-extraction-methods/ (accessed on 28 August 2025).
- Characterizing the Geothermal Lithium Resource at the Salton Sea. Frequently Asked Questions. Available online: https://lirric.lbl.gov/wp-content/uploads/sites/26/2024/04/Geothermal_Lithium_FAQ_Document_April-2024.pdf (accessed on 28 September 2025).
- Roth, D.; Tahija, L.; Lasillo, E.; Martina, K.; Chow, B.; Mutler, W.; Bahe, K.; Kaplan, P.; Cluff, T.; Shannon, B. Feasibility Study National Instrument 43-101 Technical Report for the Thacker Pass Project, Humboldt County, Nevada USA; Lithium Americas Corp.: Vancouver, BC, Canada, 2022; p. 335. [Google Scholar]
- Marinova, S.; Roche, L.; Link, A.; Finkbeiner, M. Water Footprint of Battery-Grade Lithium Production in the Salar de Atacama, Chile. J. Clean. Prod. 2025, 487, 144635. [Google Scholar] [CrossRef]
- SQM. Technical Repoer Summary Sociedad Quimica y Minera de Chile (Form 6-k); Sociedad Química y Minera de Chile: Santiago, Chile, 2022; p. 931. [Google Scholar]
- Kelly, J.C.; Wang, M.; Dai, Q.; Winjobi, O. Energy, Greenhouse Gas, and Water Life Cycle Analysis of Lithium Carbonate and Lithium Hydroxide Monohydrate from Brine and Ore Resources and Their Use in Lithium Ion Battery Cathodes and Lithium Ion Batteries. Resour. Conserv. Recycl. 2021, 174, 105762. [Google Scholar] [CrossRef]
- Standard Lithium Ltd. Preliminary Economic Assessment of SW Arkansas Lithium Project; Ni 43–101 Technical Report. Document No. E3580-RP-0200. 2023. Available online: https://www.bing.com/ck/a?!&&p=6d4b5054d90d91c109f312d58c52088d4685277825cec303d18236bd50a8cc85JmltdHM9MTc2MzU5NjgwMA&ptn=3&ver=2&hsh=4&fclid=2f4c7b99-c42a-636d-22da-6e8ac5fb6286&psq=STANDARD+LITHIUM+LTD.+PRELIMINARY+ECONOMIC+ASSESSMENT+OF+SW+ARKANSAS+LITHIUM+PROJECT+NI+43+%e2%80%93+101++TECHNICAL+REPORT+NORAM&u=a1aHR0cHM6Ly93d3cuY29zdG1pbmUuY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDIzLzExL1NvdXRoLVdlc3QtTGl0aGl1bS1Qcm9qZWN0LnBkZg (accessed on 17 November 2025).
- Gardiner, N.J.; Jowitt, S.M.; Sykes, J.P. Lithium: Critical, or Not so Critical? Geoenergy 2024, 2, geoenergy2023-045. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, Q.; Jiao, F.; Qin, W. Role of Nanobubbles on the Fine Lepidolite Flotation with Mixed Cationic/Anionic Collector. Powder Technol. 2023, 427, 118785. [Google Scholar] [CrossRef]
- Yersaiynova, A.A.; Karshyga, Z.B.; Muhammad, N.A.A.; Yessengaziyev, A.M.; Orynbayev, B.M. Lithium Extraction Methods and Its Application Prospects: A Review. Kompleks. Ispolz. Miner. Syra Complex Use Miner. Resour. 2026, 337, 95–107. [Google Scholar] [CrossRef]
- Burton, J. U.S. Geological Survey Releases 2022 List of Critical Minerals|U.S. Geological Survey. Available online: https://www.usgs.gov/news/national-news-release/us-geological-survey-releases-2022-list-critical-minerals (accessed on 28 August 2025).
- Global EV Outlook 2024—Analysis. Available online: https://www.iea.org/reports/global-ev-outlook-2024 (accessed on 28 August 2025).
- Forget, M.; Bos, V.; Prieto, M.; Carballo, A.E. Lithium Dynamics. Global Trends and Local Spatializations. Extr. Ind. Soc. 2025, 23, 101651. [Google Scholar] [CrossRef]
- Jowitt, S.M. Renewable Energy and Associated Technologies and the Scarcity of Metal. In Living with Climate Change; Elsevier: Amsterdam, The Netherlands, 2024; pp. 45–63. ISBN 978-0-443-18515-1. [Google Scholar]
- Jowitt, S.M.; Mudd, G.M.; Thompson, J.F.H. Future Availability of Non-Renewable Metal Resources and the Influence of Environmental, Social, and Governance Conflicts on Metal Production. Commun. Earth Environ. 2020, 1, 13. [Google Scholar] [CrossRef]
- Calderon, J.L.; Bazilian, M.; Sovacool, B.; Hund, K.; Jowitt, S.M.; Nguyen, T.P.; Månberger, A.; Kah, M.; Greene, S.; Galeazzi, C.; et al. Reviewing the Material and Metal Security of Low-Carbon Energy Transitions. Renew. Sustain. Energy Rev. 2020, 124, 109789. [Google Scholar] [CrossRef]
- McNulty, B.A.; Jowitt, S.M. Barriers to and Uncertainties in Understanding and Quantifying Global Critical Mineral and Element Supply. iScience 2021, 24, 102809. [Google Scholar] [CrossRef]
- Energy Act of 2020. Available online: https://www.directives.doe.gov/ipt_members_area/doe-o-436-1-departmental-sustainability-ipt/background-documents/energy-act-of-2020 (accessed on 1 September 2025).
- What Are Critical Materials and Critical Minerals? Available online: https://www.energy.gov/cmm/what-are-critical-materials-and-critical-minerals (accessed on 25 August 2025).
- The Role of Critical Minerals in Clean Energy Transitions—Analysis. Available online: https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions (accessed on 30 August 2025).
- Gallagher, S.M.; Chowdhury, N.A.; Dai, Q.; Spangenberger, J.S. Battery-Grade Lithium Materials: Virgin Production and Recycling, a Techno-Economic Comparison. Adv. Energy Mater. 2025, e01813. [Google Scholar] [CrossRef]
- Petrakis, E.; Alexopoulos, I.; Pantelaki, O.; Karmali, V.; Komnitsas, K. Advances in Mineral Processing of Hard-Rock Lithium Ores: A Comprehensive Review. Min. Metall. Explor. 2025, 42, 1251–1283. [Google Scholar] [CrossRef]
- Tadesse, B.; Makuei, F.; Albijanic, B.; Dyer, L. The Beneficiation of Lithium Minerals from Hard Rock Ores: A Review. Miner. Eng. 2019, 131, 170–184. [Google Scholar] [CrossRef]
- Cook, B.K.; Gibson, C.E. A Review of Fatty Acid Collectors: Implications for Spodumene Flotation. Minerals 2023, 13, 212. [Google Scholar] [CrossRef]
- Wills’ Mineral Processing Technology; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-097053-0.
- Sousa, R.; Ramos, V.; Guedes, A.; Noronha, F.; Leite, M.M. Flotation of Lithium Ores to Obtain High-Grade Li2O Concentrates. Are There Any Mineralogical Imitations? Int. J. Min. Mater. Metall. Eng. 2019, 5, 7–18. [Google Scholar] [CrossRef]
- Abrishami, S.; Gonbadi, M.; Boroumand, Y.; Golmohammadi, M.; Narimani, M.; Sarmadi, A.; Matthews, C.; Estay, H.; Khiadani, M.; Razmjou, A. Comprehensive Review of Lithium Extraction Processes with Economic and Environmental Analysis. Sep. Purif. Technol. 2026, 381, 135582. [Google Scholar] [CrossRef]
- Oliazadeh, M.; Aghamirian, M.; Ali, S.; Legault, E.; Gibson, C. Flowsheet Development for Benefication of Lithium Minerals from Hard Rock Deposits. In Extraction 2018; Davis, B.R., Moats, M.S., Wang, S., Gregurek, D., Kapusta, J., Battle, T.P., Schlesinger, M.E., Alvear Flores, G.R., Jak, E., Goodall, G., et al., Eds.; The Minerals, Metals & Materials Series; Springer International Publishing: Cham, Switzerland, 2018; pp. 2293–2307. ISBN 978-3-319-95021-1. [Google Scholar]
- Gibson, C.E.; Aghamirian, M.; Grammatikopoulos, T.; Smith, D.L.; Bottomer, L. The Recovery and Concentration of Spodumene Using Dense Media Separation. Minerals 2021, 11, 649. [Google Scholar] [CrossRef]
- Sagzhanov, D.; Ito, J.; Altansukh, B.; Godirilwe, L.L.; Jeon, S.; Haga, K.; Shibayama, A. Beneficiation of Low-Grade Lithium Ores from Eastern Kazakhstan by Dense Media Separation (DMS) and Froth Flotation. In Rare Metal Technology 2024; Forsberg, K., Ouchi, T., Azimi, G., Alam, S., Neelameggham, N.R., Baba, A.A., Peng, H., Karamalidis, A., Eds.; The Minerals, Metals & Materials Series; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 201–213. ISBN 978-3-031-50235-4. [Google Scholar]
- Sagzhanov, D.; Ito, J.; Altansukh, B.; Godirilwe, L.L.; Haga, K.; Takasaki, Y.; Shibayama, A. Lithium Ore Beneficiation: Sustainable Approaches for Efficient Recovery of Lithium from a Low-Grade Spodumene Ore. J. Sustain. Metall. 2025, 11, 754–772. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Han, Y.; Zhang, S. Review on the Beneficiation of Li, Be, Ta, Nb-Bearing Polymetallic Pegmatite Ores in China. Minerals 2023, 13, 865. [Google Scholar] [CrossRef]
- Grewal, I.; Lundt, M.; Wong, D.; Tse, W. Recent Developments in Preconcentration Using Dense Media Separation. Available online: https://labs.seprosystems.com/technical-papers/recent-developments-in-preconcentration-using-dense-media-separation/ (accessed on 17 November 2025).
- Sahoo, S.K.; Tripathy, S.K.; Nayak, A.; Hembrom, K.C.; Dey, S.; Rath, R.K.; Mohanta, M.K. Beneficiation of Lithium Bearing Pegmatite Rock: A Review. Miner. Process. Extr. Metall. Rev. 2024, 45, 1–27. [Google Scholar] [CrossRef]
- Botula, J. Possibilities of Magnetic Separation of Lithium Mica. In Proceedings of the International Multidisciplinary Scientific GeoConference: SGEM, Albena, Bulgaria, 28 June–7 July 2016. [Google Scholar]
- Sterba, J.; Krzemień, A.; Fidalgo Valverde, G.; Diego Álvarez, I.; Castañón Fernández, C. Energy-Sustainable Industrialized Growth in the Czech Republic: The Cínovec Lithium Mining Project. Resour. Policy 2020, 68, 101707. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhao, X.; Meng, Q.; Xu, Y.; Li, L. Effect of Selective Coating of Magnetite on Improving Magnetic Separation of Ilmenite from Titanaugite. Miner. Eng. 2020, 149, 106267. [Google Scholar] [CrossRef]
- Gao, T.M.; Fan, N.; Chen, W.; Dai, T. Lithium Extraction from Hard Rock Lithium Ores (Spodumene, Lepidolite, Zinnwaldite, Petalite): Technology, Resources, Environment and Cost. China Geol. 2023, 6, 137–153. [Google Scholar] [CrossRef]
- Norberg, N.; König, U.; Narygina, O.; Bhaskar, H. Accurate Mineralogical Analysis for Efficient Lithium Ore Processing. In Proceedings of the ALTA 2020 Annual Lithium & Battery Technology Conference including Trends in Battery Technology Forum, Online, 9–27 November 2020; pp. 88–93. [Google Scholar]
- Ku, J.; Shi, X.; Wang, Q.; Lin, H.; Shang, H.; Shen, Z. Efficient Exploitation of Lepidolite Resources: A Review on Beneficiation Techniques, Extraction Methods, and Synergistic Optimization. Separations 2025, 12, 130. [Google Scholar] [CrossRef]
- Kashif, N.M. Beneficiation of Hard Rock Lithium Ore and the Effect of Calcination. Ph.D. Thesis, Curtin University, Bentley, Australia, 2022. [Google Scholar]
- Xie, R.; Zhu, Y.; Liu, J.; Li, Y. The Flotation Behavior and Adsorption Mechanism of a New Cationic Collector on the Separation of Spodumene from Feldspar and Quartz. Sep. Purif. Technol. 2021, 264, 118445. [Google Scholar] [CrossRef]
- Kashif Nazir, M.; Dyer, L.; Tadesse, B.; Albijanic, B.; Kashif, N. Flotation Performance of Calcined Spodumene. Adv. Powder Technol. 2022, 33, 103772. [Google Scholar] [CrossRef]
- Chen, J. The Interaction of Flotation Reagents with Metal Ions in Mineral Surfaces: A Perspective from Coordination Chemistry. Miner. Eng. 2021, 171, 107067. [Google Scholar] [CrossRef]
- Lafhaj, Z.; Filippov, L.O.; Filippova, I.V. Improvement of Calcium Mineral Separation Contrast Using Anionic Reagents: Electrokinetics Properties and Flotation. J. Phys. Conf. Ser. 2017, 879, 012012. [Google Scholar] [CrossRef]
- Ma, Z.; Shi, X.; Xu, L.; Wang, D.; Xue, K.; Jing, L.; Meng, J. Selective Flotation Separation of Spodumene from Feldspar Using a Novel Mixed Anionic/Cationic Collector NaOL/ND13. Miner. Eng. 2023, 201, 108152. [Google Scholar] [CrossRef]
- Luo, L.; Xu, L.; Meng, J.; Lu, J.; Wu, H. New Insights into the Mixed Anionic/Cationic Collector Adsorption on Ilmenite and Titanaugite: An in Situ ATR-FTIR/2D-COS Study. Miner. Eng. 2021, 169, 106946. [Google Scholar] [CrossRef]
- Luo, L.; Wu, H.; Xu, L.; Meng, J.; Lu, J.; Zhou, H.; Huo, X.; Huang, L. An In Situ ATR-FTIR Study of Mixed Collectors BHA/DDA Adsorption in Ilmenite-Titanaugite Flotation System. Int. J. Min. Sci. Technol. 2021, 31, 689–697. [Google Scholar] [CrossRef]
- Maliachova, K.; Doukas, N.; Tsakiri, D.; Samouhos, M.; Sakellariou, L.; Douni, I.; Taxiarchou, M.; Paspaliaris, I. Li Extraction from A-Spodumene Concentrate via Carbonizing Calcination. In Proceedings of the RawMat 2023, Athens, Greece, 28 August–2 September 2023; p. 62. [Google Scholar]
- Lee, D.; Joo, Y.-Y.; Shin, D.J.; Shin, S.M. Recovery of Lithium from Beta-Spodumene Through Serial Calcination and Water Leaching with CaO. J. Miner. Met. Mater. Soc. 2024, 76, 1477–1484. [Google Scholar] [CrossRef]
- Nandihalli, N.; Chouhan, R.K.; Kuchi, R.; Hlova, I.Z. Aspects of Spodumene Lithium Extraction Techniques. Sustainability 2024, 16, 8513. [Google Scholar] [CrossRef]
- Fosu, A.Y.; Kanari, N.; Vaughan, J.; Chagnes, A. Literature Review and Thermodynamic Modelling of Roasting Processes for Lithium Extraction from Spodumene. Metals 2020, 10, 1312. [Google Scholar] [CrossRef]
- Iyer, R.K.; Kelly, J.C. Life-Cycle Analysis of Lithium Chemical Production in the United States. RSC Sustain. 2024, 2, 3929–3945. [Google Scholar] [CrossRef]
- Munk, L.A.; Hynek, S.A.; Bradley, D.C.; Boutt, D.; Labay, K.; Jochens, H. Lithium BrinesA Global Perspective. In Rare Earth and Critical Elements in Ore Deposits; Society of Economic Geologists: Littleton, CO, USA, 2016; ISBN 978-1-62949-092-2. [Google Scholar]
- Manning, M. Direct Lithium Extraction from Oil and Gas Production—An Initial Assessment; S&P Global: New York, NY, USA, 2024. [Google Scholar]
- Christina Fleming BHERM—Lithium Recovery Demonstration Final Project Report. Available online: https://www.energy.ca.gov/publications/2024/bherm-lithium-recovery-demonstration-final-project-report (accessed on 28 September 2025).
