High-Entropy Materials for Lithium Batteries
Abstract
:1. Introduction
2. Basics of High-Entropy Materials
2.1. Background and Basic Equations
2.2. Four Core Effects
2.3. Characterization of High-Entropy Materials
3. Components of High-Entropy Batteries
3.1. Anodes
3.2. Cathodes
Composition | Cycles | Initial Capacity (mAh g−1) | Final Capacity (mAh g−1) | Rate or Current Density | Ref. |
---|---|---|---|---|---|
Lix(CoCuMgNiZn)OFx | 300 | 168 | 120 | C/10 | [35] |
NaNi0.12Cu0.12Mg0.12Fe0.15 Co0.15Mn0.1Ti0.1Sn0.1Sb0.04O2 | 200 | 110 | 87 | C/2 | [36] |
Li0.8Na0.2(NaCoMnAlFe)O2 | 20 | 80 | 62 | – | [37] |
Li(MnCoCrTiNb)OF | 20 | 307 | 225 | 20 mA g−1 | [38] |
(CoMgCuNiZn)O | 200 | 1191 | 664 | C/10 | [39] |
3.3. Electrolytes
3.3.1. Polymer Electrolytes
3.3.2. Ceramic Electrolytes
3.3.3. Liquid Electrolytes
3.4. High-Entropy Materials for Lithium–Sulfur Batteries
3.5. High-Entropy Catalysts in Metal–Air Batteries
4. Challenges and Perspectives
5. Conclusions and Future Directions
- (1)
- More studies are required to understand the underlying mechanisms that result in the performance increases that were observed in the current studies. The increased performance is generally associated with the “cocktail effect” that is linked to all high-entropy materials.
- (2)
- Additional research is needed to understand how various elements react with each other, and understanding their roles in the system is necessary to better design future HEMs. For instance, the inclusion of Mg plays a role in stabilizing the structure, while other elements such as Ni, Co, and Mn have roles in increased capacity. Studies can incorporate machine learning to better determine possible future compositions based on electrochemical targets such as specific capacity, ionic conductivity, or cycle life. Additional studies are required to better understand how each individual element contributes to the improved electrochemical performance of the system from a fundamental perspective. Studies focusing on bond lengths, angles, and other structural relationships may yield insights into how the structural stability of the HEMs enhances their performance or how differing elements and their bond lengths affect the ionic conductivity.
- (3)
- Overall efficiency improvements to the various battery components when HEMs are utilized are still needed. Further studies of different crystal structures, especially ones that include multiple Wyckoff sites, are essential due to the availability of several high-entropy crystal structures. A better understanding of factors such as the synthesis technique, particle sizes, and morphology is required to ascertain their role in the electrochemical performance. Now that several synthesis paths are possible for a given composition, the role of these various synthesis paths should be studied to determine if any parameters affect battery performance. Additionally, the inclusion of HEMs as additives in other systems should be examined, as seen in cases like HEMs being used in Li-S cathodes.
