Review of Energy Storage Capacitor Technology
Abstract
:1. Introduction
2. Dielectric Capacitor
2.1. Film Capacitor
2.2. Electrolytic Capacitor
2.2.1. Aluminum Electrolytic Capacitors
- (1)
- Etching: High-purity aluminum foil undergoes an etching process through an electrochemical method in a chloride solution, utilizing either direct or alternating current. The anode and cathode foils are crafted from virtually pure aluminum foil. To enhance their effective surface area and minimize the size of the capacitor, anode foils ranging from 0.05 to 0.11 mm in thickness and cathode foils measuring 0.02 to 0.05 mm thick are continuously subjected to electrochemical etching in a chloride solution, utilizing either alternating current or direct current. Typically, AC electrolysis is employed for the production of low-voltage capacitors, whereas DC electrolysis is utilized for the fabrication of medium- and high-voltage capacitors.
- (2)
- Formation: Through electrolysis, a continuous voltage exceeding the nominal value is applied, resulting in the formation of an aluminum oxide layer on the surface of the aluminum foil. The thickness of the alumina dielectric film can be controlled.
- (3)
- Slitting: After etching and anodizing the aluminum foil roll, the foil is cut into a specified width according to the size of the capacitor shell.
- (4)
- Winding: Secure the lead-out wires of the anode and cathode foils using rivets or welding and position the foils between isolation plates. Employ a winding machine to neatly wind them together, creating a capacitor core package.
- (5)
- Impregnation: Soak the capacitor core with electrolyte to saturate the paper isolation layer and all parts of the corroded aluminum foil to ensure good contact between the oxide layer and the true cathode. This method requires the removal of gas from the core package and vacuum immersion of the electrolyte.
- (6)
- Assembly: To prevent evaporation or moisture absorption of the electrolyte, which can lead to deterioration, it is imperative to insert the capacitor core into a metal casing and securely seal it. Furthermore, to safeguard against the potential for electrolytic capacitor explosion due to excessive gas pressure during faults, a pressure relief device must be integrated.
- (7)
- Aging: Repair the oxide film that may be damaged during the manufacturing process, especially during cutting and assembly, by applying a DC voltage.
- (8)
- Inspection: After sealing, inspect the product for capacitance, leakage current, appearance, and performance as required, and then proceed with packaging.
2.2.2. Tantalum Electrolytic Capacitor
- (1)
- The tantalum metal is crushed into a fine powder and thoroughly mixed with organic solvents. This mixture is then pressed into a desired shape under pressure, with tantalum leads embedded within. Subsequently, the assembly is sintered in a vacuum high-temperature environment, transforming it into a sponge-like structure. This process creates a highly porous metal anode, which significantly enhances its capacitance value. At the same time, it is truly integrated with the lead wire.
- (2)
- The sponge-like tantalum is submerged in a phosphoric acid solution for electrolysis. Through the process of oxidation, tantalum pentoxide is formed on its surface. This anode is then further coated with an insulating oxide layer, specifically tantalum pentoxide, serving as the dielectric layer. This comprehensive treatment process is referred to as anodizing.
- (3)
- Liquid manganese nitrate is added to the tantalum blocks, followed by thermally decomposing them in an environment containing water vapor and a catalyst. This process results in the production of manganese dioxide. Due to the excellent adsorption properties of manganese nitrate, the generated manganese dioxide is able to be fully adsorbed into the numerous tiny pores within the sponge-like tantalum block. Alternatively, if a solid polymer with a lower melting point is utilized, it can be melted and directly placed into the small pores.
- (4)
- Finally, silver powder and graphite are coated on the surface of manganese dioxide to reduce its equivalent resistance and enhance its conductivity. At the same time, external leads are added and packaged with epoxy resin.
2.3. Ceramic Capacitors
2.3.1. Ceramic Disc Capacitors
2.3.2. Multilayer Ceramic Capacitor
2.3.3. Others
3. Electrochemical Capacitor
3.1. Electrochemical Double-Layer Capacitors
3.2. Pseudocapacitors
3.2.1. Redox Pseudocapacitance
3.2.2. Underpotential Deposition Pseudocapacitance
3.2.3. Intercalation Pseudocapacitance
3.3. Hybrid Capacitors
- (1)
- The battery-type positive electrode and the capacitive-type negative electrode [171,172]. They operate through different mechanisms: electrochemical reactions occur at the positive electrode, while ion desorption processes take place at the negative electrode. During charging, lithium ions are desorbed from the positive electrode and released into the electrolyte, while simultaneously, lithium ions in the electrolyte are adsorbed onto the negative electrode, maintaining a constant ion concentration in the electrolyte. The electrolyte does not serve as an active component but merely functions as an ion carrier. However, due to the lower operating voltage, the energy density of this system is often significantly lower than other systems. Additionally, the high specific surface area of the carbon material in the negative electrode can easily lead to rapid growth of the solid electrolyte interface (SEI), resulting in poor cycling stability.
- (2)
- The capacitive-type positive electrode and the battery-type negative electrode [173,174,175,176]. Ion adsorption and desorption processes occur at the positive electrode, while electrochemical reactions take place at the negative electrode. During charging, anions in the electrolyte are adsorbed onto the positive electrode, while lithium ions are intercalated into the negative electrode material [177]. The ion concentration in the electrolyte decreases as the voltage increases. During discharge, the ions on the electrodes return to the electrolyte, gradually restoring the ion concentration in the electrolyte. In this system, the electrolyte serves not only as an ion carrier but also as an active component of the system. The energy density is limited by the electrode materials and the concentration of the electrolyte.
- (3)
- Capacitive-type positive electrode and pre-lithiated battery-type negative electrode [178,179]. The charging and discharging process of this system mainly consists of two parts: the consumption of electrolytes when the voltage is higher than the open-circuit voltage and the migration of lithium ions when the voltage is lower than the open-circuit voltage. When it is charged from the open-circuit voltage to the maximum voltage, anions in the electrolyte migrate to the positive electrode and are adsorbed onto its surface, while lithium ions are intercalated into the negative electrode, resulting in a decrease in electrolyte ion concentration as the voltage increases. During discharge from the maximum voltage to the open-circuit voltage, anions are desorbed from the positive electrode, lithium ions are deintercalated from the negative electrode, and the electrolyte concentration returns to its initial state. When discharging from the open-circuit voltage to the minimum voltage, lithium ions stored in the negative electrode through pre-lithiation continue to be deintercalated, reducing the lithium–ion concentration in the negative electrode while gradually increasing the concentration of lithium ions adsorbed on the positive electrode. The ion concentration in the electrolyte remains basically unchanged. When charging from the minimum voltage to the open-circuit voltage, lithium ions are desorbed from the positive electrode into the electrolyte, and the lithium ions in the electrolyte are intercalated into the negative electrode. This system requires pre-intercalation of lithium into the negative electrode, which can eliminate the loss of lithium ions due to the formation of the SEI film during the initial cycle, thereby increasing the output voltage window and consequently enhancing the power density and energy density. This has become the most important category for commercialization at present.
- (4)
- The battery-capacitor composite positive electrode and pre-lithiated battery-type negative electrode [180,181]. The introduction of battery-type materials into the positive electrode enhances the energy density of the system, but it comes with a tradeoff in the power density and cycle life of the device. Most of the energy in this system is provided by the battery materials, making it, strictly speaking, a battery-type capacitor.
4. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adediji, Y.B.; Adeyinka, A.M.; Yahya, D.I.; Mbelu, O.V. A review of energy storage applications of lead-free BaTiO3-based dielectric ceramic capacitors. Energy Ecol. Environ. 2023, 8, 401–419. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Wang, K.; Su, F.Y.; Chen, C.M.; Liu, F.Y.; Wu, Z.S.; Ma, Y.W. Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. J. Energy Chem. 2021, 54, 352–367. [Google Scholar] [CrossRef]
- Agajie, T.F.; Ali, A.; Fopah-Lele, A.; Amoussou, I.; Khan, B.; Velasco, C.L.R.; Tanyi, E. A Comprehensive Review on Techno-Economic Analysis and Optimal Sizing of Hybrid Renewable Energy Sources with Energy Storage Systems. Energies 2023, 16, 642. [Google Scholar] [CrossRef]
- Deka, B.; Cho, K.-H. BiFeO3-Based Relaxor Ferroelectrics for Energy Storage: Progress and Prospects. Materials 2021, 14, 7188. [Google Scholar] [CrossRef]
- Sayed, E.T.; Olabi, A.G.; Alami, A.H.; Radwan, A.; Mdallal, A.; Rezk, A.; Abdelkareem, M.A. Renewable Energy and Energy Storage Systems. Energies 2023, 16, 1415. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, K.; Zhang, X.; Ma, Y.; Peng, Q.; Gong, Y.; Yi, S.; Guo, H.; Zhang, X.; Sun, X. Improved Li-Ion Conduction and (Electro) Chemical Stability at Garnet-Polymer Interface through Metal-Nitrogen Bonding. Adv. Energy Mater. 2023, 13, 2204377. [Google Scholar] [CrossRef]
- Yang, L.; Kong, X.; Li, F.; Hao, H.; Cheng, Z.; Liu, H.; Li, J.-F.; Zhang, S. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 2019, 102, 72–108. [Google Scholar] [CrossRef]
- Navarro, G.; Torres, J.; Blanco, M.; Nájera, J.; Santos-Herran, M.; Lafoz, M. Present and Future of Supercapacitor Technology Applied to Powertrains, Renewable Generation and Grid Connection Applications. Energies 2021, 14, 3060. [Google Scholar] [CrossRef]
- Liu, L.M.; Qu, J.L.; Gu, A.J.; Wang, B.H. Percolative polymer composites for dielectric capacitors: A brief history, materials, and multilayer interface design. J. Mater. Chem. A 2020, 8, 18515–18537. [Google Scholar] [CrossRef]
- Conte, M. Supercapacitors Technical Requirements for New Applications. Fuel Cells 2010, 10, 806–818. [Google Scholar] [CrossRef]
- Aravindan, V.; Gnanaraj, J.; Lee, Y.-S.; Madhavi, S. Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors. Chem. Rev. 2014, 114, 11619–11635. [Google Scholar] [CrossRef]
- Fitzgerald, D. Improvements in electrical condensers or accumulators. Br. Pat. 1876, 3466, 1876. [Google Scholar]
- McLean, D. Metallized paper for capacitors. Proc. IRE 1950, 38, 1010–1014. [Google Scholar] [CrossRef]
- McLean, D.; Wehe, H. Miniature lacquer film capacitors. Proc. IRE 1954, 42, 1799–1805. [Google Scholar] [CrossRef]
- Ho, J.; Jow, T.R.; Boggs, S. Historical introduction to capacitor technology. IEEE Electr. Insul. Mag. 2010, 26, 20–25. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef]
- Dong, J.-F.; Deng, X.-L.; Niu, Y.-J.; Pan, Z.-Z.; Wang, H. Research progress of polymer based dielectrics for high-temperature capacitor energy storage. Acta Physica Sinica 2020, 69, 217701. [Google Scholar] [CrossRef]
- MacDougall, F.W.; Ennis, J.B.; Cooper, R.A.; Bates, J.; Seal, K. High energy density pulsed power capacitors. In Proceedings of the 14th IEEE International Pulsed Power Conference, Dallas, TX, USA, 15–18 June 2003; pp. 513–517. [Google Scholar]
- Prateek; Thakur, V.K.; Gupta, R.K. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. Chem. Rev. 2016, 116, 4260–4317. [Google Scholar] [CrossRef]
- Singh, M.; Apata, I.E.; Samant, S.; Wu, W.J.; Tawade, B.V.; Pradhan, N.; Raghavan, D.; Karim, A. Nanoscale Strategies to Enhance the Energy Storage Capacity of Polymeric Dielectric Capacitors: Review of Recent Advances. Polym. Rev. 2022, 62, 211–260. [Google Scholar] [CrossRef]
- Dang, Z.-M. Polymer nanocomposites with high permittivity. In Nanocrystalline Materials; Elsevier: Amsterdam, The Netherlands, 2014; pp. 305–333. [Google Scholar]
- Sherrill, S.A.; Banerjee, P.; Rubloff, G.W.; Lee, S.B. High to ultra-high power electrical energy storage. Phys. Chem. Chem. Phys. 2011, 13, 20714–20723. [Google Scholar] [CrossRef]
- Sun, L.; Shi, Z.C.; Liang, L.; Wei, S.; Wang, H.L.; Dastan, D.; Sun, K.; Fan, R.H. Layer-structured BaTiO3/P(VDF-HFP) composites with concurrently improved dielectric permittivity and breakdown strength toward capacitive energy-storage applications. J. Mater. Chem. C 2020, 8, 10257–10265. [Google Scholar] [CrossRef]
- Fan, X.; Wang, J.; Yuan, H.; Zheng, Z.; Zhang, J.; Zhu, K. Multi-scale synergic optimization strategy for dielectric energy storage ceramics. J. Adv. Ceram. 2023, 12, 649–680. [Google Scholar] [CrossRef]
- Yang, M.; Guo, M.; Xu, E.; Ren, W.; Wang, D.; Li, S.; Zhang, S.; Nan, C.-W.; Shen, Y. Polymer nanocomposite dielectrics for capacitive energy storage. Nat. Nanotechnol. 2024, 19, 588–603. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, Z.; Du, B. Dielectric performance improvement of polypropylene film by hierarchical structure design for metallized film capacitors. J. Phys. D Appl. Phys. 2024, 57, 385501. [Google Scholar] [CrossRef]
- Hu, T.-Y.; Ma, C.; Cheng, S.-d.; Hu, G.; Liu, M. Ultrahigh-temperature capacitors realized by controlling polarization behavior in relaxor ferroelectric. Chem. Eng. J. 2024, 492, 152365. [Google Scholar] [CrossRef]
- Gnonhoue, O.G.; Velazquez-Salazar, A.; David, É.; Preda, I. Review of Technologies and Materials Used in High-Voltage Film Capacitors. Polymers 2021, 13, 766. [Google Scholar] [CrossRef]
- Reuter, R.C., Jr.; Allen, J.J. Prediction of Mechanical States in Wound Capacitors. J. Mech. Des. 1991, 113, 387–392. [Google Scholar] [CrossRef]
- Sarjeant, W.J.; Zirnheld, J.; MacDougall, F.W. Capacitors. IEEE Trans. Plasma Sci. 1998, 26, 1368–1392. [Google Scholar] [CrossRef]
- Tahalyani, J.; Akhtar, M.J.; Cherusseri, J.; Kar, K.K. Characteristics of Capacitor: Fundamental Aspects. In Handbook of Nanocomposite Supercapacitor Materials I: Characteristics; Kar, K.K., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–51. [Google Scholar]