- Kong, L.; Yan, G.; Hu, K.; Yu, Y.; Conte, N.; Mckenzie, K.R., Jr.; Wagner, M.J.; Boyes, S.G.; Chen, H.; Liu, C.; et al. Electro-Driven Direct Lithium Extraction from Geothermal Brines to Generate Battery-Grade Lithium Hydroxide. Nat. Commun. 2025, 16, 806. [Google Scholar] [CrossRef] [PubMed]
- Araya, N.; Sullivan, J.O.; Brounce, M.; Planavsky, N.; Busse, M.M.; Popineau, J.; Camarillo, M.K.; Renaud, T.; Dobson, P.; Riffault, J.; et al. Characterizing the Geothermal Lithium Resource at the Salton Sea; Lawrence Berkeley National Laboratory (Berkeley Lab): Berkeley, CA, USA, 2023; p. 22.
- Alghamdi, M.; Altmann, T.; Das, R. Direct Lithium Extraction from Seawater Brine: An Assessment of Technology and Existing Commercial Systems. Minerals 2025, 15, 512. [Google Scholar] [CrossRef]
- Ruberti, M. Pathways to Greener Primary Lithium Extraction for a Really Sustainable Energy Transition: Environmental Challenges and Pioneering Innovations. Sustainability 2025, 17, 160. [Google Scholar] [CrossRef]
- Boutt, D.F.; Munk, L.A.; Moran, B.; McKnight, S.; Corkan, D.; Jenckes, J.; Kirshen, A.; Russo, A. Lithium Water Study. Available online: https://www.bmwgroup.com/content/dam/grpw/websites/bmwgroup_com/responsibility/downloads/en/2023/Lithium-Study_Research-Summary_ENG.pdf (accessed on 17 November 2025).
- Aylwin, J.; Cayo, J.C.; Feierabend, S. Lithium and Human Rights in the High Andean Salt Flats of Argentina, Bolivia and Chile; International Federation for Human Rights (FIDH): Paris, France, 2025. [Google Scholar]
- Link, A.; Marinova, S.; Roche, L.; Coroamă, V.; Hinkers, L.; Borchardt, D.; Finkbeiner, M. Lithium Mining in the Salar de Atacama—Accounting Practices for Water Footprinting. Water 2025, 17, 1670. [Google Scholar] [CrossRef]
- Roche, L.; Link, A.; Marinova, S.; Coroama, V.; Finkbeiner, M. S-LCA of Lithium Mining in Chile and Its Potential Impacts on Water and the Local Community. Int. J. Life Cycle Assess. 2025, 30, 1201–1228. [Google Scholar] [CrossRef]
- Alam, M.A.; Sepúlveda, R. Environmental Degradation through Mining for Energy Resources: The Case of the Shrinking Laguna Santa Rosa Wetland in the Atacama Region of Chile. Energy Geosci. 2022, 3, 182–190. [Google Scholar] [CrossRef]
- Miller, K.D.; Bentley, M.J.; Ryan, J.N.; Linden, K.G.; Larison, C.; Kienzle, B.A.; Katz, L.E.; Wilson, A.M.; Cox, J.T.; Kurup, P.; et al. Mine Water Use, Treatment, and Reuse in the United States: A Look at Current Industry Practices and Select Case Studies. ACS EST Eng. 2022, 2, 391–408. [Google Scholar] [CrossRef]
- Lithium Americas Non-Gaap Financial Measures. 2025. Available online: https://docs.publicnow.com/viewDoc?filename=239054%5CEXT%5C245AF8561EC16C49097BD862A3D7B999FAF193C3_E64033C266F341601A3F1190CD23030788EF7990.PDF (accessed on 17 November 2025).
- PorterGeo Database—Ore Deposit Description. Available online: https://portergeo.com.au/database/mineinfo.php?mineid=mn1807 (accessed on 5 November 2025).
- Iyer, R.K.; Jarod, C. Kelly Ltihum Production from North American Brines; Argonne National Laboratory (ANL): Argonne, IL, USA, 2022.
- Paranthaman, M.P.; Li, L.; Luo, J.; Hoke, T.; Ucar, H.; Harrison, S. Recovery of Lithium from Geothermal Brine with Lithium-Aluminum 2 Layered Double Hydroxide Chloride Sorbents. Environ. Sci. Technol. 2017, 51, 13481–13486. [Google Scholar] [CrossRef] [PubMed]
- Cabello, J. Lithium Brine Production, Reserves, Resources and Exploration in Chile: An Updated Review. Ore Geol. Rev. 2021, 128, 103883. [Google Scholar] [CrossRef]
- Meng, F.; McNeice, J.; Zadeh, S.S.; Ghahreman, A. Review of Lithium Production and Recovery from Minerals, Brines, and Lithium-Ion Batteries. Miner. Process. Extr. Metall. Rev. 2021, 42, 123–141. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Pan, H.; He, P.; Zhou, H. Lithium Extraction from Low-Quality Brines. Nature 2024, 636, 309–321. [Google Scholar] [CrossRef]
- Wines, T. Lithium Brine to Lithium Carbonate Process Separation Solutions; Pall Corporation: Port Washington, NY, USA, 2025; p. 5. [Google Scholar]
- Álvarez-Amado, F.; Rosales, M.; Godfrey, L.; Poblete-González, C.; Morgado, E.; Espinoza, M.; Hidalgo-Gajardo, A.; Volosky, D.; Cortés-Aranda, J. The Role of Ignimbrites and Fine Sediments in the Lithium Distribution and Isotopic Fractionation in Hyperarid Environments: Insights from Li-Isotopes in the Atacama Desert. J. Geochem. Explor. 2022, 241, 107062. [Google Scholar] [CrossRef]
- Liu, W.; Agusdinata, D.B. Interdependencies of Lithium Mining and Communities Sustainability in Salar de Atacama, Chile. J. Clean. Prod. 2020, 260, 120838. [Google Scholar] [CrossRef]
- Bustos-Gallardo, B.; Bridge, G.; Prieto, M. Harvesting Lithium: Water, Brine and the Industrial Dynamics of Production in the Salar de Atacama. Geoforum 2021, 119, 177–189. [Google Scholar] [CrossRef]
- Fuentealba, D.; Flores-Fernández, C.; Troncoso, E.; Estay, H. Technological Tendencies for Lithium Production from Salt Lake Brines: Progress and Research Gaps to Move towards More Sustainable Processes. Resour. Policy 2023, 83, 103572. [Google Scholar] [CrossRef]
- Benyo, S. Direct Lithium Extraction Technology Intensifies Mining Operations; IDTechEx: Cambridge, UK, 2023; Volume 8. [Google Scholar]
- Alex Grant from Catamarca to Qinghai—The Commercial Scale DLE Operations. Available online: https://www.jadecove.com/research/fromcatamarcatoqinghai (accessed on 5 September 2025).
- A Growing Wave of Sustainable Lithium Supply: Adsorption-Type Direct Lithium Extraction (Dle); Vulcan Energy Resources Limited: Perth, Australia, 2023; p. 24.
- Mojid, M.R.; Lee, K.J.; You, J. A Review on Advances in Direct Lithium Extraction from Continental Brines: Ion-Sieve Adsorption and Electrochemical Methods for Varied Mg/Li Ratios. Sustain. Mater. Technol. 2024, 40, e00923. [Google Scholar] [CrossRef]
- Mousavinezhad, S.; Nili, S.; Fahimi, A.; Vahidi, E. Environmental Impact Assessment of Direct Lithium Extraction from Brine Resources: Global Warming Potential, Land Use, Water Consumption, and Charting Sustainable Scenarios. Resour. Conserv. Recycl. 2024, 205, 107583. [Google Scholar] [CrossRef]
- Nicolaci, H.; Young, P.; Snowdon, N.; Rai, A.; Chen, T.; Zhang, J.; Lin, Y.; Bailey, E.; Shi, R.; Zheng, N. Global Metals & Mining Direct Lithium Extraction a Potential Game Changing Technology; Goldman Sachs: New York, NY, USA, 2023; p. 29. [Google Scholar]
- International Lithium Association DLE 101—International Lithium Association. Available online: https://lithium.org/wp-content/uploads/2024/06/Direct-Lithium-Extraction-DLE-An-introduction-ILiA-June-2024-v.1-English-web.pdf (accessed on 18 September 2025).
- Azevedo, M.; Baczynska, M.; Hoffman, K.; Krauze, A. How Lithium Mining Is Fueling the EV Revolution|McKinsey. Available online: https://www.mckinsey.com/industries/metals-and-mining/our-insights/lithium-mining-how-new-production-technologies-could-fuel-the-global-ev-revolution (accessed on 18 September 2025).
- Integral Consulting. Resource and Reserve Report Pre-Feasibility Study Salar Del Hombre Muerto; Ganfeng Lithium Co., Ltd.: Xinyu, China, 2023; p. 196. [Google Scholar]
- Gill, C. China Expanding Lithium Facility at Qinghai Salt Lake; Asia Financial: Beijing, China, 2021. [Google Scholar]
- The Largest Lithium Extraction Project from Brine in China Officially Produces 20,000 Tons of Battery-Grade Lithium Carbonate per Year.|SMM. Available online: https://news.metal.com/newscontent/101571336/the-largest-lithium-extraction-project-from-brine-in-china-officially-produces-20000-tons-of-battery-grade-lithium-carbonate-per-year?utm_source=chatgpt.com (accessed on 7 November 2025).
- Sunresin’s 4000t/a Jintai Salt Lake Lithium Extraction Project Put into Operation—Sunresin. Available online: https://www.seplite.com/sunresin-s-4000t-a-jintai-salt-lake-lithium-extraction-project-put-into-operation/ (accessed on 7 November 2025).
- The Global Direct Lithium Extraction Market 2026–2036. Available online: https://www.giiresearch.com/report/fmi1744006-global-direct-lithium-extraction-market.html (accessed on 5 September 2025).
- Scheyder, E. DLE Companies Racing to Reshape Global Lithium Production. Reuters, 16 June 2023. [Google Scholar]
- Scheyder, E. SLB Launches Lithium Filtration System after Nevada Tests|Reuters. Available online: https://www.reuters.com/markets/commodities/slb-launches-lithium-filtration-system-after-nevada-tests-2024-09-10/ (accessed on 5 September 2025).
- Who Is Leading in the Race to Achieve Successful Direct Lithium Extraction (“DLE”)|Seeking Alpha. Available online: https://seekingalpha.com/article/4595507-who-is-leading-race-achieve-successful-direct-lithium-extraction-dle (accessed on 27 September 2025).