- (4)
- Further consideration needs to be given to the future scalability of HEMs. As these materials gain popularity for various applications, attention must be directed towards determining the optimal approach for scaling this new class of materials to industrial production levels. The synthesis of HEMS should prioritize being cost-effective, rapid, high-quality, and yielding high quantities. This approach will enable the exploitation of their properties in future battery materials.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Yu, X.; Li, H.; Chen, L. The Road Towards High Energy Density Batteries. Innov. Energy 2024, 1, 100005. [Google Scholar] [CrossRef]
- Shahbazian-Yassar, R.; Amiri, A. Recent Progress of High Entropy Materials for Energy Storage and Conversion. J. Mater. Chem. A 2021, 9, 782–823. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, Y.; Wang, Q.; Schweidler, S.; Botros, M.; Fu, T.; Hahn, H.; Brezesinski, T.; Breitung, B. High-Entropy Energy Materials: Challenges and New Opportunities. Energy Environ. Sci. 2021, 14, 2883–2905. [Google Scholar] [CrossRef]
- Sturman, J.W.; Baranova, E.A.; Abu-Lebdeh, Y. Review: High-Entropy Materials for Lithium-Ion Battery Electrodes. Front. Energy Res. 2022, 10, 1–15. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A Critical Review of High Entropy Alloys and Related Concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Xiang, H.; Xing, Y.; Dai, F.; Wang, H.; Su, L.; Wang, H.; Zhao, B.; Li, J.; Zhou, Y. High-Entropy Ceramics: Present Status, Challenges, and a Look Forward. J. Adv. Ceram. 2021, 10, 385–441. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and Properties of High-Entropy Alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Shojaei, Z.; Khayati, G.R.; Darezereshki, E. Review of Electrodeposition Methods for the Preparation of High-Entropy Alloys. Int. J. Miner. Metall. Mater. 2022, 29, 1683–1696. [Google Scholar] [CrossRef]
- Zhang, W.; Liaw, P.K.; Zhang, Y. Science and Technology in High-Entropy Alloys. Sci. China Mater. 2018, 61, 2–22. [Google Scholar] [CrossRef]
- Ritter, T.G.; Phakatkar, A.H.; Rasul, M.G.; Saray, M.T.; Sorokina, L.V.; Shokuhfar, T.; Gonçalves, J.M.; Shahbazian-Yassar, R. Electrochemical Synthesis of High Entropy Hydroxides and Oxides Boosted by Hydrogen Evolution Reaction. Cell Rep. Phys. Sci. 2022, 3, 100847. [Google Scholar] [CrossRef]
- Phakatkar, A.H.; Saray, M.T.; Rasul, G.; Sorokina, L.V.; Ritter, T.; Shokuhfar, T.; Shahbazian-yassar, R. Ultrafast Synthesis of High Entropy Oxide Nanoparticles by Flame Spray Pyrolysis. Langmuir 2021, 37, 9059–9068. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowa, J.; Stygar, M.; Mikuła, A.; Knapik, A.; Mroczka, K.; Tejchman, W.; Danielewski, M.; Martin, M. Synthesis and Microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 High Entropy Oxide Characterized by Spinel Structure. Mater. Lett. 2018, 216, 32–36. [Google Scholar] [CrossRef]
- Xiang, H.; Dai, F.-Z.; Zhou, Y. High Entropy Materials from Basics to Applications; Wiley-VCH: Weinheim, Germany, 2023. [Google Scholar]