- Fan, B.H.; Zhou, M.Y.; Zhang, C.; He, D.L.; Bai, J.B. Polymer-based materials for achieving high energy density film capacitors. Prog. Polym. Sci. 2019, 97, 101143. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, X.; Zhang, X.; Xie, Y.C.; Lu, J.Y.; Zhang, Z.C. How the biaxially stretching mode influence dielectric and energy storage properties of polypropylene films. J. Appl. Polym. Sci. 2021, 138, 50029. [Google Scholar] [CrossRef]
- Streibl, M.; Karmazin, R.; Moos, R. Materials and applications of polymer films for power capacitors with special respect to nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 2429–2442. [Google Scholar] [CrossRef]
- Ran, Z.Y.; Du, B.X.; Xiao, M.; Li, J. Crystallization Morphology-Dependent Breakdown Strength of Polypropylene Films for Converter Valve Capacitor. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 964–971. [Google Scholar] [CrossRef]
- Ping, J.-B.; Feng, Q.-K.; Zhang, Y.-X.; Wang, X.-J.; Huang, L.; Zhong, S.-L.; Dang, Z.-M. A Bilayer High-Temperature Dielectric Film with Superior Breakdown Strength and Energy Storage Density. Nano-Micro Lett. 2023, 15, 154. [Google Scholar] [CrossRef]
- Zou, C.; Zhang, Q.; Zhang, S.; Kushner, D.; Zhou, X.; Bernard, R.; Orchard, R.J., Jr. PEN/Si3N4 bilayer film for dc bus capacitors in power converters in hybrid electric vehicles. J. Vac. Sci. Technol. B 2011, 29, 061401. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, W.; Zhang, T.; Zhang, T.; Zhang, Y.; Zhang, Y.; Tang, C.; Chi, Q. Sandwich-Structured PC/PVDF-Based Energy Storage Dielectric with Inorganic Doping to Regulate Electric Field Distribution. J. Phys. Chem. C 2024, 128, 5717–5730. [Google Scholar] [CrossRef]
- Reed, C.W.; Cichanowski, S.W. The Fundamentals of Aging in HV Polymer-Film Capacitors. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 904–922. [Google Scholar] [CrossRef]
- Feng, M.N.; Chen, M.; Qiu, J.; He, M.; Huang, Y.M.; Lin, J. Improving dielectric properties of poly(arylene ether nitrile) composites by employing core-shell structured BaTiO3@polydopamine and MoS2@polydopamine interlinked with poly(ethylene imine) for high-temperature applications. J. Alloys Compd. 2021, 856, 158213. [Google Scholar] [CrossRef]
- Valentine, N.; Azarian, M.H.; Pecht, M. Metallized film capacitors used for EMI filtering: A reliability review. Microelectron. Reliab. 2019, 92, 123–135. [Google Scholar] [CrossRef]
- Ho, J.S.; Greenbaum, S.G. Polymer Capacitor Dielectrics for High Temperature Applications. ACS Appl. Mater. Interfaces 2018, 10, 29189–29218. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, S. Polymer nanocomposites for high-energy-density capacitor dielectrics: Fundamentals and recent progress. IEEE Electr. Insul. Mag. 2020, 36, 7–28. [Google Scholar] [CrossRef]
- Rabuffi, M.; Picci, G. Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans. Plasma Sci. 2002, 30, 1939–1942. [Google Scholar] [CrossRef]
- Bai, G.; Chen, Z.; Liu, J.; Wang, F.; Zhang, Y. Microstructure Evolution and Performance Enhancement of Sintered Aluminum Foils for Aluminum Electrolytic Capacitors. J. Electron. Mater. 2024, 53, 2026–2039. [Google Scholar] [CrossRef]
- Zeng, X.; Bian, J.; Liang, L.; Cao, Q.; Liu, L.; Chen, X.; Wang, Y.; Xie, X.; Xie, G. Preparation and characterization of anode foil for aluminum electrolytic capacitors by powder additive manufacturing. Powder Technol. 2023, 426, 118602. [Google Scholar] [CrossRef]
- Chen, D.; Fu, J.; Huang, S.; Huang, J.; Yang, J.; Ren, S.; Ma, J. Design of La-based MG-Ta composite with high and tailorable properties for solid Ta electrolytic capacitor. Mater. Des. 2024, 238, 112743. [Google Scholar] [CrossRef]
- Narale, S.B.; Verma, A.; Anand, S. Structure and Degradation of Aluminum Electrolytic Capacitors. In Proceedings of the 2019 National Power Electronics Conference (NPEC), Tiruchirappalli, India, 13–15 December 2019; pp. 1–6. [Google Scholar]
- Bramoulle, M. Electrolytic or film capacitors? In Proceedings of the Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242), St. Loius, MI, USA, 12–15 October 1998; Volume 1132, pp. 1138–1141. [Google Scholar]
- Torki, J.; Joubert, C.; Sari, A. Electrolytic capacitor: Properties and operation. J. Energy Storage 2023, 58, 106330. [Google Scholar] [CrossRef]
- EPCOS, A. Aluminum Electrolytic Capacitors–General Technical Information. 2019. Available online: https://www.tdk-electronics.tdk.com/download/185386/e724fb43668a157bc547c65b0cff75f8/pdf-generaltechnicalinformation.pdf (accessed on 3 May 2024).
- Chen, X.; Xi, L.; Zhang, Y.; Ma, H.; Huang, Y.; Chen, Y. Fractional techniques to characterize non-solid aluminum electrolytic capacitors for power electronic applications. Nonlinear Dyn. 2019, 98, 3125–3141. [Google Scholar] [CrossRef]
- Both, J. The modern era of aluminum electrolytic capacitors. IEEE Electr. Insul. Mag. 2015, 31, 24–34. [Google Scholar] [CrossRef]
- Film, F.C.M.P. 1. General Description of Aluminum Electrolytic Capacitors. 2015. Available online: https://www.nichicon.co.jp/english/products/pdf/aluminum.pdf (accessed on 3 May 2024).
- McLean, D.A.; Power, F.S. Tantalum Solid Electrolytic Capacitors. Proc. IRE 1956, 44, 872–878. [Google Scholar] [CrossRef]
- Freeman, Y.; Lessner, P.; Luzinov, I. Reliability and Failure Mode in Solid Tantalum Capacitors. Ecs J. Solid State Sci. Technol. 2021, 10, 045007. [Google Scholar] [CrossRef]
- Nishino, A. Capacitors: Operating principles, current market and technical trends. J. Power Sources 1996, 60, 137–147. [Google Scholar] [CrossRef]
- Romero, J.A.; Azarian, M.H.; Pecht, M. Life model for tantalum electrolytic capacitors with conductive polymers. Microelectron. Reliab. 2020, 104, 113550. [Google Scholar] [CrossRef]
- Gill, J. Basic Tantalum Capacitor Technology. Available online: https://kyocera-avx.com/docs/techinfo/Tantalum-NiobiumCapacitors/bsctant.pdf (accessed on 3 May 2024).