- Scheyder, E. Insight: Inside the Race to Remake Lithium Extraction for EV Batteries. Reuters, 16 June 2023. [Google Scholar]
- Rise of DLE Will Open up New Sources of Lithium Supply This Decade. Available online: https://source.benchmarkminerals.com/article/rise-of-dle-will-open-up-new-sources-of-lithium-supply-this-decade (accessed on 6 September 2025).
- Jennifer, L. Is Direct Lithium Extraction the Key to Solving the Lithium Shortage Crisis? Carbon Credits, 5 August 2024. [Google Scholar]
- McBride, M.; Moerenhout, D.T.; Rivota, D.R.; Zhou, H. Assessing the Policy Ecosystems and Scaling Pathways of Direct Lithium Extraction; CGEP: New York, NY, USA, 2025.
- Snydacker, D.H.; Hegde, V.I.; Aykol, M.; Wolverton, C. Computational Discovery of Li-M-O Ion Exchange Materials for Lithium Extraction from Brines. Chem. Mater. 2018, 30, 6961–6968. [Google Scholar] [CrossRef]
- Mantilla, R.F.R.; Sanchez, A.C.; Figueroa, R.R.; Diaz, R.A.R. Lithium Recovery from Brines, Hard Rock Deposits, and Clay; Myande group: Yangzhou, China, 2024. [Google Scholar]
- Butler, K.L.; Munk, L.A.; Boutt, D.F.; Morris, N.; Kennedy, J.; Saha, P.; Blake, M.R.; Custado, M.J.; Ibarra, D.E. The Origin and Enrichment of Sedimentary Basin Lithium Brines: A Case Study from the Upper Devonian Leduc Formation, Alberta Basin, Canada. Econ. Geol. 2025, 120, 649–662. [Google Scholar] [CrossRef]
- Murphy, O.; Haji, M.N. A Review of Technologies for Direct Lithium Extraction from Low Li+ Concentration Aqueous Solutions. Front. Chem. Eng. 2022, 4, 1008680. [Google Scholar] [CrossRef]
- Atanassova, M. Solvent Extraction Chemistry in Ionic Liquids: An Overview of f-Ions. J. Mol. Liq. 2021, 343, 117530. [Google Scholar] [CrossRef]
- Nguyen-Le, D.H.; Tao, Q.B.; Nguyen, V.-H.; Abdel-Wahab, M.; Nguyen-Xuan, H. A Data-Driven Approach Based on Long Short-Term Memory and Hidden Markov Model for Crack Propagation Prediction. Eng. Fract. Mech. 2020, 235, 107085. [Google Scholar] [CrossRef]
- Yuan, H.; Li, M.; Cui, L.; Wang, L.; Cheng, F. Electrochemical Extraction Technologies of Lithium: Development and Challenges. Desalination 2025, 598, 118419. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Li, M. Electrodialysis for Lithium Recovery from Brine: Process Configurations, Techno-Economic Analysis, Challenges and Opportunities with Artificial Intelligence. J. Environ. Chem. Eng. 2025, 13, 118309. [Google Scholar] [CrossRef]
- Ying, J.; Lin, Y.; Zhang, Y.; Yu, J. Developmental Progress of Electrodialysis Technologies and Membrane Materials for Extraction of Lithium from Salt Lake Brines. ACS EST Water 2023, 3, 1720–1739. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Q.; Wang, Y.; Yun, R.; Xiang, X. Recent Advances in Magnesium/Lithium Separation and Lithium Extraction Technologies from Salt Lake Brine. Sep. Purif. Technol. 2021, 256, 117807. [Google Scholar] [CrossRef]
- Li, M.; Zhao, X.; Xu, Y.; Yan, Z.C.; Wei, H.; Wang, Y.; Yang, H.Y. A Mini-Review about Overcoming Challenges in Hydrophilicity: Towards Efficient Capacitive Deionization Electrodes. Sep. Purif. Technol. 2025, 354, 129211. [Google Scholar] [CrossRef]
- Battistel, A.; Palagonia, M.S.; Brogioli, D.; La Mantia, F.; Trócoli, R. Electrochemical Methods for Lithium Recovery: A Comprehensive and Critical Review. Adv. Mater. 2020, 32, 1905440. [Google Scholar] [CrossRef]
- Gu, C.; Wu, Z.; Zhao, Y.; Zhang, Q.; Luo, Z.; Wang, L. Exploring Electrochemical Lithium Extraction: From System Architectures to Practical Challenges. Adv. Sustain. Syst. 2025, 9, e00617. [Google Scholar] [CrossRef]
- Dong, Q.; Gang, H.; Xu, J.; Li, Z.; Wang, Z. The Technologies of Electrochemical Lithium Extraction Process from Lithium-Containing Solutions. J. Exp. Theor. Anal. 2024, 2, 91–102. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Huang, H.; Yao, Y.; Khan, B.; Zhu, Y.; Huang, K.-W.; Lai, Z.; He, J.-H. Green Lithium: Photoelectrochemical Extraction. PhotoniX 2023, 4, 23. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Lin, D.; Hsu, P.-C.; Liu, B.; Yan, G.; Wu, T.; Cui, Y.; Chu, S. Lithium Extraction from Seawater through Pulsed Electrochemical Intercalation. Joule 2020, 4, 1459–1469. [Google Scholar] [CrossRef]
- Yu, H.; Wang, C.; Phuntsho, S.; He, T.; Naidu, G.; Han, D.S.; Shon, H.K. Highly Selective Lithium Recovery from Seawater Desalination Brine Using Li2TiO3 Membrane-Coated Capacitive Deionization. Water Res. 2025, 285, 124113. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Liu, X.; Cao, L.; Li, P.; Wei, R.; Li, X.; Guo, D.; Huang, K.-W.; Lai, Z. Continuous Electrical Pumping Membrane Process for Seawater Lithium Mining. Energy Environ. Sci. 2021, 14, 3152–3159. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Zhang, M.; Wang, P.; He, X.; Zhou, H.; He, P. Lithium Metal Recovery from Sea Water by a Flexible and Scalable Membrane with Lithium-Ion Exclusive Channels. Angew. Chem. Int. Ed. 2024, 63, e202411957. [Google Scholar] [CrossRef] [PubMed]
- Lei, D.; Zhu, Y.; Lou, L.-L.; Liu, Z. Covalent Organic Framework Membranes for Lithium Extraction: Facilitated Ion Transport Strategies to Enhance Selectivity. Mater. Horiz. 2025, 12, 5459–5472. [Google Scholar] [CrossRef]
- Haddad, A.Z.; Cha, H.; McDonough, L.; Dun, C.; Pohlman, G.; Urban, J.J.; Kostecki, R. Electrochemical Lithium Extraction from Hectorite Ore. Commun. Chem. 2024, 7, 285. [Google Scholar] [CrossRef] [PubMed]
- Roy, V.; Paranthaman, M.P.; Zhao, F. Lithium from Clay: Assessing the Environmental Impacts of Extraction. Sustain. Prod. Consum. 2024, 52, 324–332. [Google Scholar] [CrossRef]
- Putzolu, F.; Armstrong, R.N.; Boyce, A.J.; Hepburn, L.E.; Bompard, N.; Najorka, J.; Lefebvre-Desanois, M.; Milton, A.J.; Salge, T.; Erak, D.; et al. Origin of the Jadar Volcano-Sedimentary Li-B Deposit, Serbia. Econ. Geol. 2025, 120, 599–625. [Google Scholar] [CrossRef]
- Madhiraju, P. Top 5 Sedimentary Lithium Projects to Watch in the U.S. After 2025. 2025. Available online: https://business-news-today.com/top-5-sedimentary-lithium-projects-to-watch-in-the-u-s-after-2025/ (accessed on 17 November 2025).
- Darin, M.H.; Harlaux, M.; Ogilvie, I.A.; Reynolds, J.T.; Chafetz, D.A. Source-to-Sink Evolution of Volcano-Sedimentary Li-B Deposits at Rhyolite Ridge, Southwestern Nevada. Econ. Geol. 2025, 120, 1167–1190. [Google Scholar] [CrossRef]
- Mackey, J.; Bain, D.J.; Lackey, G.; Gardiner, J.; Gulliver, D.; Kutchko, B. Estimates of Lithium Mass Yields from Produced Water Sourced from the Devonian-Aged Marcellus Shale. Sci. Rep. 2024, 14, 8813. [Google Scholar] [CrossRef] [PubMed]
- Weigl, D.; Inman, D.; Hettinger, D.; Ravi, V.; Peterson, S. Battery Energy Storage Scenario Analyses Using the Lithium-Ion Battery Resource Assessment (LIBRA) Model; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2022; Volume 1899991, pp. NREL/TP-6A20-81875. [Google Scholar]
- Mayyas, A.; Steward, D.; Mann, M. The Case for Recycling: Overview and Challenges in the Material Supply Chain for Automotive Li-Ion Batteries. Sustain. Mater. Technol. 2019, 19, e00087. [Google Scholar] [CrossRef]
- Kamateros, G.; Abdoli, S. Automated Disassembly of Lithium Batteries; Methods, Challenges, and a Roadmap. Procedia CIRP 2023, 119, 1216–1221. [Google Scholar] [CrossRef]
- Lai, X.; Huang, Y.; Deng, C.; Gu, H.; Han, X.; Zheng, Y.; Ouyang, M. Sorting, Regrouping, and Echelon Utilization of the Large-Scale Retired Lithium Batteries: A Critical Review. Renew. Sustain. Energy Rev. 2021, 146, 111162. [Google Scholar] [CrossRef]
- Weigl, D.; Young, D. Impact of Automated Battery Sorting for Mineral Recovery from Lithium-Ion Battery Recycling in the United States. Resour. Conserv. Recycl. 2023, 192, 106936. [Google Scholar] [CrossRef]
- Global EV Outlook 2020—Analysis. Available online: https://www.iea.org/reports/global-ev-outlook-2020 (accessed on 27 September 2025).
- Ma, X.; Meng, Z.; Bellonia, M.V.; Spangenberger, J.; Harper, G.; Gratz, E.; Olivetti, E.; Arsenault, R.; Wang, Y. The Evolution of Lithium-Ion Battery Recycling. Nat. Rev. Clean Technol. 2025, 1, 75–94. [Google Scholar] [CrossRef]
- Benchmark Mineral Intelligence Calculated How Many More Mines We’ll Need for EVs: 359—Autoevolution. Available online: https://www.autoevolution.com/news/benchmark-mineral-intelligence-calculated-how-many-more-mines-we-ll-need-for-evs-359-198133.html (accessed on 27 September 2025).
- Lithium Ion Battery Recycling|AltEnergyMag. Available online: https://www.altenergymag.com/article/2023/05/lithium-ion-battery-recycling/39465 (accessed on 27 September 2025).
- Premise for Lithium Recovery via Thermal Processing. Available online: http://besiusa.com/ (accessed on 22 September 2025).
- Rehmat, A.G. Gas Distribution Arrangement for Rotary Reactor. Patent 9,862,899, 9 January 2018. [Google Scholar]
- Rehmat, A.G. Common Purpose Apparatus for Physical and Chemical Gas-Solid Reactions 2016. Patent 9,434,895, 24 September 1987. [Google Scholar]
- Rehmat, A.G. Apparatus, System, and Method for Converting Varied Source Industry Waste into Energy. Patent 15/505,891, 28 September 2017. [Google Scholar]
- Hamrick, J.T.; Rose, L.C. Wood Burning System and Method. Patent US4409786A, 18 October 1983. [Google Scholar]
- The Real ROI of Battery Recycling: Cost, Throughput, and Commercial Value—Green Li-Ion. Available online: https://www.greenli-ion.com/post/the-real-roi-of-battery-recycling-cost-throughput-and-commercial-value (accessed on 5 November 2025).
- Schlott, L.; Gutsch, M.; Leker, J. Cost Modelling and Key Drivers in Lithium-Ion Battery Recycling. Nat. Rev. Clean Technol. 2025, 1, 656–670. [Google Scholar] [CrossRef]
- Harty, J. Six Key Trends in the Battery Recycling Market. Fastmarkets, 19 June 2023. Available online: https://www.fastmarkets.com/insights/six-key-trends-battery-recycling-market/ (accessed on 17 November 2025).
- Talha, N. Direct Recycling of NMC811-Based Cathodes for Lithium-Ion Batteries. Master’s Thesis, Aalto University, Espoo, Finland, 2025. [Google Scholar]
- Battery Monitor 2023. Available online: https://www.rolandberger.com/en/Insights/Publications/Battery-Monitor-2023-An-assessment-of-the-current-and-future-battery-value.html (accessed on 17 November 2025).