- Akrami, S.; Edalati, P.; Fuji, M.; Edalati, K. High-Entropy Ceramics: Review of Principles, Production and Applications. Mater. Sci. Eng. R Rep. 2021, 146, 100644. [Google Scholar] [CrossRef]
- Fang, S.; Bresser, D.; Passerini, S. Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium- and Sodium-Ion Batteries. Adv. Energy Mater. 2020, 10, 1902485. [Google Scholar] [CrossRef]
- Wu, W.; Wang, M.; Wang, J.; Wei, Z.; Zhang, T.; Chi, S.-S.; Wang, C.; Deng, Y. Transition Metal Oxides as Lithium-Free Cathodes for Solid-State Lithium Metal Batteries. Nano Energy 2020, 74, 104867. [Google Scholar] [CrossRef]
- Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q.; Talasila, G.; de Biasi, L.; Kübel, C.; Brezesinski, T.; Bhattacharya, S.S.; Hahn, H.; et al. High Entropy Oxides for Reversible Energy Storage. Nat. Commun. 2018, 9, 3400. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, M.G.; Visintin, A.; Real, S.G. Synthesis and Electrochemical Properties of Nickel Oxide as Anodes for Lithium-Ion Batteries. J. Electroanal. Chem. 2021, 883, 114875. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Liu, Q.; Duan, H. Recent Progress in Zn-Based Anodes for Advanced Lithium Ion Batteries. Mater. Chem. Front. 2018, 2, 1414–1435. [Google Scholar] [CrossRef]
- Guo, H.; Shen, J.; Wang, T.; Cheng, C.; Yao, H.; Han, X.; Zheng, Q. Design and Fabrication of High-Entropy Oxide Anchored on Graphene for Boosting Kinetic Performance and Energy Storage. Ceram. Int. 2022, 48, 3344–3350. [Google Scholar] [CrossRef]
- Lökçü, E.; Toparli, Ç.; Anik, M. Electrochemical Performance of (MgCoNiZn)1−xLixO High-Entropy Oxides in Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 23860–23866. [Google Scholar] [CrossRef]
- Qiu, N.; Chen, H.; Yang, Z.; Sun, S.; Wang, Y.; Cui, Y. A High Entropy Oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with Superior Lithium Storage Performance. J. Alloys Compd. 2019, 777, 767–774. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, S.; Duan, C.; Mao, J.; Dong, Y.; Dong, K.; Wang, Z.; Luo, S.; Liu, Y.; Qi, X. Spinel-Structured High Entropy Oxide (FeCoNiCrMn)3O4 as Anode Towards Superior Lithium Storage Performance. J. Alloys Compd. 2020, 844, 156158. [Google Scholar] [CrossRef]
- Xiang, H.Z.; Xie, H.X.; Chen, Y.X.; Zhang, H.; Mao, A.; Zheng, C.H. Porous Spinel-Type (Al0.2CoCrFeMnNi)0.58O4-δ High-Entropy Oxide as a Novel High-Performance Anode Material for Lithium-Ion Batteries. J. Mater. Sci. 2021, 56, 8127–8142. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X.; Huang, Y.; Du, F.; Zeng, Y. Entropy Stabilization Effect and Oxygen Vacancies Enabling Spinel Oxide Highly Reversible Lithium-Ion Storage. ACS Appl. Mater. Interfaces 2021, 13, 58674–58681. [Google Scholar] [CrossRef] [PubMed]
- Dahn, J.R.; Mar, R.E.; Fleischauer, M.D.; Obrovac, M.N. The Impact of the Addition of Rare Earth Elements to Si1−xSnx Negative Electrode Materials for Li-Ion Batteries. J. Electrochem. Soc. 2006, 153, A1211. [Google Scholar] [CrossRef]
- Obrovac, M.N.; Chevrier, V.L. Alloy Negative Electrodes for Li-Ion Batteries. Chem. Rev. 2014, 114, 11444–11502. [Google Scholar] [CrossRef] [PubMed]