- Freeman, Y. Basic Technology. In Tantalum and Niobium-Based Capacitors: Science, Technology, and Applications; Freeman, Y., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 23–52. [Google Scholar]
- Kaiser, C.J. The Capacitor Handbook; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Teverovsky, A. Breakdown and Self-healing in Tantalum Capacitors. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 663–671. [Google Scholar] [CrossRef]
- Jia, W.X.; Hou, Y.D.; Zheng, M.P.; Xu, Y.R.; Zhu, M.K.; Yang, K.Y.; Cheng, H.R.; Sun, S.Y.; Xing, J. Advances in lead-free high-temperature dielectric materials for ceramic capacitor applicationInspec keywordsOther keywords. Iet Nanodielectr. 2018, 1, 3–16. [Google Scholar] [CrossRef]
- Randall, M.-J.P.C.A. A brief introduction to ceramic capacitors. IEEE Electr. Insul. Mag. 2010, 26, 44–50. [Google Scholar] [CrossRef]
- Park, Y.; Park, J.J.; Park, K.S.; Hong, Y.M.; Lee, E.J.; Kim, S.O.; Lee, J.H. Enhancement of Mechanical Properties of Multilayer Ceramic Capacitors through a BaTiO3/polydopamine Cover Layer. Polymers 2023, 15, 4014. [Google Scholar] [CrossRef]
- Lv, Z.; Lu, T.; Liu, Z.; Hu, T.; Hong, Z.; Guo, S.; Xu, Z.; Song, Y.; Chen, Y.; Zhao, X.; et al. NaNbO3-Based Multilayer Ceramic Capacitors with Ultrahigh Energy Storage Performance. Adv. Energy Mater. 2024, 14, 2304291. [Google Scholar] [CrossRef]
- Van Trinh, H.; Talbot, J.B. Electrodeposition Method for Terminals of Multilayer Ceramic Capacitors. J. Am. Ceram. Soc. 2004, 86, 905–909. [Google Scholar] [CrossRef]
- Wojewoda, L.E.; Hill, M.J.; Radhakrishnan, K.; Goyal, N. Use Condition Characterization of MLCCs. IEEE Trans. Adv. Packag. 2009, 32, 109–115. [Google Scholar] [CrossRef]
- Gong, H.; Wang, X.; Tian, Z.; Zhang, H.; Li, L. Interfacial diffusion behavior in Ni-BaTiO3 MLCCs with ultra-thin active layers. Electron. Mater. Lett. 2014, 10, 417–421. [Google Scholar] [CrossRef]
- Sumithra, S.; Annapoorani, K.; Ellmore, A.; Vaidhyanathan, B. Microwave assisted processing of X8R nanocrystalline BaTiO3 based ceramic capacitors and multilayer devices. Open Ceram. 2022, 9, 100214. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Ko, B.H.; Jeong, S.G.; Park, K.S.; Park, N.C.; Park, Y.P. Analysis of the influence of soldering parameters on multi-layer ceramic capacitor vibration. Microsyst. Technol.-Micro-Nanosyst.-Inf. Storage Process. Syst. 2015, 21, 2565–2571. [Google Scholar] [CrossRef]
- Hong, K.; Lee, T.H.; Suh, J.M.; Yoon, S.H.; Jang, H.W. Perspectives and challenges in multilayer ceramic capacitors for next generation electronics. J. Mater. Chem. C 2019, 7, 9782–9802. [Google Scholar] [CrossRef]
- Zhang, H.B.; Wei, T.; Zhang, Q.; Ma, W.G.; Fan, P.Y.; Salamon, D.; Zhang, S.T.; Nan, B.; Tan, H.; Ye, Z.G. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C 2020, 8, 16648–16667. [Google Scholar] [CrossRef]
- Gurav, A.; Xu, X.; Freeman, Y.; Reed, E. KEMET Electronics: Breakthroughs in Capacitor Technology. In Materials Research for Manufacturing: An Industrial Perspective of Turning Materials into New Products; Madsen, L.D., Svedberg, E.B., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 93–129. [Google Scholar]
- Laadjal, K.; Cardoso, A.J.M. Multilayer Ceramic Capacitors: An Overview of Failure Mechanisms, Perspectives, and Challenges. Electronics 2023, 12, 1297. [Google Scholar] [CrossRef]
- Miller, J.R. Perspective on electrochemical capacitor energy storage. Appl. Surf. Sci. 2018, 460, 3–7. [Google Scholar] [CrossRef]
- Zheng, L.X.; Xu, P.H.; Zhao, Y.J.; Peng, J.X.; Yang, P.J.; Shi, X.W.; Zheng, H.J. Unique core-shell Co2(OH)2CO3@MOF nanoarrays with remarkably improved cycling life for high performance pseudocapacitors. Electrochim. Acta 2022, 412, 140142. [Google Scholar] [CrossRef]
- Yi, S.; Wang, L.; Zhang, X.; Li, C.; Xu, Y.A.; Wang, K.; Sun, X.Z.; Ma, Y.W. Recent advances in MXene-based nanocomposites for supercapacitors. Nanotechnology 2023, 34, 432001. [Google Scholar] [CrossRef]
- Zhao, J.; Burke, A.F. Review on supercapacitors: Technologies and performance evaluation. J. Energy Chem. 2021, 59, 276–291. [Google Scholar] [CrossRef]
- Liu, Y.; Shearing, P.R.; He, G.; Brett, D.J.L. Supercapacitors: History, Theory, Emerging Technologies, and Applications. In Advances in Sustainable Energy: Policy, Materials and Devices; Gao, Y.-j., Song, W., Liu, J.L., Bashir, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 417–449. [Google Scholar]
- Chen, Z.; Yu, D.; Xiong, W.; Liu, P.; Liu, Y.; Dai, L. Graphene-Based Nanowire Supercapacitors. Langmuir 2014, 30, 3567–3571. [Google Scholar] [CrossRef]
- Snook, G.A.; Kao, P.; Best, A.S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196, 1–12. [Google Scholar] [CrossRef]
- Becker, H. Low Voltage Electrolytic Capacitor. U. S. Patent 2,800,616A, 23 July 1957. [Google Scholar]
- Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH) x. J. Chem. Soc. Chem. Commun. 1977, 578–580. [Google Scholar] [CrossRef]
- Sun, J.; Luo, B.; Li, H. A Review on the Conventional Capacitors, Supercapacitors, and Emerging Hybrid Ion Capacitors: Past, Present, and Future. Adv. Energy Sustain. Res. 2022, 3, 2100191. [Google Scholar] [CrossRef]
- Zan, G.; Li, S.; Chen, P.; Dong, K.; Wu, Q.; Wu, T. Mesoporous Cubic Nanocages Assembled by Coupled Monolayers With 100% Theoretical Capacity and Robust Cycling. ACS Cent. Sci. 2024, 10, 1283–1294. [Google Scholar] [CrossRef]
- Shwetha, K.P.; Manjunatha, C.; Sudha Kamath, M.K.; Vinaykumar; Radhika, M.G.R.; Khosla, A. Morphology-controlled synthesis and structural features of ultrafine nanoparticles of Co3O4: An active electrode material for a supercapacitor. Appl. Res. 2022, 1, e202200031. [Google Scholar] [CrossRef]
- Luo, Q.; Lu, C.; Liu, L.; Zhu, M. Triethanolamine assisted synthesis of bimetallic nickel cobalt nitride/nitrogen-doped carbon hollow nanoflowers for supercapacitor. Microstructures 2023, 3, 2023011. [Google Scholar]