- Azimi, G.; Chan, K.H. A Review of Contemporary and Emerging Recycling Methods for Lithium-Ion Batteries with a Focus on NMC Cathodes. Resour. Conserv. Recycl. 2024, 209, 107825. [Google Scholar] [CrossRef]
- Imre-Lucaci, Á.; Imre-Lucaci, F.; Fogarasi, S. Modeling, Simulation, and Techno-Economic Assessment of a Spent Li-Ion Battery Recycling Plant. Materials 2025, 18, 3715. [Google Scholar] [CrossRef]
- Sandaruwan Premathilake, D.; Fonseca Guimarães, L.; Romano Espinosa, D.C.; Soares Tenório, J.A.; Vaccari, M.; Junior, A.B.B. Advancing Hydrometallurgical Recycling of Spent Lithium-Ion Batteries: An AI-Based Readiness and Sustainability Assessment. RSC Sustain. 2025, 3, 4975–4991. [Google Scholar] [CrossRef]
- Yu, D.; Huang, Z.; Makuza, B.; Guo, X.; Tian, Q. Pretreatment Options for the Recycling of Spent Lithium-Ion Batteries: A Comprehensive Review. Miner. Eng. 2021, 173, 107218. [Google Scholar] [CrossRef]
- Thompson, D.; Hyde, C.; Hartley, J.M.; Abbott, A.P.; Anderson, P.A.; Harper, G.D.J. To Shred or Not to Shred: A Comparative Techno-Economic Assessment of Lithium Ion Battery Hydrometallurgical Recycling Retaining Value and Improving Circularity in LIB Supply Chains. Resour. Conserv. Recycl. 2021, 175, 105741. [Google Scholar] [CrossRef]
- Premathilake, D.S.; Illankoon, W.A.M.A.N.; Botelho Junior, A.B.; Milanese, C.; Tenório, J.A.S.; Espinosa, D.C.R.; Vaccari, M. Comparative Analysis of Facile and Novel Graphite Recovery Methods from Spent Lithium-Ion Batteries: Environmental and Economic Implications. ACS Sustain. Chem. Eng. 2025, 13, 1737–1753. [Google Scholar] [CrossRef]
- Diekmann, J.; Hanisch, C.; Froböse, L.; Schälicke, G.; Loellhoeffel, T.; Fölster, A.-S.; Kwade, A. Ecological Recycling of Lithium-Ion Batteries from Electric Vehicles with Focus on Mechanical Processes. J. Electrochem. Soc. 2017, 164, A6184–A6191. [Google Scholar] [CrossRef]
- Jorges, E.E.M.; Santos, D.M.F.; Quintino, A.M.N. Economic Analysis of Lithium-Ion Battery Recycling. AIMS Energy 2023, 11, 960–973. [Google Scholar] [CrossRef]
- Kampker, A.; Heimes, H.H.; Offermanns, C.; Vienenkötter, J.; Frank, M.; Holz, D. Identification of Challenges for Second-Life Battery Systems—A Literature Review. World Electr. Veh. J. 2023, 14, 80. [Google Scholar] [CrossRef]
- Rallo, H.; Benveniste, G.; Gestoso, I.; Amante, B. Economic Analysis of the Disassembling Activities to the Reuse of Electric Vehicles Li-Ion Batteries. Resour. Conserv. Recycl. 2020, 159, 104785. [Google Scholar] [CrossRef]
- Steckel, T.; Kendall, A.; Ambrose, H. Applying Levelized Cost of Storage Methodology to Utility-Scale Second-Life Lithium-Ion Battery Energy Storage Systems. Appl. Energy 2021, 300, 117309. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhao, H.; Rao, Z.; Lei, Y. High Adsorption Graphene Oxide Prepared by Graphite Anode from Spent Lithium-Ion Batteries for Methylene Blue Removal. Batteries 2022, 8, 249. [Google Scholar] [CrossRef]
- DS 90/2000 MINSEGPRES; Criteria for Its Application in the Environmental Impact Assessment System: Emission Standard for Discharging Liquid Waste into Superficial Marine and Continental Waters. Chilean Ministry of the Environment’s Environmental Assessment Service: Santiago, Chile, 2015. Available online: https://www.sea.gob.cl/en/documentacion/guias-y-criterios/criterios-para-su-aplicacion-en-el-sistema-de-evaluacion-de-impacto (accessed on 9 November 2025).
- World Health Organization (Ed.) Guidelines for Drinking-Water Quality, 4th ed.; incorporating the first addendum; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-154995-0. [Google Scholar]
- Cusano, G.; Rodrigo, G.M.; Farrell, F.; Remus, R.; Roudier, S.; Delgado, S.L. Best Available Techniques (BAT) Reference Document for the Non-Ferrous Metals Industries. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control). Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC107041 (accessed on 9 November 2025).
- Guidelines for Field-Measured Water-Quality Properties; Techniques and Methods; USGS: Reston, VA, USA, 2023; p. 32.
- Environmental, Health, and Safety (EHS) Guidelines. General Ehs Guidelines: Introduction 2007. Available online: https://www.ifc.org/content/dam/ifc/doc/2023/ifc-general-ehs-guidelines.pdf (accessed on 17 November 2025).
- China’s Lead in Share of Critical Battery Minerals; Legacy IAS Academy: Bangalore, India, 2021.
- Marin-Garcia, G.; Vazquez-Guzman, G.; Sosa, J.M.; Lopez, A.R.; Martinez-Rodriguez, P.R.; Langarica, D. Battery Types and Electrical Models: A Review. In Proceedings of the 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Guerrero, Mexico, 4–6 November 2020; IEEE: Ixtapa, Mexico, 2020; pp. 1–6. [Google Scholar]
- Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W. State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles. Energies 2018, 11, 1820. [Google Scholar] [CrossRef]
- Blomgren, G.E. The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2017, 164, A5019–A5025. [Google Scholar] [CrossRef]
- Turcheniuk, K.; Bondarev, D.; Singhal, V.; Yushin, G. Ten Years Left to Redesign Lithium-Ion Batteries. Nature 2018, 559, 467–470. [Google Scholar] [CrossRef]
- Zhao, T.; Li, W.; Traversy, M.; Choi, Y.; Ghahreman, A.; Zhao, Z.; Zhang, C.; Zhao, W.; Song, Y. A Review on the Recycling of Spent Lithium Iron Phosphate Batteries. J. Environ. Manag. 2024, 351, 119670. [Google Scholar] [CrossRef]
- Chen, T.; Li, M.; Bae, J. Recent Advances in Lithium Iron Phosphate Battery Technology: A Comprehensive Review. Batteries 2024, 10, 424. [Google Scholar] [CrossRef]
- Miao, Y.; Hynan, P.; Von Jouanne, A.; Yokochi, A. Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies 2019, 12, 1074. [Google Scholar] [CrossRef]
- Saaid, F.I.; Kasim, M.F.; Winie, T.; Elong, K.A.; Azahidi, A.; Basri, N.D.; Yaakob, M.K.; Mastuli, M.S.; Amira Shaffee, S.N.; Zolkiffly, M.Z.; et al. Ni-Rich Lithium Nickel Manganese Cobalt Oxide Cathode Materials: A Review on the Synthesis Methods and Their Electrochemical Performances. Heliyon 2024, 10, e23968. [Google Scholar] [CrossRef]
- Barros, T.V.; Notario, V.A.; De Oliveira, J.A.; Bispo, D.F.; Freitas, L.D.S.; Jegatheesan, V.; Cardozo-Filho, L. Recovery of Lithium and Cobalt from Lithium Cobalt Oxide and Lithium Nickel Manganese Cobalt Oxide Batteries Using Supercritical Water. Environ. Pollut. 2024, 359, 124570. [Google Scholar] [CrossRef]
- Liu, S.; Wang, B.; Zhang, X.; Zhao, S.; Zhang, Z.; Yu, H. Reviving the Lithium-Manganese-Based Layered Oxide Cathodes for Lithium-Ion Batteries. Matter 2021, 4, 1511–1527. [Google Scholar] [CrossRef]
- Lv, H.; Liao, Y.; Zhao, C.; Shang, X.; Zhang, F. State of Charge Estimation of Lithium-Titanate Battery Based on Multi-Model Extended Kalman Filter Considering Temperature and Current Rate. J. Energy Storage 2024, 77, 109890. [Google Scholar] [CrossRef]
- Jin, X.; Han, Y.; Zhang, Z.; Chen, Y.; Li, J.; Yang, T.; Wang, X.; Li, W.; Han, X.; Wang, Z.; et al. Mesoporous Single-Crystal Lithium Titanate Enabling Fast-Charging Li-Ion Batteries. Adv. Mater. 2022, 34, 2109356. [Google Scholar] [CrossRef]
- Hasan, M.M.; Haque, R.; Jahirul, M.I.; Rasul, M.G.; Fattah, I.M.R.; Hassan, N.M.S.; Mofijur, M. Advancing Energy Storage: The Future Trajectory of Lithium-Ion Battery Technologies. J. Energy Storage 2025, 120, 116511. [Google Scholar] [CrossRef]
- Niu, H.; Zhang, N.; Lu, Y.; Zhang, Z.; Li, M.; Liu, J.; Zhang, N.; Song, W.; Zhao, Y.; Miao, Z. Strategies toward the Development of High-Energy-Density Lithium Batteries. J. Energy Storage 2024, 88, 111666. [Google Scholar] [CrossRef]
- Shinde, G.; Mohapatra, R.; Krishan, P.; Garg, H.; Prabhu, S.; Das, S.; Masum, M.; Sengupta, S. The State of Lithium-Ion Battery Health Prognostics in the CPS Era. arXiv 2024, arXiv:2403.19816. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The Lithium-Ion Battery: State of the Art and Future Perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Asghar, M.R.; Anwar, M.T.; Naveed, A. A Review on Inorganic Nanoparticles Modified Composite Membranes for Lithium-Ion Batteries: Recent Progress and Prospects. Membranes 2019, 9, 78. [Google Scholar] [CrossRef]
- Scrosati, B.; Garche, J. Lithium Batteries: Status, Prospects and Future. J. Power Sources 2010, 195, 2419–2430. [Google Scholar] [CrossRef]
- U.S. Government Accountability Office Science & Tech Spotlight: Advanced Batteries|U.S. GAO. Available online: https://www.gao.gov/products/gao-23-106332 (accessed on 22 August 2025).