- Liu, X. High-Entropy Oxide: A Future Anode Contender for Lithium-Ion Battery. EcoMat 2022, 4, e12261. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, H.; Huang, Y.; Huang, L.; Zheng, X.; Dai, Y.; Huang, Y.; Luo, W. Opportunities for High-Entropy Materials in Rechargeable Batteries. ACS Mater. Lett. 2021, 3, 160–170. [Google Scholar] [CrossRef]
- Manthiram, A. A Reflection on Lithium-Ion Battery Cathode Chemistry. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Houache, M.S.E.; Yim, C.H.; Karkar, Z.; Abu-Lebdeh, Y. On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review. Batteries 2022, 8, 70. [Google Scholar] [CrossRef]
- Mekonnen, Y.; Sundararajan, A.; Sarwat, A.I. A Review of Cathode and Anode Materials for Lithium-Ion Batteries. In Proceedings of the SoutheastCon 2016, Norfolk, VA, USA, 30 March–3 April 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Lin, Y.; Luo, N.; Chamas, M.; Hu, C.; Grasso, S. Sustainable High-Entropy Ceramics for Reversible Energy Storage: A Short Review. Int. J. Appl. Ceram. Technol. 2021, 18, 1560–1569. [Google Scholar] [CrossRef]
- Oses, C.; Toher, C.; Curtarolo, S. High-Entropy Ceramics. Nat. Rev. Mater. 2020, 5, 295–309. [Google Scholar] [CrossRef]
- Wang, Q.; Sarkar, A.; Wang, D.; Velasco, L.; Azmi, R.; Bhattacharya, S.S.; Bergfeldt, T.; Düvel, A.; Heitjans, P.; Brezesinski, T.; et al. Multi-Anionic and -Cationic Compounds: New High Entropy Materials for Advanced Li-Ion Batteries. Energy Environ. Sci. 2019, 12, 2433–2442. [Google Scholar] [CrossRef]
- Zhao, C.; Ding, F.; Lu, Y.; Chen, L.; Hu, Y.S. High-Entropy Layered Oxide Cathodes for Sodium-Ion Batteries. Angew. Chemie-Int. Ed. 2020, 59, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cui, Y.; Wang, Q.; Wang, K.; Huang, X.; Stenzel, D.; Sarkar, A.; Azmi, R.; Bergfeldt, T.; Bhattacharya, S.S.; et al. Lithium Containing Layered High Entropy Oxide Structures. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lun, Z.; Ouyang, B.; Kwon, D.H.; Ha, Y.; Foley, E.E.; Huang, T.Y.; Cai, Z.; Kim, H.; Balasubramanian, M.; Sun, Y.; et al. Cation-Disordered Rocksalt-Type High-Entropy Cathodes for Li-Ion Batteries. Nat. Mater. 2021, 20, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yi, Y.; Fan, M.; Liu, H.; Li, X.; Zhang, R.; Li, M.; Qiao, Z.A. A High-Entropy Metal Oxide as Chemical Anchor of Polysulfide for Lithium-Sulfur Batteries. Energy Storage Mater. 2019, 23, 678–683. [Google Scholar] [CrossRef]
- Gu, Z.Y.; Guo, J.Z.; Cao, J.M.; Wang, X.T.; Zhao, X.X.; Zheng, X.Y.; Li, W.H.; Sun, Z.H.; Liang, H.J.; Wu, X.L. An Advanced High-Entropy Fluorophosphate Cathode for Sodium-Ion Batteries with Increased Working Voltage and Energy Density. Adv. Mater. 2022, 34, 1–10. [Google Scholar] [CrossRef]
- Zuo, W.; Qiu, J.; Liu, X.; Ren, F.; Liu, H.; He, H.; Luo, C.; Li, J.; Ortiz, G.F.; Duan, H.; et al. The Stability of P2-Layered Sodium Transition Metal Oxides in Ambient Atmospheres. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhu, Y.F.; Yao, H.R.; Wang, P.F.; Zhang, X.D.; Li, H.; Yang, X.; Gu, L.; Li, Y.C.; Wang, T.; et al. A Stable Layered Oxide Cathode Material for High-Performance Sodium-Ion Battery. Adv. Energy Mater. 2019, 9, 1–8. [Google Scholar] [CrossRef]