- Wang, T.; Wang, Y.; Lei, J.; Chen, K.-J.; Wang, H. Electrochemically induced surface reconstruction of Ni-Co oxide nanosheet arrays for hybrid supercapacitors. Exploration 2021, 1, 20210178. [Google Scholar] [CrossRef]
- Song, H.; Wang, Y.; Fei, Q.; Nguyen, D.H.; Zhang, C.; Liu, T. Cryopolymerization-enabled self-wrinkled polyaniline-based hydrogels for highly stretchable all-in-one supercapacitors. Exploration 2022, 2, 20220006. [Google Scholar] [CrossRef]
- Huai, X.; Liu, J.; Wu, X. Cobalt-doped NiMoO4 nanosheet for high-performance flexible supercapacitor. Chin. J. Struct. Chem. 2023, 42, 100158. [Google Scholar] [CrossRef]
- Liu, B.; Cao, Z.; Yang, Z.; Qi, W.; He, J.; Pan, P.; Li, H.; Zhang, P. Flexible micro-supercapacitors fabricated from MnO2 nanosheet/graphene composites with black phosphorus additive. Prog. Nat. Sci. Mater. Int. 2022, 32, 10–19. [Google Scholar] [CrossRef]
- Zhu, R.-J.; Liu, J.; Hua, C.; Pan, H.-Y.; Cao, Y.-J.; Li, M. Preparation of vanadium-based electrode materials and their research progress in solid-state flexible supercapacitors. Rare Met. 2024, 43, 431–454. [Google Scholar] [CrossRef]
- Wang, T.; Hu, S.; Hu, Y.; Wu, D.; Wu, H.; Huang, J.; Wang, H.; Zhao, W.; Yu, W.; Wang, M.; et al. Biologically inspired anthraquinone redox centers and biomass graphene for renewable colloidal gels toward ultrahigh-performance flexible micro-supercapacitors. J. Mater. Sci. Technol. 2023, 151, 178–189. [Google Scholar] [CrossRef]
- Li, J.; Dong, Z.; Chen, R.; Wu, Q.; Zan, G. Advanced nickel-based composite materials for supercapacitor electrodes. Ionics 2024, 30, 1833–1855. [Google Scholar] [CrossRef]
- Troschke, E.; Oschatz, M.; Ilic, I.K. Schiff-bases for sustainable battery and supercapacitor electrodes. Exploration 2021, 1, 20210128. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Tian, X.; Yang, T.; Hu, S.; Liu, Z. Redox electrolyte-enhanced carbon-based supercapacitors: Recent advances and future perspectives. Energy Mater. Devices 2023, 1, 9370009. [Google Scholar] [CrossRef]
- Wu, X.; Liu, R.; Zhao, J.; Fan, Z. Advanced carbon materials with different spatial dimensions for supercapacitors. Nano Mater. Sci. 2021, 3, 241–267. [Google Scholar] [CrossRef]
- Kong, D.; Lv, W.; Liu, R.; He, Y.-B.; Wu, D.; Li, F.; Fu, R.; Yang, Q.-H.; Kang, F. Superstructured carbon materials: Design and energy applications. Energy Mater. Devices 2023, 1, 9370017. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Liu, Z.; Chen, W.; Sun, X.; Luo, M.; Zhang, X.; Li, C.; An, Y.; Song, S.; Wang, K. A Review on Thermal Behaviors and Thermal Management Systems for Supercapacitors. Batteries 2023, 9, 128. [Google Scholar] [CrossRef]
- Shukla, A.K.; Banerjee, A.; Ravikumar, M.K.; Jalajakshi, A. Electrochemical capacitors: Technical challenges and prognosis for future markets. Electrochim. Acta 2012, 84, 165–173. [Google Scholar] [CrossRef]
- Terasawa, N.; Asaka, K. High-Performance Hybrid (Electrostatic Double-Layer and Faradaic Capacitor-Based) Polymer Actuators Incorporating Nickel Oxide and Vapor-Grown Carbon Nanofibers. Langmuir 2014, 30, 14343–14351. [Google Scholar] [CrossRef]
- Mohd Abdah, M.A.A.; Azman, N.H.N.; Kulandaivalu, S.; Sulaiman, Y. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater. Des. 2020, 186, 108199. [Google Scholar] [CrossRef]
- Choi, H.; Yoon, H. Nanostructured electrode materials for electrochemical capacitor applications. Nanomaterials 2015, 5, 906–936. [Google Scholar] [CrossRef] [PubMed]
- Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Adv. 2019, 1, 3807–3835. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Zhao, X.S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531. [Google Scholar] [CrossRef] [PubMed]
- Brza, M.A.; Aziz, S.B.; Anuar, H.; Ali, F.; Hamsan, M.H.; Kadir, M.F.Z.; Abdulwahid, R.T. Metal framework as a novel approach for the fabrication of electric double layer capacitor device with high energy density using plasticized Poly(vinyl alcohol): Ammonium thiocyanate based polymer electrolyte. Arab. J. Chem. 2020, 13, 7247–7263. [Google Scholar] [CrossRef]
- Yao, F.; Pham, D.T.; Lee, Y.H. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices. ChemSusChem 2015, 8, 2284–2311. [Google Scholar] [CrossRef]
- Banerjee, S.; Sinha, P.; Verma, K.D.; Pal, T.; De, B.; Cherusseri, J.; Manna, P.K.; Kar, K.K. Capacitor to Supercapacitor. In Handbook of Nanocomposite Supercapacitor Materials I: Characteristics; Kar, K.K., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 53–89. [Google Scholar]
- Forse, A.C.; Merlet, C.; Griffin, J.M.; Grey, C.P. New Perspectives on the Charging Mechanisms of Supercapacitors. J. Am. Chem. Soc. 2016, 138, 5731–5744. [Google Scholar] [CrossRef]
- Frackowiak, E.; Béguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39, 937–950. [Google Scholar] [CrossRef]
- Bizuneh, G.G.; Adam, A.M.M.; Ma, J. Progress on carbon for electrochemical capacitors. Battery Energy 2023, 2, 20220021. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Lv, Z.S.; Wang, K.; Sun, X.Z.; Chen, X.D.; Ma, Y.W. Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors. Chem. Eng. J. 2021, 414, 128781. [Google Scholar] [CrossRef]
- Du, C.; Yeh, J.; Pan, N. High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 2005, 16, 350. [Google Scholar] [CrossRef]
- Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef]
- Yu, X.; Lu, B.; Xu, Z. Super Long-Life Supercapacitors Based on the Construction of Nanohoneycomb-Like Strongly Coupled CoMoO4–3D Graphene Hybrid Electrodes. Adv. Mater. 2014, 26, 990. [Google Scholar] [CrossRef]
- Fu, G.; Li, H.; Bai, Q.; Li, C.; Shen, Y.; Uyama, H. Dual-doping activated carbon with hierarchical pore structure derived from polymeric porous monolith for high performance EDLC. Electrochim. Acta 2021, 375, 137927. [Google Scholar] [CrossRef]