- Choi, D.; Shamim, N.; Crawford, A.; Huang, Q.; Vartanian, C.K.; Viswanathan, V.V.; Paiss, M.D.; Alam, M.J.E.; Reed, D.M.; Sprenkle, V.L. Li-Ion Battery Technology for Grid Application. J. Power Sources 2021, 511, 230419. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-Ion Batteries: Present and Future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef]
- Hill, R.C.; Gross, M.S.; Percival, S.J.; Peretti, A.S.; Small, L.J.; Spoerke, E.D.; Cheng, Y.-T. Molten Sodium Batteries: Advances in Chemistries, Electrolytes, and Interfaces. Front. Batter. Electrochem. 2024, 3, 1369305. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, H.; Khan, M.A.; Zou, W.; Xu, J.; Zhang, L.; Zhang, J. Recent Progress in Advanced Electrode Materials, Separators and Electrolytes for Lithium Batteries. J. Mater. Chem. A 2018, 6, 20564–20620. [Google Scholar] [CrossRef]
- Arote, S.A. Lithium-Ion and Lithium–Sulfur Batteries: Fundamentals to Performance; IOP Publishing: Bristol, UK, 2022; ISBN 978-0-7503-4881-2. [Google Scholar]
- Armand, M.; Axmann, P.; Bresser, D.; Copley, M.; Edström, K.; Ekberg, C.; Guyomard, D.; Lestriez, B.; Novák, P.; Petranikova, M.; et al. Lithium-Ion Batteries—Current State of the Art and Anticipated Developments. J. Power Sources 2020, 479, 228708. [Google Scholar] [CrossRef]
- Zhao, R.; Wen, D.; Lai, Z.; Li, W.; Ye, M.; Zhuge, W.; Zhang, Y. Performance Analysis and Optimization of a Novel Cooling Plate with Non-Uniform Pin-Fins for Lithium Battery Thermal Management. Appl. Therm. Eng. 2021, 194, 117022. [Google Scholar] [CrossRef]
- Chen, S.; Bao, N.; Garg, A.; Peng, X.; Gao, L. A Fast Charging–Cooling Coupled Scheduling Method for a Liquid Cooling-Based Thermal Management System for Lithium-Ion Batteries. Engineering 2021, 7, 1165–1176. [Google Scholar] [CrossRef]
- Zheng, Y.; Qin, C.; Lai, X.; Han, X.; Xie, Y. A Novel Capacity Estimation Method for Lithium-Ion Batteries Using Fusion Estimation of Charging Curve Sections and Discrete Arrhenius Aging Model. Appl. Energy 2019, 251, 113327. [Google Scholar] [CrossRef]
- Mohammed, H.; Mia, M.F.; Wiggins, J.; Desai, S. Nanomaterials for Energy Storage Systems—A Review. Molecules 2025, 30, 883. [Google Scholar] [CrossRef]
- Feng, X.; Zheng, S.; Ren, D.; He, X.; Wang, L.; Cui, H.; Liu, X.; Jin, C.; Zhang, F.; Xu, C.; et al. Investigating the Thermal Runaway Mechanisms of Lithium-Ion Batteries Based on Thermal Analysis Database. Appl. Energy 2019, 246, 53–64. [Google Scholar] [CrossRef]
- Kraft, L.; Hoefling, A.; Zünd, T.; Kunz, A.; Steinhardt, M.; Tübke, J.; Jossen, A. Implications of the Heat Generation of LMR-NCM on the Thermal Behavior of Large-Format Lithium-Ion Batteries. J. Electrochem. Soc. 2021, 168, 053505. [Google Scholar] [CrossRef]
- Patel, J.D.; Patel, R.S. Theoretical Modelling of Heat Generation in Batteries of Electric Vehicles for Various Operating Environments. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1146, 012027. [Google Scholar] [CrossRef]
- Suresh Patil, M.; Seo, J.-H.; Lee, M.-Y. A Novel Dielectric Fluid Immersion Cooling Technology for Li-Ion Battery Thermal Management. Energy Convers. Manag. 2021, 229, 113715. [Google Scholar] [CrossRef]
- Bairav, S.V.; Kazyak, E.; Lewis, J.A.; Nanda, J.; McDowell, M.T.; Dasgupta, N.P.; Mukherjee, P.P. Challenges and opportunities for fast charging of solid-state lithium metal batteries. ACS Energy Lett. 2021, 6, 3734–3749. [Google Scholar] [CrossRef]
- Zhang, T.; Guo, N.; Sun, X.; Fan, J.; Yang, N.; Song, J.; Zou, Y. A Systematic Framework for State of Charge, State of Health and State of Power Co-Estimation of Lithium-Ion Battery in Electric Vehicles. Sustainability 2021, 13, 5166. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, S.; He, Y.-B.; Kang, F.; Chen, L.; Li, H.; Yang, Q.-H. Solid-State Lithium Batteries: Safety and Prospects. eScience 2022, 2, 138–163. [Google Scholar] [CrossRef]
- Koech, A.K.; Mwandila, G.; Mulolani, F.; Mwaanga, P. Lithium-Ion Battery Fundamentals and Exploration of Cathode Materials: A Review. S. Afr. J. Chem. Eng. 2024, 50, 321–339. [Google Scholar] [CrossRef]
- Deng, J.; Bae, C.; Denlinger, A.; Miller, T. Electric Vehicles Batteries: Requirements and Challenges. Joule 2020, 4, 511–515. [Google Scholar] [CrossRef]
- Soyoye, B.D.; Bhattacharya, I.; Anthony Dhason, M.V.; Banik, T. State of Charge and State of Health Estimation in Electric Vehicles: Challenges, Approaches and Future Directions. Batteries 2025, 11, 32. [Google Scholar] [CrossRef]
- Kertész, N.; Szabó, L. Advances and Future Trends in Battery Management Systems. In Proceedings of the SMTS 2024, Chiba, Japan, 14–16 February 2024; MDPI: Basel, Switzerland, 2024; p. 66. [Google Scholar]
- Habib, A.K.M.A.; Hasan, M.K.; Issa, G.F.; Singh, D.; Islam, S.; Ghazal, T.M. Lithium-Ion Battery Management System for Electric Vehicles: Constraints, Challenges, and Recommendations. Batteries 2023, 9, 152. [Google Scholar] [CrossRef]
- Li, G.; Li, S.; Cao, J. Application of the MSMD Framework in the Simulation of Battery Packs. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 14 November 2014; p. V08BT10A026. [Google Scholar]
- Togun, H.; Basem, A.; Jweeg, M.J.; Anqi, A.E.; Alshamkhani, M.T.; Chattopadhyay, A.; Sharma, B.K.; Niyas, H.; Biswas, N.; Sadeq, A.M.; et al. Revolutionizing Battery Thermal Management: Hybrid Nanofluids and PCM in Cylindrical Pack Cooling. Mater. Renew. Sustain. Energy 2025, 14, 42. [Google Scholar] [CrossRef]
- Li, Y.; Karunathilake, D.; Vilathgamuwa, D.M.; Mishra, Y.; Farrell, T.W.; Choi, S.S.; Zou, C. Model Order Reduction Techniques for Physics-Based Lithium-Ion Battery Management: A Survey. IEEE Ind. Electron. Mag. 2022, 16, 36–51. [Google Scholar] [CrossRef]
- Jebahi, R.; Chaker, N.; Aloui, H. A Deep Neural Network Based Battery State of Charge: Electric Vehicle Application. Ionics 2025, 31, 7969–7986. [Google Scholar] [CrossRef]
- Dang, X.; Yan, L.; Jiang, H.; Wu, X.; Sun, H. Open-Circuit Voltage-Based State of Charge Estimation of Lithium-Ion Power Battery by Combining Controlled Auto-Regressive and Moving Average Modeling with Feedforward-Feedback Compensation Method. Int. J. Electr. Power Energy Syst. 2017, 90, 27–36. [Google Scholar] [CrossRef]
- Martí-Florences, M.; Cecilia, A.; Ortega, R.; Bobtsov, A.; Costa-Castelló, R. OCV Estimation in Electrochemical Batteries with an Unknown Linear Model and Finite Excitation. J. Energy Storage 2025, 132, 117665. [Google Scholar] [CrossRef]
- Alshawabkeh, A.; Matar, M.; Almutairy, F. Parameters Identification for Lithium-Ion Battery Models Using the Levenberg–Marquardt Algorithm. World Electr. Veh. J. 2024, 15, 406. [Google Scholar] [CrossRef]
- El Fallah, S.; Kharbach, J.; Vanagas, J.; Vilkelytė, Ž.; Tolvaišienė, S.; Gudžius, S.; Kalvaitis, A.; Lehmam, O.; Masrour, R.; Hammouch, Z.; et al. Advanced State of Charge Estimation Using Deep Neural Network, Gated Recurrent Unit, and Long Short-Term Memory Models for Lithium-Ion Batteries under Aging and Temperature Conditions. Appl. Sci. 2024, 14, 6648. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Zhang, R.; Liu, X.M.; Chen, S.; Sun, Z.; Jiang, H. Lithium-Ion Battery SOH Estimation Method Based on Multi-Feature and CNN-KAN. Front. Energy Res. 2024, 12, 1494473. [Google Scholar] [CrossRef]
- Bayoumi, E.H.E.; De Santis, M.; Awad, H. A Brief Overview of Modeling Estimation of State of Health for an Electric Vehicle’s Li-Ion Batteries. World Electr. Veh. J. 2025, 16, 73. [Google Scholar] [CrossRef]
- Xu, G.; Xu, J.; Zhu, Y. LSTM-Based Estimation of Lithium-Ion Battery SOH Using Data Characteristics and Spatio-Temporal Attention. PLoS ONE 2024, 19, e0312856. [Google Scholar] [CrossRef]
- Krause, T.; Nusko, D.; Pitta Bauermann, L.; Vetter, M.; Schäfer, M.; Holly, C. Methods for Quantifying Expansion in Lithium-Ion Battery Cells Resulting from Cycling: A Review. Energies 2024, 17, 1566. [Google Scholar] [CrossRef]
- Lain, M.J.; Kendrick, E. Understanding the Limitations of Lithium Ion Batteries at High Rates. J. Power Sources 2021, 493, 229690. [Google Scholar] [CrossRef]
- Model 3 Owner’s Manual. Available online: https://www.tesla.com/ownersmanual/model3/en_us/GUID-F907200E-A619-4A95-A0CF-94E0D03BEBEF.html (accessed on 3 November 2025).
- Jayarajan, S.A.; Azimov, U. CFD Modeling and Thermal Analysis of a Cold Plate Design with a Zig-Zag Serpentine Flow Pattern for Li-Ion Batteries. Energies 2023, 16, 5243. [Google Scholar] [CrossRef]
- Kisomi, M.K. Thermal Management of Lithium-Ion Batteries: A Comparative Study of Phase Change Materials and Air-Cooling Systems Equipped with Fins. arXiv 2025, arXiv:2503.10244. [Google Scholar]
- Liu, K.; Li, K.; Peng, Q.; Zhang, C. A Brief Review on Key Technologies in the Battery Management System of Electric Vehicles. Front. Mech. Eng. 2019, 14, 47–64. [Google Scholar] [CrossRef]
- Longchamps, R.S.; Yang, X.-G.; Wang, C.-Y. Fundamental Insights into Battery Thermal Management and Safety. ACS Energy Lett. 2022, 7, 1103–1111. [Google Scholar] [CrossRef]
- Yan, Y.; Xie, X.; Luo, J. Research on Thermal Management System of Liquid Direct Contact Battery. IOP Conf. Ser. Earth Environ. Sci. 2021, 632, 032068. [Google Scholar] [CrossRef]
- Zhu, L.; Li, D.; Wu, Z. Research on Composite Liquid Cooling Technology for the Thermal Management System of Power Batteries. World Electr. Veh. J. 2025, 16, 74. [Google Scholar] [CrossRef]
- Lei, S.; Zeng, Z.; Cheng, S.; Xie, J. Fast-charging of Lithium-ion Batteries: A Review of Electrolyte Design Aspects. Battery Energy 2023, 2, 20230018. [Google Scholar] [CrossRef]
- Mandrile, F.; Cittanti, D.; Mallemaci, V.; Bojoi, R. Electric Vehicle Ultra-Fast Battery Chargers: A Boost for Power System Stability? World Electr. Veh. J. 2021, 12, 16. [Google Scholar] [CrossRef]
- Rikka, V.R.; Sahu, S.R.; Chatterjee, A.; Prakash, R.; Sundararajan, G.; Gopalan, R. Enhancing Cycle Life and Usable Energy Density of Fast Charging LiFePO4-Graphite Cell by Regulating Electrodes’ Lithium Level. iScience 2022, 25, 104831. [Google Scholar] [CrossRef]
- Acharige, S.S.G.; Haque, M.E.; Arif, M.T.; Hosseinzadeh, N. Review of Electric Vehicle Charging Technologies, Configurations, and Architectures. IEEE Access 2022, 11, 41218–41255. [Google Scholar] [CrossRef]
- Khan, W.; Ahmad, A.; Ahmad, F.; Saad Alam, M. A Comprehensive Review of Fast Charging Infrastructure for Electric Vehicles. Smart Sci. 2018, 6, 256–270. [Google Scholar] [CrossRef]
- Bertoluzzo, M.; Buja, G.; Pede, G. Design Considerations for Fast AC Battery Chargers. World Electr. Veh. J. 2013, 6, 147–154. [Google Scholar] [CrossRef]
- Al-Ogaili, A.S.; Aris, I.B.; Ramasamy, A.; Hashim, T.J.T.; Marsadek, M.B.; Sabry, A.H. Integrating Internal Model Controller (IMC) into Electric Vehicle Charger of Multiple Charging Mode: DC and AC Fast Charging. Appl. Sci. 2020, 10, 4179. [Google Scholar] [CrossRef]
- Mohammed, A.; Saif, O.; Abo-Adma, M.; Fahmy, A.; Elazab, R. Strategies and Sustainability in Fast Charging Station Deployment for Electric Vehicles. Sci. Rep. 2024, 14, 283. [Google Scholar] [CrossRef]
- Deb, S.; Tammi, K.; Kalita, K.; Mahanta, P. Impact of Electric Vehicle Charging Station Load on Distribution Network. Energies 2018, 11, 178. [Google Scholar] [CrossRef]
- Singh, P.P.; Wen, F.; Palu, I.; Sachan, S.; Deb, S. Electric Vehicles Charging Infrastructure Demand and Deployment: Challenges and Solutions. Energies 2022, 16, 7. [Google Scholar] [CrossRef]
- Deng, D. Li-ion Batteries: Basics, Progress, and Challenges. Energy Sci. Eng. 2015, 3, 385–418. [Google Scholar] [CrossRef]
- Masias, A.; Marcicki, J.; Paxton, W.A. Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications. ACS Energy Lett. 2021, 6, 621–630. [Google Scholar] [CrossRef]
- Manthiram, A. An Outlook on Lithium Ion Battery Technology. ACS Cent. Sci. 2017, 3, 1063–1069. [Google Scholar] [CrossRef]
- Dechent, P.; Epp, A.; Jöst, D.; Preger, Y.; Attia, P.M.; Li, W.; Sauer, D.U. ENPOLITE: Comparing Lithium-Ion Cells across Energy, Power, Lifetime, and Temperature. ACS Energy Lett. 2021, 6, 2351–2355. [Google Scholar] [CrossRef]
- Xu, B.; Lee, J.; Kwon, D.; Kong, L.; Pecht, M. Mitigation Strategies for Li-Ion Battery Thermal Runaway: A Review. Renew. Sustain. Energy Rev. 2021, 150, 111437. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Wulandari, T.; Fawcett, D.; Majumder, S.B.; Poinern, G.E.J. Lithium-based Batteries, History, Current Status, Challenges, and Future Perspectives. Battery Energy 2023, 2, 20230030. [Google Scholar] [CrossRef]
