The Quantum-Inspired Evolutionary Algorithm in the Parametric Optimization of Lithium-Ion Battery Housing in the Multiple-Drop Test
Abstract
1. Introduction
2. Materials and Methods
2.1. Optimization Algorithm
2.2. Problem Formulation
2.3. Objective Function Evaluation
3. Numerical Example
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weydanz, W. APPLICATIONS—PORTABLE|Power Tools: Batteries. In Encyclopedia of Electrochemical Power Sources; Elsevier: Amsterdam, The Netherlands, 2009; pp. 46–52. [Google Scholar] [CrossRef]
- Blomgren, G.E. The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2017, 164, A5019–A5025. [Google Scholar] [CrossRef]
- Diouf, B.; Pode, R. Potential of lithium-ion batteries in renewable energy. Renew. Energy 2015, 76, 375–380. [Google Scholar] [CrossRef]
- Abada, S.; Marlair, G.; Lecocq, A.; Petit, M.; Sauvant-Moynot, V.; Huet, F. Safety focused modeling of lithium-ion batteries: A review. J. Power Sources 2016, 306, 178–192. [Google Scholar] [CrossRef]
- Feng, X.; Ren, D.; He, X.; Ouyang, M. Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule 2020, 4, 743–770. [Google Scholar] [CrossRef]
- Cheng, K.W.E.; Divakar, B.P.; Wu, H.; Ding, K.; Ho, H.F. Battery-Management System (BMS) and SOC Development for Electrical Vehicles. IEEE Trans. Veh. Technol. 2011, 60, 76–88. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Wen, J.; Yu, Y.; Chen, C. A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions. Mater. Express 2012, 2, 197–212. [Google Scholar] [CrossRef]
- Lai, X.; Yao, J.; Jin, C.; Feng, X.; Wang, H.; Xu, C.; Zheng, Y. A Review of Lithium-Ion Battery Failure Hazards: Test Standards, Accident Analysis, and Safety Suggestions. Batteries 2022, 8, 248. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- ISO 16750-3; Road Vehicles—Environmental Conditions and Testing for Electrical and Electronic Equipment—Part 3: Mechanical Loads. International Organization for Standardization: London, UK, 2012.
- Economic Commission for Europe of the United Nations (UNECE). Uniform Provisions Concerning the Approval of Vehicles with Regard to Specific Requirements for the Electric Power Train; UN Regulation No. 100, Revision 3; UNECE: Geneva, Switzerland, 2013. [Google Scholar]
- International Electrotechnical Commission. Secondary Cells and Batteries Containing Alkaline or Other Non-Acid Electrolytes—Safety Requirements for Portable Sealed Secondary Cells, and for Batteries Made from Them, for Use in Portable Applications—Part 2: Lithium Systems; IEC 62133-2; IEC: London, UK, 2017. [Google Scholar]
- Shu, D.W.; Shi, B.J.; Luo, J. Shock Simulation of Drop Test of Hard Disk Drives. In Structural Dynamics of Electronic and Photonic Systems; Suhir, E., Steinberg, D.S., Yu, T.X., Eds.; Wiley: Hoboken, NJ, USA, 2011; pp. 337–356. [Google Scholar]
- Yeh, M.-K.; Huang, T.-H. Drop Test and Finite Element Analysis of Test Board. Procedia Eng. 2014, 79, 238–243. [Google Scholar] [CrossRef]
- Keane, A.J.; Scanlan, J.P. Design search and optimization in aerospace engineering. Phil. Trans. R. Soc. A 2007, 365, 2501–2529. [Google Scholar] [CrossRef] [PubMed]
- Rajput, S.P.S.; Datta, S. A review on optimization techniques used in civil engineering material and structure design. Mater. Today Proc. 2020, 26, 1482–1491. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Lu, C.; Li, J.; Tan, X.M.; Tse, Y.C. Simulation of drop/impact reliability for electronic devices. Finite Elem. Anal. Des. 2005, 41, 667–680. [Google Scholar] [CrossRef]
- Christensen, J.; Bastien, C. Nonlinear Optimization of Vehicle Safety Structures: Modeling of Structures Subjected to Large Deformations; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Sebastjan, P.; Kuś, W. Optimization of material distribution for forged automotive components using hybrid optimization techniques. Comput. Methods Mater. Sci. 2021, 21, 63–74. [Google Scholar] [CrossRef]
- Burczyński, T.; Kuś, W.; Beluch, W.; Długosz, A.; Poteralski, A.; Szczepanik, M. Intelligent Computing in Optimal Design; Solid Mechanics and Its Applications; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Han, K.-H.; Kim, J.-H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Computat. 2002, 6, 580–593. [Google Scholar] [CrossRef]
- Kuś, W.; Mrozek, A. Quantum-inspired evolutionary optimization of SLMoS2 two-phase structures. Comput. Methods Mater. Sci. 2022, 22, 67–78. [Google Scholar] [CrossRef]
- Zhang, G. Quantum-inspired evolutionary algorithms: A survey and empirical study. J. Heuristics 2011, 17, 303–351. [Google Scholar] [CrossRef]
- Lahoz-Beltra, R. Quantum Genetic Algorithms for Computer Scientists. Computers 2016, 5, 24. [Google Scholar] [CrossRef]
- Da Silveira, L.R.; Tanscheit, R.; Vellasco, M.M.B.R. Quantum inspired evolutionary algorithm for ordering problems. Expert Syst. Appl. 2017, 67, 71–83. [Google Scholar] [CrossRef]
- Burczyński, T.; Pietrzyk, M.; Kuś, W.; Madej, Ł.; Mrozek, A.; Rauch, Ł. Multiscale Modelling and Optimisation of Materials and Structures; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
Fracture Strain [mm/mm] | Stress Triaxiality Factor |
---|---|
1.014 | −0.33 |
0.014 | 0 |
0.014 | 0.33 |
Yield Stress [MPa] | Plastic Strain [mm/mm] |
---|---|
99 | 0 |
175 | 0.01459 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rurański, A.; Kuś, W. The Quantum-Inspired Evolutionary Algorithm in the Parametric Optimization of Lithium-Ion Battery Housing in the Multiple-Drop Test. Batteries 2024, 10, 308. https://doi.org/10.3390/batteries10090308
Rurański A, Kuś W. The Quantum-Inspired Evolutionary Algorithm in the Parametric Optimization of Lithium-Ion Battery Housing in the Multiple-Drop Test. Batteries. 2024; 10(9):308. https://doi.org/10.3390/batteries10090308
Chicago/Turabian StyleRurański, Adam, and Wacław Kuś. 2024. "The Quantum-Inspired Evolutionary Algorithm in the Parametric Optimization of Lithium-Ion Battery Housing in the Multiple-Drop Test" Batteries 10, no. 9: 308. https://doi.org/10.3390/batteries10090308
APA StyleRurański, A., & Kuś, W. (2024). The Quantum-Inspired Evolutionary Algorithm in the Parametric Optimization of Lithium-Ion Battery Housing in the Multiple-Drop Test. Batteries, 10(9), 308. https://doi.org/10.3390/batteries10090308