- Jin, T.; Li, H.; Zhu, K.; Wang, P.F.; Liu, P.; Jiao, L. Polyanion-Type Cathode Materials for Sodium-Ion Batteries. Chem. Soc. Rev. 2020, 49, 2342–2377. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wu, N. Ionic Conductivity and Ion Transport Mechanisms of Solid-State Lithium-Ion Battery Electrolytes: A Review. Energy Sci. Eng. 2022, 10, 1643–1671. [Google Scholar] [CrossRef]
- Pigłowska, M.; Kurc, B.; Galiński, M.; Fuć, P.; Kamińska, M.; Szymlet, N.; Daszkiewicz, P. Challenges for Safe Electrolytes Applied in Lithium-Ion Cells—A Review. Materials 2021, 14, 6783. [Google Scholar] [CrossRef] [PubMed]
- Song, J.Y.; Wang, Y.Y.; Wan, C.C. Review of Gel-Type Polymer Electrolytes for Lithium-Ion Batteries. J. Power Sources 1999, 77, 183–197. [Google Scholar] [CrossRef]
- Feng, J.; Wang, L.; Chen, Y.; Wang, P.; Zhang, H.; He, X. PEO Based Polymer-Ceramic Hybrid Solid Electrolytes: A Review. Nano Converg. 2021, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Ritter, T.G.; Gonçalves, M.; Stoyanov, S.; Ghorbani, A. AlTiMgLiO Medium Entropy Oxide Additive for PEO-Based Solid Polymer Electrolytes in Lithium Ion Batteries. J. Energy Storage 2023, 72, 108491. [Google Scholar] [CrossRef]
- Bérardan, D.; Franger, S.; Meena, A.K.; Dragoe, N. Room Temperature Lithium Superionic Conductivity in High Entropy Oxides. J. Mater. Chem. A 2016, 4, 9536–9541. [Google Scholar] [CrossRef]
- Zhang, W.; Xia, H.; Zhu, Z.; Lv, Z.; Cao, S.; Wei, J.; Luo, Y.; Xiao, Y.; Liu, L.; Chen, X. Decimal Solvent-Based High-Entropy Electrolyte Enabling the Extended Survival Temperature of Lithium-Ion Batteries to −130 °C. CCS Chem. 2021, 3, 1245–1255. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, C.; Yao, Z.; Wang, J.; Wu, F.; Kumar, S.G.H.; Ganapathy, S.; Eustace, S.; Bai, X.; Li, B.; et al. Entropy-Driven Liquid Electrolytes for Lithium Batteries. Adv. Mater. 2023, 35, e2210677. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, C.; Wang, J.; Yao, Z.; Wang, S.; Kumar, S.G.H.; Ganapathy, S.; Eustace, S.; Bai, X.; Li, B.; et al. High Entropy Liquid Electrolytes for Lithium Batteries. Nat. Commun. 2023, 14, 440. [Google Scholar] [CrossRef]
- Wang, S.; Wang, K.; Zhang, Y.; Jie, Y.; Li, X.; Pan, Y.; Gao, X.; Nian, Q.; Cao, R.; Li, Q.; et al. High-Entropy Electrolyte Enables High Reversibility and Long Lifespan for Magnesium Metal Anodes. Angew. Chemie-Int. Ed. 2023, 62, e202304411. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.P.; Ma, C.; Kong, X.Y.; Wu, X.Y.; Wang, K.X.; Chen, J.S. High-Performance PEO-Based All-Solid-State Battery Achieved by Li-Conducting High Entropy Oxides. ACS Appl. Mater. Interfaces 2022, 14, 57047–57054. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Wang, Z.; Ma, Y.; Miao, Y.; Wang, X.; Wang, Y.; Wang, Y. Fast Ion-Conducting High-Entropy Garnet Solid-State Electrolytes with Excellent Air Stability. J. Adv. Ceram. 2023, 12, 1201–1213. [Google Scholar] [CrossRef]
- Goncalves, J.; Santos, E.A.; Martins, P.R.; Silva, C.; Zanin, H. Emerging Medium- and High-Entropy Materials as Catalysts for Lithium-Sulfur Batteries. Energy Storage Mater. 2023, 63, 102999. [Google Scholar] [CrossRef]