- Ko, D.; Park, J.; Yu, B.Y.; Ahn, D.; Kim, K.; Han, H.N.; Jeon, W.S.; Jung, C.; Manthiram, A. Degradation of High-Nickel-Layered Oxide Cathodes from Surface to Bulk: A Comprehensive Structural, Chemical, and Electrical Analysis. Adv. Energy Mater. 2020, 10, 2001035. [Google Scholar] [CrossRef]
- Wang, C.; Yang, C.; Zheng, Z. Toward Practical High-Energy and High-Power Lithium Battery Anodes: Present and Future. Adv. Sci. 2022, 9, 2105213. [Google Scholar] [CrossRef]
- Saidi, N.M.; Abdah, M.A.A.M.; Mustafa, M.N.; Walvekar, R.; Khalid, M.; Khosla, A. Advancements in Silicon Anodes for Enhanced Lithium-Ion Batteries Performance: Innovations Toward Next-Gen Superbatteries. Battery Energy 2025, 4, e20240048. [Google Scholar] [CrossRef]
- Cavus, M.; Dissanayake, D.; Bell, M. Next Generation of Electric Vehicles: AI-Driven Approaches for Predictive Maintenance and Battery Management. Energies 2025, 18, 1041. [Google Scholar] [CrossRef]
- Onyenagubo, C.; Ismail, Y.; Belu, R.; Lacy, F. Forecasting the Remaining Useful Life of Lithium-Ion Batteries Using Machine Learning Models—A Web-Based Application. Algorithms 2025, 18, 303. [Google Scholar] [CrossRef]
- Wu, B.; Widanage, W.D.; Yang, S.; Liu, X. Battery Digital Twins: Perspectives on the Fusion of Models, Data and Artificial Intelligence for Smart Battery Management Systems. Energy AI 2020, 1, 100016. [Google Scholar] [CrossRef]
- Du, Z. Review of Machine Learning Method for Safety Management of Lithium-Ion Battery Energy Storage. E3S Web Conf. 2023, 385, 01033. [Google Scholar] [CrossRef]
- Pang, X.; Zhong, S.; Wang, Y.; Yang, W.; Zheng, W.; Sun, G. A Review on the Prediction of Health State and Serving Life of Lithium-Ion Batteries. Chem. Rec. 2022, 22, e202200131. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.; Foley, A.M.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; Hoster, H.E. Data-Driven Health Estimation and Lifetime Prediction of Lithium-Ion Batteries: A Review. Renew. Sustain. Energy Rev. 2019, 113, 109254. [Google Scholar] [CrossRef]
- Song, Y.; Liu, D.; Liao, H.; Peng, Y. A Hybrid Statistical Data-Driven Method for on-Line Joint State Estimation of Lithium-Ion Batteries. Appl. Energy 2020, 261, 114408. [Google Scholar] [CrossRef]
- Safavi, V.; Bazmohammadi, N.; Vasquez, J.C.; Guerrero, J.M. Battery State-of-Health Estimation: A Step towards Battery Digital Twins. Electronics 2024, 13, 587. [Google Scholar] [CrossRef]
- Li, W.; Rentemeister, M.; Badeda, J.; Jöst, D.; Schulte, D.; Sauer, D.U. Digital Twin for Battery Systems: Cloud Battery Management System with Online State-of-Charge and State-of-Health Estimation. J. Energy Storage 2020, 30, 101557. [Google Scholar] [CrossRef]
- Naseri, F.; Gil, S.; Barbu, C.; Cetkin, E.; Yarimca, G.; Jensen, A.C.; Larsen, P.G.; Gomes, C. Digital Twin of Electric Vehicle Battery Systems: Comprehensive Review of the Use Cases, Requirements, and Platforms. Renew. Sustain. Energy Rev. 2023, 179, 113280. [Google Scholar] [CrossRef]
- Xu, H.; Hou, C.; Hu, P.; Chen, Y. Characterization of Thermal Runaway of Lithium Ternary Power Battery in Semi-Confined Space. Energies 2025, 18, 2444. [Google Scholar] [CrossRef]
- Khan, M.H.; Tucci, V.; Lamberti, P.; Longo, R.; Guadagno, L. Lithium-Based Batteries in Aircraft. In Proceedings of the EASN 2024, Thessaloniki, Greece, 8–11 October 2024; MDPI: Basel, Switzerland, 2025; p. 39. [Google Scholar]
- Ghiji, M.; Novozhilov, V.; Moinuddin, K.; Joseph, P.; Burch, I.; Suendermann, B.; Gamble, G. A Review of Lithium-Ion Battery Fire Suppression. Energies 2020, 13, 5117. [Google Scholar] [CrossRef]
- Walker, W.Q.; Darst, J.J.; Finegan, D.P.; Bayles, G.A.; Johnson, K.L.; Darcy, E.C.; Rickman, S.L. Decoupling of Heat Generated from Ejected and Non-Ejected Contents of 18650-Format Lithium-Ion Cells Using Statistical Methods. J. Power Sources 2019, 415, 207–218. [Google Scholar] [CrossRef]
- Lamb, J.; Jeevarajan, J.A. New Developments in Battery Safety for Large-Scale Systems. MRS Bull. 2021, 46, 395–401. [Google Scholar] [CrossRef]
- Bhatt, M.D.; O’Dwyer, C. Recent Progress in Theoretical and Computational Investigations of Li-Ion Battery Materials and Electrolytes. Phys. Chem. Chem. Phys. 2015, 17, 4799–4844. [Google Scholar] [CrossRef]
- Xu, J.; Cai, X.; Cai, S.; Shao, Y.; Hu, C.; Lu, S.; Ding, S. High-Energy Lithium-Ion Batteries: Recent Progress and a Promising Future in Applications. Energy Environ. Mater. 2023, 6, e12450. [Google Scholar] [CrossRef]
- Sripad, S.; Bills, A.; Viswanathan, V. A Review of Safety Considerations for Batteries in Aircraft with Electric Propulsion. MRS Bull. 2021, 46, 435–442. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X. Battery Management System of UAV Based on IOT. Front. Comput. Intell. Syst. 2022, 1, 41–43. [Google Scholar] [CrossRef]
- Fei, C.; Lu, Z.; Jiang, W.; Zhao, L.; Zhang, F. Research on Lithium-Ion Battery State of Health Prediction Based on XGBoost–ARIMA Joint Optimization. Batteries 2025, 11, 207. [Google Scholar] [CrossRef]
- Seidaliyeva, U.; Ilipbayeva, L.; Taissariyeva, K.; Smailov, N.; Matson, E.T. Advances and Challenges in Drone Detection and Classification Techniques: A State-of-the-Art Review. Sensors 2023, 24, 125. [Google Scholar] [CrossRef]
- Dost, P.; Kipke, V.; Sourkounis, C. Direct Active Cell Balancing with Integrated Cell Monitoring. IET Electr. Syst. Transp. 2019, 9, 244–250. [Google Scholar] [CrossRef]
- Beigi, P.; Rajabi, M.S.; Aghakhani, S. An Overview of Drone Energy Consumption Factors and Models. In Handbook of Smart Energy Systems; Fathi, M., Zio, E., Pardalos, P.M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–20. ISBN 978-3-030-72322-4. [Google Scholar]
- Li, Y.; Lu, H.; Nakayama, Y.; Kim, H.; Serikawa, S. Automatic Road Detection System for an Air–Land Amphibious Car Drone. Future Gener. Comput. Syst. 2018, 85, 51–59. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Almansour, A.; Singh, M.; Kiser, J.D.; Zhu, H.; Halbig, M.C.; Zheng, Y. A Comprehensive Analysis of Thermal Heat Dissipation for Lithium-Ion Battery Packs. Energies 2025, 18, 2234. [Google Scholar] [CrossRef]
- Pernía, A.M.; Díaz-González, J.; Prieto, M.J.; Fernández-Rubiera, J.A.; Fernández-Cabanas, M.; Nuño-García, F. Li-Po Battery Charger Based on the Constant Current/Voltage Parallel Resonant Converter Operating in ZVS. Energies 2018, 11, 951. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, R.; Zhang, Y.; Feroskhan, M. Vision-Based Learning for Drones: A Survey. IEEE Trans. Neural Networks Learn. Syst. 2023, 36, 15601–15621. [Google Scholar] [CrossRef]
- Boroujerdian, B.; Genc, H.; Krishnan, S.; Duisterhof, B.P.; Plancher, B.; Mansoorshahi, K.; Almeida, M.; Cui, W.; Faust, A.; Reddi, V.J. The Role of Compute in Autonomous Aerial Vehicles. arXiv 2019, arXiv:1906.10513. [Google Scholar] [CrossRef]
- Qnovo|The Cost Components of a Lithium Ion Battery. Available online: https://www.qnovo.com/blogs/82-the-cost-components-of-a-battery (accessed on 21 August 2025).
- Clarke, M.; Alonso, J.J. Lithium–Ion Battery Modeling for Aerospace Applications. J. Aircr. 2021, 58, 1323–1335. [Google Scholar] [CrossRef]
- McKissock, B.; Loyselle, P.; Vogel, E. Guidelines on Lithium-Ion Battery Use in Space Applications; NASA Engineering and Safety Center: Hampton, VA, USA, 2008.
- Shen, X.; Liu, H.; Cheng, X.-B.; Yan, C.; Huang, J.-Q. Beyond Lithium Ion Batteries: Higher Energy Density Battery Systems Based on Lithium Metal Anodes. Energy Storage Mater. 2018, 12, 161–175. [Google Scholar] [CrossRef]
- Li, J.; Du, Z.; Ruther, R.E.; An, S.J.; David, L.A.; Hays, K.; Wood, M.; Phillip, N.D.; Sheng, Y.; Mao, C.; et al. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries. JOM 2017, 69, 1484–1496. [Google Scholar] [CrossRef]
- Choi, J.W.; Aurbach, D. Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities. Nat. Rev. Mater. 2016, 1, 16013. [Google Scholar] [CrossRef]
- Lithium-Ion Battery. Clean Energy Institute. Available online: https://www.cei.washington.edu/research/energy-storage/lithium-ion-battery/ (accessed on 25 September 2025).
- Gitzendanner, R.; Kelly, T.; Marsh, C.; Russell, P. Prismatic 20 Ampere Hour Lithium-Ion Batteries for Aerospace Applications; SAE International: Pittsburgh, PA, USA, 1998; p. 981249. [Google Scholar]
- Ralls, A.M.; Leong, K.; Clayton, J.; Fuelling, P.; Mercer, C.; Navarro, V.; Menezes, P.L. The Role of Lithium-Ion Batteries in the Growing Trend of Electric Vehicles. Materials 2023, 16, 6063. [Google Scholar] [CrossRef]
- BU-808: How to Prolong Lithium-Based Batteries. Available online: https://batteryuniversity.com/article/bu-808-how-to-prolong-lithium-based-batteries (accessed on 21 August 2025).
- Srivastava, P. Evaluation of Life Cycle Performance of Lithium Ion Cells for Space Applications; SAE International: Pittsburgh, PA, USA, 2006; SAE Technical Paper 2006-01-3024. [Google Scholar]
- PackSafe—Lithium Batteries|Federal Aviation Administration. Available online: https://www.faa.gov/hazmat/packsafe/lithium-batteries (accessed on 21 August 2025).
- Ocatsaros. Lithium-Ion Battery Pack Prices Hit Record Low of $139/kWh. BloombergNEF, 26 November 2023.
- Electric Car Battery Weight Per kWh: What to Know. Available online: https://www.acebattery.com/blogs/electric-car-battery-weight-per-kwh-what-to-know (accessed on 21 August 2025).
- Lithium-Ion Battery Weight: How Much Does It Weigh and Its Energy Density Explained [Updated On: August 2025] 2025. Available online: https://thebatterytips.com/battery-specifications/how-much-does-a-lithium-ion-battery-weigh/ (accessed on 17 November 2025).
- International Energy Agency. Global EV Outlook 2023: Catching up with Climate Ambitions; Global EV Outlook; OECD: Paris, France, 2023; ISBN 978-92-64-85692-9. [Google Scholar]
- Heid, B.; Hertzke, P.; Schaufuss, P.; Wilthaner, M.; Augustin, J.; Kley, F.; Schmid, D.; Torscht, L.; Pluijm, P.; Stuchtey, M.; et al. WEF A Vision for a Sustainable Battery Value Chain in 2030; World Economic Forum: Geneva, Switzerland, 2019. [Google Scholar]
- Seong, J.; White, O.; Birshan, M.; Smit, S.; Lamanna, C. Tiago Devesa Geopolitics and Global Trade—A 2025 Update|McKinsey. Available online: https://www.mckinsey.com/mgi/our-research/geopolitics-and-the-geometry-of-global-trade-2025-update (accessed on 30 September 2025).
- Bertrand, S. How the Inflation Reduction Act and Bipartisan Infrastructure Law Work Together to Advance Climate Action|Article|EESI. Available online: https://www.eesi.org/articles/view/how-the-inflation-reduction-act-and-bipartisan-infrastructure-law-work-together-to-advance-climate-action (accessed on 30 September 2025).
- House, W. Updated Fact Sheet: Bipartisan Infrastructure Investment and Jobs Act; The White House: Washington, DC, USA, 2021. [Google Scholar]
- Supply Chain Resilience Agencies Are Taking Steps to Expand Diplomatic Engagement and Coordinate with International Partners; U.S. Government Accountability Office: Washington, DC, USA, 2023; p. 32.
- Kovner, A. An Easy New Way to Recycle Batteries Energy Storage Center. Available online: https://batterymanufacturing.lbl.gov/news/easy-new-way-recycle-batteries (accessed on 29 September 2025).
- Glencore and Li-Cycle Announce Joint Study to Develop a European Recycling Hub, Repurposing an Existing Glencore Metallurgical Facility to Be the Largest Source of Recycled Battery Grade Lithium as Well as Recycled Nickel and Cobalt in Europe. Available online: https://www.glencore.com/media-and-insights/news/glencore-and-li-cycle-announce-joint-study-to-develop-a-european-recycling-hub (accessed on 30 September 2025).
- Dixit, M.; Witherspoon, B.; Muralidharan, N.; Mench, M.M.; Kweon, C.-B.M.; Sun, Y.-K.; Belharouak, I. Insights into the Critical Materials Supply Chain of the Battery Market for Enhanced Energy Security. ACS Energy Lett. 2024, 9, 3780–3789. [Google Scholar] [CrossRef]
- OECD. Extended Producer Responsibility: Updated Guidance for Efficient Waste Management; OECD Publishing: Paris, France, 2016; ISBN 978-92-64-25629-3. [Google Scholar]
- United States Environmental Protection Agency, Office. Extended Battery Producer Responsibility (EPR) Framework. Available online: https://www.epa.gov/electronics-batteries-management/extended-battery-producer-responsibility-epr-framework (accessed on 6 November 2025).