- Lv, X.W.; Ji, S.; Wang, Z.H.; Wang, X.Y.; Wang, H.; Wang, R.F. Fabrication of highly-conductive porous capacitor electrodes by the insertion of Cu-nanoparticles into N-doped flocculated carbon catalysts. J. Colloid Interface Sci. 2022, 610, 106–115. [Google Scholar] [CrossRef]
- Yoo, J.; Yang, I.; Kwon, D.; Jung, M.; Kim, M.-S.; Jung, J.C. Low-Cost Carbon Xerogels Derived from Phenol–Formaldehyde Resin for Organic Electric Double-Layer Capacitors. Energy Technol. 2021, 9, 2000918. [Google Scholar] [CrossRef]
- Thirumurugan, A.; Ramakrishnan, K.; Ramadoss, A.; Thandapani, P.; Thangavelu, P.; Udayabhaskar, R.; Morel, M.J.; Dhanabalan, S.S.; Dineshbabu, N.; Ravichandran, K.; et al. Nanostructured Materials for Supercapacitors. In Nanostructured Materials for Supercapacitors; Thomas, S., Gueye, A.B., Gupta, R.K., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–26. [Google Scholar]
- Ates, M.; Chebil, A.; Yoruk, O.; Dridi, C.; Turkyilmaz, M. Reliability of electrode materials for supercapacitors and batteries in energy storage applications: A review. Ionics 2021, 28, 27–52. [Google Scholar] [CrossRef]
- Deng, T.; Zhang, W.; Arcelus, O.; Kim, J.-G.; Carrasco, J.; Yoo, S.J.; Zheng, W.; Wang, J.; Tian, H.; Zhang, H.; et al. Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat. Commun. 2017, 8, 15194. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Li, F.; Dong, F.; Zhang, Y.X.; Zhang, L.L. MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 21380–21423. [Google Scholar] [CrossRef]
- Waqas Hakim, M.; Fatima, S.; Rizwan, S.; Mahmood, A. Pseudo-capacitors: Introduction, Controlling Factors and Future. In Nanostructured Materials for Supercapacitors; Thomas, S., Gueye, A.B., Gupta, R.K., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 53–70. [Google Scholar]
- Herrero, E.; Buller, L.J.; Abruña, H.D. Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and Other Materials. Chem. Rev. 2001, 101, 1897–1930. [Google Scholar] [CrossRef]
- Brezesinski, K.; Wang, J.; Haetge, J.; Reitz, C.; Steinmueller, S.O.; Tolbert, S.H.; Smarsly, B.M.; Dunn, B.; Brezesinski, T. Pseudocapacitive Contributions to Charge Storage in Highly Ordered Mesoporous Group V Transition Metal Oxides with Iso-Oriented Layered Nanocrystalline Domains. J. Am. Chem. Soc. 2010, 132, 6982–6990. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Xie, X.; Pan, L.; Bao, Z.; Cui, Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2013, 2, 213–234. [Google Scholar] [CrossRef]
- Gao, D.; Luo, Z.L.; Liu, C.H.; Fan, S.S. A survey of hybrid energy devices based on supercapacitors. Green Energy Environ. 2023, 8, 972–988. [Google Scholar] [CrossRef]
- Lokhande, C.D.; Dubal, D.P.; Joo, O.-S. Metal oxide thin film based supercapacitors. Curr. Appl. Phys. 2011, 11, 255–270. [Google Scholar] [CrossRef]
- Yun, Y.S.; Kim, D.H.; Hong, S.J.; Park, M.H.; Park, Y.W.; Kim, B.H.; Jin, H.J.; Kang, K. Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive charge storage. Nanoscale 2015, 7, 15051–15058. [Google Scholar] [CrossRef] [PubMed]
- Sha, Z.; Zhou, Y.; Huang, F.; Yang, W.M.; Yu, Y.Y.; Zhang, J.; Wu, S.Y.; Brown, S.A.; Peng, S.H.; Han, Z.J.; et al. Carbon fibre electrodes for ultra long cycle life pseudocapacitors by engineering the nano-structure of vertical graphene and manganese dioxide. Carbon 2021, 177, 260–270. [Google Scholar] [CrossRef]
- Xue, J.Y.; Zhang, F.M.; Ma, W.L.; Wang, M.M.; Cui, H.T. Hierarchically structured nanofelt-like β-NiOOH grown on nickel foam as electrode for high performance pseudocapacitor. J. Nanopart. Res. 2015, 17, 1–7. [Google Scholar] [CrossRef]
- Kayali, E.; VahidMohammadi, A.; Orangi, J.; Beidaghi, M. Controlling the Dimensions of 2D MXenes for Ultrahigh-Rate Pseudocapacitive Energy Storage. ACS Appl. Mater. Interfaces 2018, 10, 25949–25954. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Li, H.; Xu, Z.; Zhang, H.; Ding, L.; Wang, S.; Zhang, G.; Hou, H.; Xu, W.; Yang, F.; et al. Comparison of the heteroatoms-doped biomass-derived carbon prepared by one-step nitrogen-containing activator for high performance supercapacitor. Diam. Relat. Mater. 2021, 114, 108316. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J.; Wang, T.; Shao, J.; Wang, D.; Yang, Y.-W. Mesoporous Transition Metal Oxides for Supercapacitors. Nanomaterials 2015, 5, 1667–1689. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, X.; Li, Y.-G.; Tian, B.-Z.; Zhao, D.-Y.; Jiang, Z.-Y. Synthesis and Electrochemical Properties of Semicrystalline Gyroidal Mesoporous MnO2. Chin. J. Chem. 2006, 24, 835–839. [Google Scholar] [CrossRef]
- Nayak, P.K.; Munichandraiah, N. Rapid sonochemical synthesis of mesoporous MnO2 for supercapacitor applications. Mater. Sci. Eng. B 2012, 177, 849–854. [Google Scholar] [CrossRef]
- Fleischmann, S.; Mitchell, J.B.; Wang, R.; Zhan, C.; Jiang, D.-e.; Presser, V.; Augustyn, V. Pseudocapacitance: From fundamental understanding to high power energy storage materials. Chem. Rev. 2020, 120, 6738–6782. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Zhu, Y.-B.; Chen, K.; Wang, Q.; Li, Y.; Xing, X.; Ru, J.; Meng, L.-G.; Shu, J.; Shpigel, N.; et al. Super-Stretchable and High-Energy Micro-Pseudocapacitors Based on MXene Embedded Ag Nanoparticles. Adv. Mater. 2024, 36, 2401271. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Kim, S.A.; Han, Y.S.; Jung, K.-H. Supercapacitor Performance of MXene-Coated Carbon Nanofiber Electrodes. C 2024, 10, 32. [Google Scholar] [CrossRef]
- Muzaffar, A.; Ahamed, M.B.; Deshmukh, K.; Thirumalai, J. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sustain. Energy Rev. 2019, 101, 123–145. [Google Scholar] [CrossRef]
- Kumar, N.; Kim, S.-B.; Lee, S.-Y.; Park, S.-J. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives. Nanomaterials 2022, 12, 3708. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, S.; Yin, J.; Bai, C.; Zhang, J.; Li, Y.; Yang, Y.; Ge, Z.; Zhang, M.; Wei, L.; et al. Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors. Carbon 2017, 124, 64–71. [Google Scholar] [CrossRef]