- Huang, J.Q.; Zhang, Q.; Wei, F. Multi-Functional Separator/Interlayer System for High-Stable Lithium-Sulfur Batteries: Progress and Prospects. Energy Storage Mater. 2015, 1, 127–145. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, G.; Liu, D.; Si, J.; Ding, T.; Qu, D.; Yang, X.; Qu, D. The Progress of Li–S Batteries—Understanding of the Sulfur Redox Mechanism: Dissolved Polysulfide Ions in the Electrolytes. Adv. Mater. Technol. 2018, 3, 1700233. [Google Scholar] [CrossRef]
- Carter, R.; Oakes, L.; Muralidharan, N.; Cohn, A.P.; Douglas, A.; Pint, C.L. Polysulfide Anchoring Mechanism Revealed by Atomic Layer Deposition of V2O5 and Sulfur-Filled Carbon Nanotubes for Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2017, 9, 7185–7192. [Google Scholar] [CrossRef]
- Sun, Q.; Xi, B.; Li, J.Y.; Mao, H.; Ma, X.; Liang, J.; Feng, J.; Xiong, S. Nitrogen-Doped Graphene-Supported Mixed Transition-Metal Oxide Porous Particles to Confine Polysulfides for Lithium–Sulfur Batteries. Adv. Energy Mater. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, Z.; Lv, H.; Zhao, Y.; Wei, H.; Huai, G.; Xu, R.; Wang, Y. High-Entropy Nanoparticle Constructed Porous Honeycomb as a 3D Sulfur Host for Lithium Polysulfide Adsorption and Catalytic Conversion in Li-S Batteries. J. Mater. Chem. A 2023, 11, 5883–5894. [Google Scholar] [CrossRef]
- Raza, H.; Cheng, J.; Lin, C.; Majumder, S.; Zheng, G.; Chen, G. High-Entropy Stabilized Oxides Derived via a Low-Temperature Template Route for High-Performance Lithium-Sulfur Batteries. EcoMat 2023, 5, 1–15. [Google Scholar] [CrossRef]
- Fan, H.; Si, Y.; Zhang, Y.; Zhu, F.; Wang, X.; Fu, Y. Grapevine-like High Entropy Oxide Composites Boost High-Performance Lithium Sulfur Batteries as Bifunctional Interlayers. Green Energy Environ. 2022, 9, 565–572. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, Z.; Liu, S.; Li, G.; Gao, X. High-Entropy Perovskite Oxide Nanofibers as Efficient Bidirectional Electrocatalyst of Liquid-Solid Conversion Processes in Lithium-Sulfur Batteries. Nano Energy 2023, 106, 108037. [Google Scholar] [CrossRef]
- Knorpp, A.J.; Bell, J.G.; Huangfu, S.; Stuer, M. From Synthesis to Microstructure: Engineering the High-Entropy Ceramic Materials of the Future. Chimia 2022, 76, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Haruna, A.B.; Onoh, E.U.; Ozoemena, K.I. Emerging High-Entropy Materials as Electrocatalysts for Rechargeable Zinc–Air Batteries. Curr. Opin. Electrochem. 2023, 39, 101264. [Google Scholar] [CrossRef]
- Kang, J.H.; Lee, J.; Jung, J.W.; Park, J.; Jang, T.; Kim, H.S.; Nam, J.S.; Lim, H.; Yoon, K.R.; Ryu, W.H.; et al. Lithium-Air Batteries: Air-Breathing Challenges and Perspective. ACS Nano 2020, 14, 14549–14578. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Xu, H.; Jin, Z.; Zhang, Y.; Qiu, H.J. Noble Metal-Free High-Entropy Oxide/Co-N-C Bifunctional Electrocatalyst Enables Highly Reversible and Durable Zn-Air Batteries. Appl. Surf. Sci. 2023, 610, 155624. [Google Scholar] [CrossRef]
- Jin, Z.; Lyu, J.; Hu, K.; Chen, Z.; Xie, G.; Liu, X.; Lin, X.; Qiu, H.J. Eight-Component Nanoporous High-Entropy Oxides with Low Ru Contents as High-Performance Bifunctional Catalysts in Zn-Air Batteries. Small 2022, 18, 1–9. [Google Scholar] [CrossRef]