- Batteries—Environment—European Commission. Available online: https://environment.ec.europa.eu/topics/waste-and-recycling/batteries_en (accessed on 6 November 2025).
- Regulation (EU) 2023/1542 of the European Parliament and of the Council of 12 July 2023 Concerning Batteries and Waste Batteries, Amending Directive 2008/98/EC and Regulation (EU) 2019/1020 and Repealing Directive 2006/66/EC (Text with EEA Relevance); 2023; Volume 191. Available online: https://eur-lex.europa.eu/eli/reg/2023/1542/oj/eng (accessed on 17 November 2025).
- Policy Implications and Recommendations—Batteries and Secure Energy Transitions—Analysis. Available online: https://www.iea.org/reports/batteries-and-secure-energy-transitions/policy-implications-and-recommendations (accessed on 6 November 2025).
- Funding Selections: Infrastructure Investment and Jobs Act Battery Recycling, Reprocessing, and Battery Collection Funding Opportunity. Available online: https://www.energy.gov/eere/vehicles/funding-selections-infrastructure-investment-and-jobs-act-battery-recycling (accessed on 6 November 2025).
- Battery Booster Package—Industrial Action Plan for the European Automotive Sector—Policies. Available online: https://www.iea.org/policies/26762-battery-booster-package-industrial-action-plan-for-the-european-automotive-sector (accessed on 6 November 2025).
- Moment Energy’s Repurposed Batteries Win First-Ever UL Safety Approval for Second-Life Storage. 2025. Available online: https://pv-magazine-usa.com/2025/10/20/moment-energys-repurposed-ev-batteries-win-first-ever-ul-safety-approval-for-second-life-storage/ (accessed on 17 November 2025).
- Busch, J. New GB Standards for Battery- and Energy Storage Systems; MPR China Certification GmbH: Frankfurt, Germany, 2024. [Google Scholar]
- Du Hast Nach Battery Gesucht; MPR China Certification GmbH: Frankfurt, Germany, 2025.
- Ministry of Environment Japan. Available online: https://www.env.go.jp/search/search_result.html (accessed on 6 November 2025).
- Promoting Circulative Resources via Recycling of Automotive Lithium-Ion Batteries (LiBs). Available online: https://j4ce.env.go.jp/en/casestudy/054 (accessed on 6 November 2025).
- Recycling of Used Lithium-Ion Batteries. Available online: https://j4ce.env.go.jp/en/casestudy/073 (accessed on 6 November 2025).
- Ministry of Climate, Energy and Environment Report and Explanation—Used Batteries Are Raised as a Key National Resource. Support for Recycling. Available online: https://mcee.go.kr/home/web/board/read.do?boardMasterId=1&boardId=1741960&menuId=10525 (accessed on 6 November 2025).
- Korea Energy Corporation|Unified Search. Available online: https://www.energy.or.kr/front/search/searchAll.do (accessed on 6 November 2025).
- Kendall, A.; Dayemo, K.; Helal, N.; Iskakov, G.; Pares, F.; Slattery, M.; Fulton, L. Electric Vehicle Lithium-Ion Batteries in Lower- and Middle-Income Countries: Life Cycle Impacts and Issues; United Nations Environment Programme: Nairobi, Kenya, 2023. [Google Scholar]
- Used Electric Vehicles, Battery End-of-Life & Circularity—Africa Workshop. Available online: https://www.unep.org/events/workshop/used-electric-vehicles-battery-end-life-circularity-africa-workshop (accessed on 6 November 2025).
- Bank, A.D. Africa Circular Economy Facility (ACEF). Available online: https://www.afdb.org/en/topics-and-sectors/initiatives-and-partnerships/africa-circular-economy-facility-acef (accessed on 6 November 2025).
- U.S. Department of Energy. National Blueprint for Lithium Batteries 2021–2030; US Department of Energy: Washington, DC, USA, 2021; p. 24.









| Deposit Type | Medium Li Grade | Impurity Constraints | Lead Time (Years) | CAPEX/t LCE (USD) | Water Footprint (m3/t LCE) | Plant Scale Assumption (Capacity, Method, Water Recycling/Reinjection Assumption) |
|---|---|---|---|---|---|---|
| Pegmatite (Mt Cattlin, Australia) | 0.46–0.69% (~1.0–1.4 Li2O ore; SC6 ~6% Li2O) | iron, mica, tantalum, feldspar; concentrate quality limits | ~4 (greenfield replicate) | ~15,000–20,000 | ~69–77 cradle-to-gate totals (includes Australia and China for conversion); ~3 (concentrate in Australia mine) | Mid-scale commercial (~30–40 kt/yr LCE); Spodumene concentration only; chemical conversion occurs in China; reinjection not applicable for solid ore mining |
| Continental Brine (Salar de Atacama) | 0.04%–0.2% Li (~400–2000 ppm), raw brine feed; avg. ~0.16–0.20% Li | High Mg, Ca, sulfate, and boron; seasonal variability | ~4 (for phase expansion) | ~10,500 (intensity at 120 kt/yr) | ~2.4–5.9 concentrated brine; ~15–33 (carbonate); 31–50 (hydroxide) | 120 kt/yr basin output expanding to 180–250 kt/yr LCE by 2026); Solar evaporation ponds, chemical polishing; brine consumed in ponds; minimal reinjection |
| Sedimentary Clay (Thacker Pass, USA) | 0.2–0.4% Li (avg. ~2540 ppm) | Acid consumption (carbonates), Al/Si dissolution, neutralization solids | ~5 (after approval) | ~73,250 | ~84 | ~40 kt/yr LCE; sulfuric acid leaching, neutralization; Partial recycling via neutralization loop; internal recycling via ZLD; no brine reinjection reported |
| Geothermal Brine (Salton Sea, USA) | ~0.02% Li (avg. ~198 ppm; range 150–350 ppm) | High silica; Mn, boron, scaling/fouling | ~3–5 | ~$9000 (NREL/CEC benchmark) | ~15–25 | ~17 kt/yr LCE; spent brine reinjected underground; freshwater withdrawals for process support |
| Oilfield Brine (Smackover formation, Arkansans, USA) | 0.01–0.02% Li (168 ppm Li; cut off ~100 ppm) | Organics, H2S, Ba/Sr, Fe | ~3–5 | ~21,000 | Not reported | $437 M CAPEX for ~20.9 kt/yr LCE; phased build; lithium extracted from tail brine of bromine ops; spent brine reinjected |
| Country | 2024 Production (Metric Tons Li Content) | Global Share (%) | Reserves (Million Tons Li) |
|---|---|---|---|
| Australia | 88,000 | 36.7% | 7.0 |
| Chile | 49,000 | 20.4% | 9.3 |
| China | 41,000 | 17.1% | 3.0 |
| Zimbabwe | 22,000 | 9.2% | 0.48 |
| Argentina | 18,000 | 7.5% | 4.0 |
| Brazil | 10,000 | 4.2% | 0.39 |
| Canada | 4300 | 1.8% | 1.2 |
| Portugal | 380 | 0.2% | 0.06 |
| Namibia | 2700 | 1.1% | 0.014 |
| United States | Withheld (W) | — | 1.8 |
| Other countries | — | — | 2.8 |
| World Total | ~240,000 | 100% | ~30.0 |
| Raw Material Sites Example | Lithium Yield (Typical Grade) | Recovery Efficiency | Environmental Footprint | Key Notes | Ref |
|---|---|---|---|---|---|
| Hard Rock (Spodumene–Greenbushes, Australia) | Ore ~1.9% Li2O; SC6 concentrate ~6–7% Li2O | 65–85% (typical commercial operations) | ~84–120 m3/t LCE water usage benchmark; very high energy demand (~223 GJ/t LCE); high CO2 emissions (~15–20 t CO2e/t LCE); | World’s largest hard rock mine; supplies >40% of global lithium; stable throughput but high carbon intensity and tailings management issues | [15,73,74] |
| Brine (Salar de Atacama, Chile) | 0.04–0.20% Li (~400–2000 ppm; avg. ~0.16–0.20%) | 30–50% via solar evaporation | ~2.4–5.9 m3/t LCE (concentrated brine); ~15–33 m3/t LCE (carbonate); ~31–50 m3/t LCE (hydroxide); large land footprint; low direct energy use (solar); CO2 emissions ~2.8–5 t/ton LCE | Lowest-cost production globally, but severe sustainability concerns in hyper-arid regions, with documented aquifer depletion and indigenous rights conflicts | [15,74,75,76,77,78,79] |
| Brine (Silver Peak, Nevada) | ~0.016% Li in brine; Concentrated to ~6% Li via solar evaporation | ~40–50% recovery (~51% ponds and 78% plant) | Extreme water consumption ~500 m3/t LCE; evaporation ponds (~61 km2); 76% aquifer depletion; CO2 emissions ~2.8–5 t/ton LCE | Oldest operating lithium brine (USA) documented groundwater depletion in Clayton Valley | [80] |
| Clay-Hosted (Thacker Pass, USA–Lithium Americas study) | 0.2–0.4% Li in ore (avg. ~2450 ppm) | 80–85% projected with acid leaching | Average process water demand ~84 m3/t LCE; environmental impact depends on sulfuric acid management and neutralization; potential for lower emissions if integrated with renewables | Largest known lithium clay resource in North America; feasibility study projects, onsite sulfuric acid plant and integration with renewable energy. | [17,81,82] |
| Geothermal Brine (Salton Sea, USA) | ~0.02% Li in brine (~198 ppm; range 150–350 ppm) | ~75–91% (pilots/Bench scale) | ~15–25 m3/t LCE; reinjection mandatory; scaling (silica, CaSO4) | Co-production with geothermal power; closed-loop reinjection; extraction technology still emerging for large-scale production | [14,83,84] |
| Method | TRL (2025) | Scalability | Sustainability Index and Trade-offs | Ref |
|---|---|---|---|---|
| Hard Rock (Spodumene) | 9 | High | Low: Very high CO2 (~20 t CO2 eq/t LCE), high energy (~223 GJ/t), moderate water use (~80 m3/t) but environmentally intensive (high energy) | [13,25,73] |
| Brine Evaporation | 8 | Medium | Low: Extreme water footprint (~500 m3/t), low CO2 (~3–7 t CO2e/t LCE), low energy (~0.04 GJ/t), established and low CAPEX, but long lead times and water intensive | [10,97,113,114,115] |
| DLE–Adsorption | 7–9 | Medium | Moderate–High: Low water (~20 m3/t), moderate energy (~50 GJ/t), high recovery (90–95%), compact, selective, but sorbent degradation and requires an additional concentration step | [73,99] |
| DLE–Ion Exchange | 7–9 | Medium | Moderate–High: This is akin to adsorption with high-purity eluates, but higher chemical usage and sorbent cost | [73,116,117,118] |
| DLE–Solvent Extraction | 7–8 | Medium | Moderate: Continuous and high throughput with moderate energy, but solvent toxicity, waste and corrosion challenges | [13,73,74,118] |
| DLE–Membrane (Nanofiltration) | 4–6 | Low | Moderate-High: Effective Mg/Li separation, reduces chemical use; but fouling and scaling | [73,119,120] |
| DLE–Membrane (Electrodialysis) | 5–7 | Low–Medium | Moderate-High: Selective lithium concentration, continuous operation, low reagent demand but high energy demand and membrane durability concerns remain | [73,74,120,121] |
| DLE–Membrane (Capacitive deionization) | 3–5 | Low–Medium | High: Low chemical input and environmentally friendly, has a potential for seawater, but electrode durability. | [73,122,123] |
| DLE–Electrochemical | 3–8 | Low | High (potential): Low water and energy if powered by renewables, minimal reagent consumption, but electrode durability and fouling | [73,124,125,126] |
| Resources | TRL | Typical Li Concentration | Test Conditions | Limiting Factors | Ref |
|---|---|---|---|---|---|
| Seawater (membrane/ electrochemical DLE) | 2–3 | ~0.17–0.21 mg/L; real seawater (Red Sea) and synthetic Na-rich matrices | Lab-scale continuous membrane (LLTO), enrichment 43,000× | Na/Mg competition (~60,000:1), fouling, durability, high energy (~76 kWh/kg Li) | [130] |
| Hectorite/Sedimentary Clays | 5–6 | 015–0.4% Li (~1500–4000 ppm); higher grade ~0.70% Li (~7000 ppm) and exceptional >1.0% Li (>10,000 ppm) | Pilot sulfuric acid leach trains; lab electrochemical release (~50% recovery) | Acid consumption, neutralization solids, energy demand, waste management | [17,133] |
| Oilfield Brines (produced Water, DLE) | 4–5 | 100–500 mg/L; Marcellus Shale PW avg. ~127–205 mg/L | Skid-mounted modular pilots; produced water datasets; pretreatment for organics/H2S | Regional variability, Mg/Li ratios (5–18), fouling (organics, Fe, H2S), decline rates, infrastructure reuse | [15,138] |
| Geothermal Brines (Salton Sea, USA) | 4–6 | 20–350 mg/L typical; ~200 mg/L at Salton Sea | Side-stream pilots; high TDS; reinjection mandatory | Scaling (silica, CaSO4), compatibility with power ops, sorbent/media durability, reinjection requirement | [14,15] |
| Feedstock Type | Description | Purity Level | Typical Use/Source | Challenges |
|---|---|---|---|---|
| Cathode Scrap | Unused, defective, or end-of-life cathode material from manufacturing or batteries | High (≥99%) | Industrial manufacturing, second-life batteries | High purity requirements, sorting needed |