- Seong, K.-d.; Jin, X.; Kim, D.; Kim, J.M.; Ko, D.; Cho, Y.; Hwang, M.; Kim, J.-H.; Piao, Y. Ultrafast and scalable microwave-assisted synthesis of activated hierarchical porous carbon for high-performance supercapacitor electrodes. J. Electroanal. Chem. 2020, 874, 114464. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Zhang, Y.; Xie, L.; Li, X.; Su, F.; Wei, X.; Xu, Z.; Chen, C.; Cai, R. Three-dimensional paper-like graphene framework with highly orientated laminar structure as binder-free supercapacitor electrode. J. Energy Chem. 2016, 25, 49–54. [Google Scholar] [CrossRef]
- Yan, Z.; Gao, Z.; Zhang, Z.; Dai, C.; Wei, W.; Shen, P.K. Graphene Nanosphere as Advanced Electrode Material to Promote High Performance Symmetrical Supercapacitor. Small 2021, 17, 2007915. [Google Scholar] [CrossRef]
- Yang, B.; Chen, J.; Liu, B.; Ding, Y.; Tang, Y.; Yan, X. One dimensional graphene nanoscroll-wrapped MnO nanoparticles for high-performance lithium ion hybrid capacitors. J. Mater. Chem. A 2021, 9, 6352–6360. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, W.; Xiao, Z.; Li, S.; Chen, H.; Wang, Y.; Wang, Z.; Xi, W.; Xia, X.; Xie, S. In situ anchoring MnO nanoparticles on self-supported 3D interconnected graphene scroll framework: A fast kinetics boosted ultrahigh-rate anode for Li-ion capacitor. Energy Storage Mater. 2020, 33, 298–308. [Google Scholar] [CrossRef]
- Wang, X.; Sumboja, A.; Khoo, E.; Yan, C.; Lee, P.S. Cryogel Synthesis of Hierarchical Interconnected Macro-/Mesoporous Co3O4 with Superb Electrochemical Energy Storage. J. Phys. Chem. C 2012, 116, 4930–4935. [Google Scholar] [CrossRef]
- Liu, X.; Long, Q.; Jiang, C.; Zhan, B.; Li, C.; Liu, S.; Zhao, Q.; Huang, W.; Dong, X. Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors. Nanoscale 2013, 5, 6525–6529. [Google Scholar] [CrossRef]
- Hu, T.; Li, J.; Wang, Y.; Chen, S.; Yu, T.; Cheng, H.-M.; Sun, Z.; Xu, Q.; Li, F. Coupling between cathode and anode in hybrid charge storage. Joule 2023, 7, 1176–1205. [Google Scholar] [CrossRef]
- Xu, Y.; Ruan, J.; Pang, Y.; Sun, H.; Liang, C.; Li, H.; Yang, J.; Zheng, S. Homologous Strategy to Construct High-Performance Coupling Electrodes for Advanced Potassium-Ion Hybrid Capacitors. Nano-Micro Lett. 2020, 13, 14. [Google Scholar] [CrossRef]
- Sun, X.; An, Y.; Zhang, X.; Wang, K.; Yuan, C.; Zhang, X.; Li, C.; Xu, Y.; Ma, Y. Unveil Overcharge Performances of Activated Carbon Cathode in Various Li-Ion Electrolytes. Batteries 2022, 9, 11. [Google Scholar] [CrossRef]
- Li, C.; An, Y.B.; Wang, L.; Wang, K.; Sun, X.Z.; Zhang, H.T.; Zhang, X.; Ma, Y.W. Balancing microcrystalline domains in hard carbon with robust kinetics for a 46.7 Wh kg−1 practical lithium-ion capacitor. Chem. Eng. J. 2024, 485, 149880. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, W.; Yuan, H.; Jin, C.; Zhang, L.; Huang, H.; Liang, C.; Xia, Y.; Zhang, J.; Gan, Y.; et al. Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. ACS Nano 2017, 11, 2459–2469. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhou, Y.S.; Qian, M.; Li, H.M.; Redepenning, J.; Fan, L.S.; He, X.N.; Xiong, W.; Huang, X.; Majhouri-Samani, M. High-performance flexible solid-state supercapacitors based on MnO2-decorated nanocarbon electrodes. RSC Adv. 2013, 3, 20613–20618. [Google Scholar] [CrossRef]
- Wei, W.; Wang, L.; Liang, C.; Liu, W.; Li, C.; An, Y.; Zhang, L.; Sun, X.; Wang, K.; Zhang, H.; et al. Interface engineering of CoSe2/N-doped graphene heterostructure with ultrafast pseudocapacitive kinetics for high-performance lithium-ion capacitors. Chem. Eng. J. 2023, 474, 145788. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Xu, Y.N.; Li, C.; Liu, W.J.; Yi, S.; Wang, K.; Sun, X.Z.; Wu, Z.S.; Ma, Y.W. Tetrabutylammonium-Intercalated 1T-MoS2 Nanosheets with Expanded Interlayer Spacing Vertically Coupled on 2D Delaminated MXene for High-Performance Lithium-Ion Capacitors. Adv. Funct. Mater. 2021, 31, 2104286. [Google Scholar] [CrossRef]
- Amatucci, G.G.; Badway, F.; Du Pasquier, A.; Zheng, T. An Asymmetric Hybrid Nonaqueous Energy Storage Cell. J. Electrochem. Soc. 2001, 148, A930. [Google Scholar] [CrossRef]
- Du Pasquier, A.; Laforgue, A.; Simon, P.; Amatucci, G.G.; Fauvarque, J.-F. A Nonaqueous Asymmetric Hybrid Li4Ti5 O12 / Poly(fluorophenylthiophene) Energy Storage Device. J. Electrochem. Soc. 2002, 149, A302. [Google Scholar] [CrossRef]
- Li, H.; Cheng, L.; Xia, Y. A Hybrid Electrochemical Supercapacitor Based on a 5 V Li-Ion Battery Cathode and Active Carbon. Electrochem. Solid-State Lett. 2005, 8, A433. [Google Scholar] [CrossRef]
- Khomenko, V.; Raymundo-Piñero, E.; Béguin, F. High-energy density graphite/AC capacitor in organic electrolyte. J. Power Sources 2008, 177, 643–651. [Google Scholar] [CrossRef]
- Bhattacharjee, U.; Bhowmik, S.; Ghosh, S.; Martha, S.K. A perspective on the evolution and journey of different types of lithium-ion capacitors: Mechanisms, energy-power balance, applicability, and commercialization. Sustain. Energy Fuels 2023, 7, 2321–2338. [Google Scholar] [CrossRef]
- Song, S.; Zhang, X.; An, Y.B.; Hu, T.; Sun, C.K.; Wang, L.; Li, C.; Zhang, X.H.; Wang, K.; Xu, Z.C.J.; et al. Floating aging mechanism of lithium-ion capacitors: Impedance model and post-mortem analysis. J. Power Sources 2023, 557, 232597. [Google Scholar] [CrossRef]
- Yi, S.; Wang, L.; Zhang, X.; Li, C.; Liu, W.J.; Wang, K.; Sun, X.Z.; Xu, Y.N.; Yang, Z.X.; Cao, Y.; et al. Cationic intermediates assisted self-assembly two-dimensional Ti3C2Tx/rGO hybrid nanoflakes for advanced lithium-ion capacitors. Sci. Bull. 2021, 66, 914–924. [Google Scholar] [CrossRef]
- Wang, P.-L.; Sun, X.-Z.; An, Y.-B.; Zhang, X.; Yuan, C.-Z.; Zheng, S.-H.; Wang, K.; Ma, Y.-W. Additives to propylene carbonate-based electrolytes for lithium-ion capacitors. Rare Met. 2022, 41, 1304–1313. [Google Scholar] [CrossRef]