- Jin, Z.; Zhou, X.; Hu, Y.; Tang, X.; Hu, K.; Reddy, K.M.; Lin, X.; Qiu, H.J. A Fourteen-Component High-Entropy Alloy@oxide Bifunctional Electrocatalyst with a Record-Low ΔE of 0.61 V for Highly Reversible Zn-Air Batteries. Chem. Sci. 2022, 13, 12056–12064. [Google Scholar] [CrossRef]
- Yu, T.; Zhang, Y.; Hu, Y.; Hu, K.; Lin, X.; Xie, G.; Liu, X.; Reddy, K.M.; Ito, Y.; Qiu, H.J. Twelve-Component Free-Standing Nanoporous High-Entropy Alloys for Multifunctional Electrocatalysis. ACS Mater. Lett. 2022, 4, 181–189. [Google Scholar] [CrossRef]
- Fang, G.; Gao, J.; Lv, J.; Jia, H.; Li, H.; Liu, W.; Xie, G.; Chen, Z.; Huang, Y.; Yuan, Q.; et al. Multi-Component Nanoporous Alloy/(Oxy)Hydroxide for Bifunctional Oxygen Electrocatalysis and Rechargeable Zn-Air Batteries. Appl. Catal. B Environ. 2020, 268, 118431. [Google Scholar] [CrossRef]
- Rao, P.; Deng, Y.; Fan, W.; Luo, J.; Deng, P.; Li, J.; Shen, Y.; Tian, X. Movable Type Printing Method to Synthesize High-Entropy Single-Atom Catalysts. Nat. Commun. 2022, 13, 5071. [Google Scholar] [CrossRef]
Material | Voltage (V) | Specific Capacity (mAh g−1) | Gravimetric Energy Density (Wh kg−1) |
---|---|---|---|
MnO | 1.03 | 756 | 779 |
FeO | 1.61 | 746 | 1201 |
CoO | 1.80 | 715 | 1287 |
NiO | 1.95 | 718 | 1400 |
CuO | 2.25 | 674 | 1517 |
Mn2O3 | 1.43 | 1018 | 1455 |
Fe2O3 | 1.63 | 1007 | 1641 |
Cr2O3 | 1.09 | 1058 | 1153 |
Composition | Cycles | Initial Capacity (mAh g−1) | Final Capacity (mAh g−1) | Current Density | Ref. |
---|---|---|---|---|---|
Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O | 300 | ≈1500 | ≈935 | 0.1 A g−1 | [22] |
MgCoNiZnCuO-GO | 1000 | 460 | 460 | 1.0 A g−1 | [20] |
(MgCoNiZi)0.65Li0.35O | 100 | ≈680 | 610 | 1.0 A g−1 | [21] |
(FeCoNiCrMn)3O4 | 300 | ≈660 | 402 | 0.5 A g−1 | [23] |
(Al0.2CoCrFeMnNi)0.58O4−δ | 500 | 2234 | 536 | 0.2 A g−1 | [24] |
(CoCrFeMnNi)3O4 | 50 | 1133 | 980 | 0.1 A g−1 | [25] |
Composition | Cycles | Initial Capacity (mAh g−1) | Final Capacity (mAh g−1) | Rate | Sulfur Loading (mg cm−2) | Ref. |
---|---|---|---|---|---|---|
(MgCrMnFeCoNi)O/Sulfur/Carbon black/PVDF | 1200 | 1397 | 1100 | 0.5 C | 4.5 | [61] |
(Cu0.7Ni0.6Fe0.6Sn0.5Mn0.4)O4/CNF | 400 | 907 | 435 | 1 C | 1.1 | [63] |
La0.8Sr0.2(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3/Sulfur/PVDF/CNF | 500 | 1038 | 714 | 1 C | 1.3–1.5 | [64] |
(Ni0.2Co0.2Cu0.2Mg0.2Zn0.2)O/Sulfur/Ketjen Black | 800 | 1244 | 784 | 0.5 C | 1.2 | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ritter, T.G.; Pappu, S.; Shahbazian-Yassar, R. High-Entropy Materials for Lithium Batteries. Batteries 2024, 10, 96. https://doi.org/10.3390/batteries10030096
Ritter TG, Pappu S, Shahbazian-Yassar R. High-Entropy Materials for Lithium Batteries. Batteries. 2024; 10(3):96. https://doi.org/10.3390/batteries10030096
Chicago/Turabian StyleRitter, Timothy G., Samhita Pappu, and Reza Shahbazian-Yassar. 2024. "High-Entropy Materials for Lithium Batteries" Batteries 10, no. 3: 96. https://doi.org/10.3390/batteries10030096
APA StyleRitter, T. G., Pappu, S., & Shahbazian-Yassar, R. (2024). High-Entropy Materials for Lithium Batteries. Batteries, 10(3), 96. https://doi.org/10.3390/batteries10030096