| Black Mass | Crushed, processed cathode and anode mix after mechanical preprocessing. These are powdered or shredded mixed electrode material. | Variable (moderate) | Post-shredding battery waste | Heterogeneous composition, potential contamination |
| Lithium-Ion Batteries | Fully disassembled or shredded batteries from second use or disposal | Mixed (variable) | EOL batteries from EVs, electronics | Sorting, safety, and pre-treatment challenges |
| Soft Coin Cells | Miniature batteries used in wearables, sensors, medical devices | High (≥99%) | Consumer devices | Small volume, specialized handling |
| Pouch and Prismatic Cells | Larger LIB packs with varied chemistries | Moderate to high | EVs, grid storage | Disassembly complexity, chemical heterogeneity |
| Mixed Cell Streams | Unsorted batteries with varied chemistries and ages | Low to moderate | Mixed waste streams | Sorting difficulty, process adaptation required |
| Feature | Solar Evaporation | Hardrock Mining | DLE from Brine | BESI Thermal Recycling |
|---|---|---|---|---|
| Feedstock | Continental brine | Rock/Spodumene | Continental brine | Black mass from EOL LIBs |
| Timeline | 13–15 years | 8–10 years | 5–7 years | <1 year (modular deployment) |
| Li2CO3 Production Time | 2–3 years | 3–6 months | ~2 h | Days (including refining) |
| Lithium Yield (%) | 20–50% | 40–70% | 80–95% | 85–95% (metal fraction to refinery) |
| Avg. Footprint per 1000 mt LCE | ~0.57 km2 | ~0.08–0.1 km2 | 0.0057 km2 | <0.0004 km2 (modular units) |
| System Design | Stationary | Stationary | Deployable/Stationary | Deployable modular thermal units |
| Environmental Impact | High water consumption; soil/ brine ecosystem disruption | Tailings, soil and water contamination | Minimal effluents, higher energy use | Minimal liquid effluent; energy self-sufficient; volume reduction |
| Average Invested Capital per 1000 mt LCE | $35 M | $60 M | $65 M | <$20 M (scalable, modular) |
| Pathway | Feedstock | CAPEX (Order of Magnitude) | OPEX (Key Drivers) | Market Value of Recycled Materials and Quantitative Indicators | Ref |
|---|---|---|---|---|---|
| Pyrometallurgy (Smelting) | Mixed LIB scrap, black mass | High: large, centralized furnaces gas treatment systems; Conventional plants ($50–$200 M; 2–5 yrs build) | High energy demand (~1000–1600 °C) fluxes/ slag disposal | Strong Ni/Co credits; Li often lost unless hydrometallurgy step added; cost ~$2.9/kg; GHG ~2.21 kgCO2/kg; | [153,154,155,156] |
| Hydrometallurgy (Leaching + SX/IX) | Black mass, shredded cells | Medium; modular reactors, SX/IX, (~$165 M for 18.25 kt/yr capacity) | Reagents (H2SO4 ≈ 48%, NaOH ≈ 10%, Ca (OH)2 ≈ 12%), effluent and energy costs; sensitive to reagent recycle | Recovers Li, Ni, Co, Mn as salts (Li2CO3/LiOH, NiSO4, CoSO4); >80% yield, >99% purity; cost ≈ $2.2/kg; GHG ≈ 2.3 kg CO2/kg | [156,157,158,159] |
| Direct Recycling (Cathode Re-lithiation) | Sorted cathode chemistries (NMC, LCO, LFP) | Low–Medium; modular re-lithiation lines; relatively low CAPEX (pilot scale only). | Sorting, re-lithiation reagents, quality assurance to meet cathode specs | Highest potential value if regenerated cathode active material (CAM) meets spec (premium cathodes); cost ~1.6/kg; GHG ~0.5 kg CO2/kg; | [156,158,160] |
| Mechanical Pre-processing (Front-end) | Whole packs/modules | Low; shredders, separators, safety systems | Low–Moderate; labor, maintenance, safety | Black mass with ≥80–90% electrode yield; >82% Co recovery; ~99% purity via electrostatic separation; graphite recovery 54–84% (0.04–2.75 kg CO2/kg graphite); disassembly saves 40–80% vs. shredding | [161,162,163,164] |
| Second Life Repurposing (Stationary Storage) | EV modules ≥ 70–80% capacity | Low–Medium; testing, Battery Management System (BMS) integration | Moderate; labor, testing, warranty | Resale often > scrap; Second-life LIB cost ~70/kWh, new ~142/kWh; LCOS 234–278 $/MWh for second life; new cost ~211$/MWh; 50% GHG savings, graphite (~200–600 mg/g adsorption) | [165,166,167,168,169] |
| Process | Major Byproducts | Typical Management Strategy | Main Environmental Risks | Representative Regulatory/Guideline Limit |
|---|---|---|---|---|
| Solar evaporation (brine-based) | NaCl−, KCl−, Mg(OH)2, CaSO4 rich precipitates; concentrated residual brine | Sequential ponding; recovery of industrial salts; partial reinjection of depleted brine | Aquifer drawdown, surface salt crusting, brine salinization of wetlands | Effluent discharge guidelines typically recommend TDS pH 6–9 into marine or surface water for protection [170]. International benchmarks suggest TDS < 1000 mg L−1, Cl− ≈ 250 mg L−1, and pH 6–8.5 for taste/acceptability guidance [171] |
| Hard-rock (spodumene) processing | Silicate tailings, fluorinated residues (LiF, CaF2), SO2/NOx from roasting | Neutralization with lime; tailings impoundment; off-gas scrubbers | Acid drainage, fluoride release, airborne SO2/NOx emissions from thermal conversion | SO2 ~ 50–400 mg Nm−3; NOx ~ 200–500 mg Nm−3 (BAT-AELs for roasting/smelting operations) [172] |
| Direct lithium extraction (DLE, adsorption/ion-exchange) | Spent sorbent media; Mg/Ca concentrate; NaCl-rich reject brine | Closed-loop regeneration; partial brine reinjection; evaporation of residuals | Ionic imbalance in aquifer, trace-metal accumulation | Ionic balance deviation ± 5% (analytical quality-control guideline) [173] |
| BESI thermal recycling | Metallic alloy residue, vitrified slag, trace SO2/NOx | Slag recovery for secondary metals; catalytic oxidation and gas filtration; no liquid effluent | Minimal aqueous discharge; potential gaseous emissions if abatement insufficient | SO2 emission levels typically range between 50 and 400 mg Nm−3 for roasting and smelting operations; NOx generally controlled within 200–500 mg Nm−3 [172,174] |
| Battery Materials | Function |
|---|---|
| Lithium | It has high energy density, and long-life cycle and making it vital for EVs |
| Graphite | It facilitates charge storage and aids conductivity |
| Nickel | It supports high-density cathodes and extends EV range |
| Copper | It is essential for electrical conductivity in battery connections and infrastructure of EV |
| Phosphorus | It is used in lithium-iron phosphate to improve safety and lifespan |
| Manganese | It strengthens the structure of the battery resulting into cost-effective alternative |
| Battery Name | Application | Pros | Cons | Energy Density (Wh/kg) | Ref |
|---|---|---|---|---|---|
| Lithium-Cobalt Oxide (LiCoO2) | Smart phones, laptops and Cameras | Extremely high energy density, widely available | High risk when damaged, Cobalt is very expensive and scarce. | 150–200 | [177,178,179] |
| Lithium Iron Phosphate (LiFeO4) | Solar storage, electric buses, Evs | Safe to use due to excellent thermal and chemical stability, lower cost, long cycle life | Low energy density, lower nominal voltage | 90–160 | [179,180,181] |
| Lithium Nickel Manganese Cobalt Oxide (NMC) | Electric bikes, home energy storage | Balanced energy density, great lifespan | Costly (due to cobalt), moderate thermal stability | 150–220 | [178,182,183] |
| Lithium Nickel Cobalt Aluminum Oxide (NCA) | Electric power trains, Power tools, electric bikes. | Very high energy density, long life cycle, high specific power | Costly (nickel and cobalt), lower thermal stability, | 200–260 | [178,179,183,184] |
| Lithium Manganese Oxide (LiMn2O4) | Power tools, Medical, hybrid vehicles | Good thermal stability, Lower cost than cobalt, High discharge rates, | Shorter life span, lower energy density, faster fading capacity under high load | 100–150 | [179,182,185] |
| Lithium Titanate | Grid Storage, Evs, electric bikes | Great long cycle life, wide temperature tolerance, very fast charging capabilities | Very low energy density, low nominal voltage | 50–80 | [186,187] |
| Parameter | Automotive (EVs) | Consumer Electronics | Aerospace |
|---|---|---|---|
| Capacity (kWh) | Approx. 20–100+ kWh packs (e.g., Nissan Leaf ~24 kWh; Tesla Model S ~85 kWh) [285] | Approx 10–15 Wh for smartphones and ~50 Wh for laptops [285] | Ranges between 10 and 100 kWh (small satellite), 10–500 kWh (electric Aircraft/UAVs) [286,287] |
| Energy density (Wh/kg) | Between 120 and 220 [288,289,290] | Approx. 150–330 [291] | Between 130 and 250 (current Li-ion cells) [292] |
| Cycle life (cycles) | Approx 1000–2000 cycles [293] | Approx 300–800 cycles [294] | Between 9000 and 26,000 cycles, depending on cell type and test duration [295] |
| Safety | Robust BMS and cooling are used, but thermal runaway (fire) risk remains [296] | Devices are limited to <100 Wh (FAA limit) and include protective circuitry, but overheating/short-circuit hazards exist [296] | Highest safety standards and qualification; NASA guidelines emphasize hazard control for Li-ion (flammable electrolyte) [287] |
| Cost ($/kWh) | Estimated at $130/kWh for EV packs (2023 data) [297] | Estimated at $200/kWh for small-scale cells [285] | Specialized (often >> $1000/kWh) Varies based on qualification testing, safety protocols, and mission-specific design constraints [287] |
| Weight (kg/kWh) | Between 6 and 8 kg/kWh (EV pack) [298] | Mostly between 0.1 and 0.2 kg, depending on size and capacity [299] | Between 4 and 7.7 kg/kWh in specific energy, depending on design and cell chemistry [292] |
| Region | Policy Mechanism | Safety Measures | Ref. |
|---|---|---|---|
| European Union | EU Batteries Regulation (2023) | Conformity assessment, mandatory collection/recycling targets, carbon-footprint disclosure, digital battery passports, reporting obligations | [312] |
| United States | Infrastructure Investment and Jobs Act; EPA/DOE initiatives; National Blueprint for Lithium Batteries 2021–2030 | Funded pilots for second-life storage; refurbishment and installation guidance; certification under UL 1973, UL 9540, UL 9540A | [310,314,327] |
| China | MIIT Interim Measures (2018); national standards GB/T 36276,36545;2023 | Mandatory collection/reuse by automakers; SOH testing; dismantling protocols; fire safety; transport compliance | [317,318] |
| Japan | Act on the Promotion of Effective Utilization of Resources; METI guidelines | Diagnostics and refurbishment standards; conformity to JIS safety codes; integration into renewable energy storage | [319,320,321] |
| South Korea | Resource Recycling Act; Korea Energy Agency pilots | Extended Producer Responsibility; SOH testing; fire codes; traceability and liability frameworks | [322,323] |
| Nigeria/Africa | UNEP Circular Electronics Initiative (2019); AfDB Africa Circular Economy Facility (2022); ACEA regional alliance | Safe e-waste handling; controlled imports of used EVs; financing circular economy projects; emerging battery reuse pilots | [324,325,326] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatoki, O.; Mohammed, H.; Parupelli, S.K.; Mathew, A.; Kaur, M.; Rehmat, A.; Muhammed, S.; Bastakoti, B.P.; Desai, S. Review of Recent Advances in Lithium-Ion Batteries: Sources, Extraction Methods, and Industrial Uses. Batteries 2025, 11, 433. https://doi.org/10.3390/batteries11120433
Fatoki O, Mohammed H, Parupelli SK, Mathew A, Kaur M, Rehmat A, Muhammed S, Bastakoti BP, Desai S. Review of Recent Advances in Lithium-Ion Batteries: Sources, Extraction Methods, and Industrial Uses. Batteries. 2025; 11(12):433. https://doi.org/10.3390/batteries11120433
Chicago/Turabian StyleFatoki, Olukayode, Habeeb Mohammed, Santosh Kumar Parupelli, Alex Mathew, Manpreet Kaur, Amir Rehmat, Sahil Muhammed, Bishnu P. Bastakoti, and Salil Desai. 2025. "Review of Recent Advances in Lithium-Ion Batteries: Sources, Extraction Methods, and Industrial Uses" Batteries 11, no. 12: 433. https://doi.org/10.3390/batteries11120433
APA StyleFatoki, O., Mohammed, H., Parupelli, S. K., Mathew, A., Kaur, M., Rehmat, A., Muhammed, S., Bastakoti, B. P., & Desai, S. (2025). Review of Recent Advances in Lithium-Ion Batteries: Sources, Extraction Methods, and Industrial Uses. Batteries, 11(12), 433. https://doi.org/10.3390/batteries11120433