- Liu, W.J.; An, Y.B.; Wang, L.; Hu, T.; Li, C.; Xu, Y.A.; Wang, K.; Sun, X.Z.; Zhang, H.T.; Zhang, X.; et al. Mechanically flexible reduced graphene oxide/carbon composite films for high-performance quasi-solid-state lithium-ion capacitors. J. Energy Chem. 2023, 80, 68–76. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Z.; Chen, W.; Zhang, X.; Sun, X.Z.; Luo, M.J.; Zhang, X.H.; Li, C.; An, Y.B.; Song, S.; et al. Thermal characteristics of pouch lithium-ion battery capacitors based on activated carbon and LiNi1/3Co1/3Mn1/3O2. J. Energy Storage 2023, 66, 107474. [Google Scholar] [CrossRef]
- Jin, L.; Shen, C.; Shellikeri, A.; Wu, Q.; Zheng, J.; Andrei, P.; Zhang, J.-G.; Zheng, J.P. Progress and perspectives on pre-lithiation technologies for lithium ion capacitors. Energy Environ. Sci. 2020, 13, 2341–2362. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Amaresh, S.; Aravindan, V.; Kim, H.; Kang, K.; Lee, Y. Unveiling organic–inorganic hybrids as a cathode material for high performance lithium-ion capacitors. J. Mater. Chem. A 2013, 1, 707–714. [Google Scholar] [CrossRef]
- Krause, A.; Kossyrev, P.; Oljaca, M.; Passerini, S.; Winter, M.; Balducci, A. Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black. J. Power Sources 2011, 196, 8836–8842. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Kong, Y.-Y.; Li, C.; An, Y.-B.; Sun, X.-Z.; Wang, K.; Ma, Y.-W. Metal–organic framework-derived CoSe2@N-doped carbon nanocubes for high-performance lithium-ion capacitors. Rare Met. 2024, 43, 2150–2160. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, K.; Xu, Y.; Zhang, X.; Peng, Q.; Guo, Y.; Sun, X.; Zhang, X.; Wu, Z.S.; Ma, Y. Black Phosphorus Covalent Bonded by Metallic Antimony Toward High-Energy Lithium-Ion Capacitors. Adv. Energy Mater. 2024, 14, 2304408. [Google Scholar] [CrossRef]
- Rajalekshmi, A.R.; Divya, M.L.; Lee, Y.S.; Aravindan, V. High-performance Li-ion capacitor via anion-intercalation process. Battery Energy 2022, 1, 20210005. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Li, C.; Xu, Y.N.; An, Y.B.; Liu, W.J.; Hu, T.; Yi, S.; Wang, K.; Sun, X.Z.; et al. Cation-deficient T-Nb2O5/graphene Hybrids synthesized via chemical oxidative etching of MXene for advanced lithium-ion capacitors. Chem. Eng. J. 2023, 468, 143507. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Li, C.; Sun, X.-Z.; Wang, K.; Su, F.-Y.; Liu, F.-Y.; Ma, Y.-W. Recent advances in transition metal chalcogenides for lithium-ion capacitors. Rare Met. 2022, 41, 2971–2984. [Google Scholar] [CrossRef]
- Jin, L.; Gong, R.; Zhang, W.; Xiang, Y.; Zheng, J.; Xiang, Z.; Zhang, C.; Xia, Y.; Zheng, J.P. Toward high energy-density and long cycling-lifespan lithium ion capacitors: A 3D carbon modified low-potential Li2TiSiO5 anode coupled with a lignin-derived activated carbon cathode. J. Mater. Chem. A 2019, 7, 8234–8244. [Google Scholar] [CrossRef]
- Cao, W.; Li, Y.; Fitch, B.; Shih, J.; Doung, T.; Zheng, J. Strategies to optimize lithium-ion supercapacitors achieving high-performance: Cathode configurations, lithium loadings on anode, and types of separator. J. Power Sources 2014, 268, 841–847. [Google Scholar] [CrossRef]
- Arun, N.; Jain, A.; Aravindan, V.; Jayaraman, S.; Chui Ling, W.; Srinivasan, M.P.; Madhavi, S. Nanostructured spinel LiNi0.5Mn1.5O4 as new insertion anode for advanced Li-ion capacitors with high power capability. Nano Energy 2015, 12, 69–75. [Google Scholar] [CrossRef]
- Hagen, M.; Cao, W.J.; Shellikeri, A.; Adams, D.; Chen, X.J.; Brandt, W.; Yturriaga, S.R.; Wu, Q.; Read, J.A.; Jow, T.R.; et al. Improving the specific energy of Li-Ion capacitor laminate cell using hybrid activated Carbon/LiNi0.5Co0.2Mn0.3O2 as positive electrodes. J. Power Sources 2018, 379, 212–218. [Google Scholar] [CrossRef]
- Feng, Q.-K.; Zhong, S.-L.; Pei, J.-Y.; Zhao, Y.; Zhang, D.-L.; Liu, D.-F.; Zhang, Y.-X.; Dang, Z.-M. Recent Progress and Future Prospects on All-Organic Polymer Dielectrics for Energy Storage Capacitors. Chem. Rev. 2022, 122, 3820–3878. [Google Scholar] [CrossRef]
- Zhao, P.; Cai, Z.; Wu, L.; Zhu, C.; Li, L.; Wang, X. Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors. J. Adv. Ceram. 2021, 10, 1153–1193. [Google Scholar] [CrossRef]
Type | High Capacitance | High Voltage | Rate Performance | Cycle Stability | Cost | Polarity | Life Time | Main Purpose | Electrode Material |
---|---|---|---|---|---|---|---|---|---|
Film capacitor | non-existent | improve frequency and absorb power supply noise | metal foil or metalized film | ||||||
Aluminum electrolytic capacitor | exist | smoothing and decoupling | aluminum foil (cathode/anode) | ||||||
tantalum electrolytic capacitor | exist | coupling and decoupling | Ta (anode) MnO2 (cathode) | ||||||
Ceramic capacitor | non-existent | coupling and decoupling | metals such as silver and copper | ||||||
EDLC | exist | backup power | carbon-based materials (anode/cathode) | ||||||
Lithium-ion Capacitor | exist | backup power and energy storage applications | carbon-based materials (positive/negative electrode) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Sun, X.; Yan, X.; Gao, Y.; Zhang, X.; Wang, K.; Ma, Y. Review of Energy Storage Capacitor Technology. Batteries 2024, 10, 271. https://doi.org/10.3390/batteries10080271
Liu W, Sun X, Yan X, Gao Y, Zhang X, Wang K, Ma Y. Review of Energy Storage Capacitor Technology. Batteries. 2024; 10(8):271. https://doi.org/10.3390/batteries10080271
Chicago/Turabian StyleLiu, Wenting, Xianzhong Sun, Xinyu Yan, Yinghui Gao, Xiong Zhang, Kai Wang, and Yanwei Ma. 2024. "Review of Energy Storage Capacitor Technology" Batteries 10, no. 8: 271. https://doi.org/10.3390/batteries10080271
APA StyleLiu, W., Sun, X., Yan, X., Gao, Y., Zhang, X., Wang, K., & Ma, Y. (2024). Review of Energy Storage Capacitor Technology. Batteries, 10(8), 271. https://doi.org/10.3390/batteries10080271