Carbon-Free Cathode Materials Based on Titanium Compounds for Zn-Oxygen Aqueous Batteries
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Structural Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Wang, Y.-P.; Rayner, P.J.; Ciais, P.; Huang, K.; Luo, Y.; Piao, S.; Wang, Z.; Xia, J.; Zhao, W.; et al. A small climate-amplifying effect of climate-carbon cycle feedback. Nat. Commun. 2021, 12, 2952. [Google Scholar] [CrossRef]
- Kraytsberg, A.; Ein-Eli, Y. Review on Li–air batteries—Opportunities, limitations and perspective. J. Power Sources 2011, 196, 886–893. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Lee, J.-S.; Kim, S.T.; Cao, R.; Choi, N.-S.; Liu, M.; Lee, K.T.; Cho, J. Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air. Adv. Energy Mater. 2011, 1, 34–50. [Google Scholar] [CrossRef]
- Wang, K.; Yu, J. Lifetime simulation of rechargeable zinc-air battery based on electrode aging. Energy Storage 2020, 28, 101191. [Google Scholar] [CrossRef]
- Pan, J.; Tian, X.L.; Zaman, S.; Dong, Z.; Liu, H.; Park, H.S.; Xia, B.Y. Recent Progress on Transition Metal Oxides as Bifunctional Catalysts for Lithium-Air and Zinc-Air Batteries. Batter. Supercaps 2018, 2, 336–347. [Google Scholar] [CrossRef]
- Wang, Q.; Kaushik, S.; Xiao, X.; Xu, Q. Sustainable zinc–air battery chemistry: Advances, challenges and prospects. Chem. Soc. Rev. 2023, 52, 6139–6190. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Luo, W.; Chen, J.; Chou, S.; Liu, H.; Wang, J. Review of Electrolytes in Nonaqueous Lithium–Oxygen Batteries. Adv. Sustain. Syst. 2018, 2, 1700183. [Google Scholar] [CrossRef]
- Zeng, X.; Hao, J.; Wang, Z.; Mao, J.; Guo, Z. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 2019, 20, 410–437. [Google Scholar] [CrossRef]
- Cang, R.; Ye, K.; Zhu, K.; Yan, J.; Yin, J.; Cheng, K.; Wang, G.; Cao, D. Organic 3D interconnected graphene aerogel as cathode materials for high-performance aqueous zinc ion battery. J. Energy Chem. 2020, 45, 52–58. [Google Scholar] [CrossRef]
- Liang, Y.; Lei, H.; Wang, S.; Wang, Z.; Mai, W. Pt/Zn heterostructure as efficient air-electrocatalyst for long-life neutral Zn-air batteries. Sci. China Mater. 2021, 64, 1868–1875. [Google Scholar] [CrossRef]
- Pan, J.; Xu, Y.Y.; Yang, H.; Dong, Z.; Liu, H.; Xia, B.Y. Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries. Adv. Sci. 2018, 5, 1700691. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dai, H. Recent advances in zinc–air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Pan, Z.; Wang, E.; An, L.; Sun, G. Aqueous metal-air batteries: Fundamentals and applications. Energy Storage Mater. 2019, 27, 478–505. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Xu, D.; Xu, J.-J.; Zhang, X.-B. Oxygen electrocatalysts in metal–air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 2014, 43, 7746–7786. [Google Scholar] [CrossRef]
- Wang, H.; Tan, R.; Yang, Z.; Feng, Y.; Duan, X.; Ma, J. Stabilization Perspective on Metal Anodes for Aqueous Batteries. Adv. Energy Mater. 2021, 11, 2000962. [Google Scholar] [CrossRef]
- Fang, W.; Hu, H.; Jiang, T.; Li, G.; Wu, M. N- and S-doped porous carbon decorated with in-situ synthesized Co–Ni bimetallic sulfides particles: A cathode catalyst of rechargeable Zn-air batteries. Carbon 2019, 146, 476–485. [Google Scholar] [CrossRef]
- Cano, Z.P.; Park, M.G.; Lee, D.U.; Fu, J.; Liu, H.; Fowler, M.; Chen, Z. New Interpretation of the Performance of Nickel-Based Air Electrodes for Rechargeable Zinc–Air Batteries. J. Phys. Chem. C 2018, 122, 20153–20166. [Google Scholar] [CrossRef]
- Borchers, N.; Clark, S.; Horstmann, B.; Jayasayee, K.; Juel, M.; Stevens, P. Innovative zinc-based batteries. J. Power Sources 2021, 484, 229309. [Google Scholar] [CrossRef]
- Kim, C.; Buonsanti, R.; Yaylian, R.; Milliron, D.J.; Cabana, J. Carbon-Free TiO2 Battery Electrodes Enabled by Morphological Control at the Nanoscale. Adv. Energy Mater. 2013, 3, 1286–1291. [Google Scholar] [CrossRef]
- Ha, D.-H.; Islam, M.A.; Robinson, R.D. Binder-Free and Carbon-Free Nanoparticle Batteries: A Method for Nanoparticle Electrodes without Polymeric Binders or Carbon Black. Nano Lett. 2012, 12, 5122–5130. [Google Scholar] [CrossRef]
- Liu, W.-M.; Yin, W.-W.; Ding, F.; Sang, L.; Fu, Z.-W. NiCo2O4 nanosheets supported on Ni foam for rechargeable nonaqueous sodium–air batteries. Electrochem. Commun. 2014, 45, 87–90. [Google Scholar] [CrossRef]
- Zheng, X.; Cao, X.; Zeng, K.; Sun, Z.; Yan, J.; Li, X.; Jin, C.; Chen, X.; Yang, R. Cotton pad-derived large-area 3D N-doped graphene-like full carbon cathode with an O-rich functional group for flexible all solid Zn–air batteries. J. Mater. Chem. A 2020, 8, 11202–11209. [Google Scholar] [CrossRef]
- Jin, W.; Chen, J.; Liu, B.; Hu, J.; Wu, Z.; Cai, W.; Fu, G. Oxygen Vacancy–Rich In-Doped CoO/CoP Heterostructure as an Effective Air Cathode for Rechargeable Zn–Air Batteries. Small 2019, 15, e1904210. [Google Scholar] [CrossRef]
- Davari, E.; Ivey, D.G. Synthesis and electrochemical performance of manganese nitride as an oxygen reduction and oxygen evolution catalyst for zinc–air secondary batteries. J. Appl. Electrochem. 2017, 47, 815–827. [Google Scholar] [CrossRef]
- Wang, H.; Yu, H.; Yin, S.; Xu, Y.; Li, X.; Xue, H.; Wang, L. Integrated Mesoporous PtPd Film/Ni Foam: An Efficient Binder-Free Cathode for Zn–Air Batteries. ACS Sustain. Chem. Eng. 2018, 6, 12367–12374. [Google Scholar] [CrossRef]
- Wan, L.; Zhao, Z.; Chen, X.; Liu, P.-F.; Wang, P.; Xu, Z.; Lin, Y.; Wang, B. Controlled Synthesis of Bifunctional NiCo2O4@FeNi LDH Core–Shell Nanoarray Air Electrodes for Rechargeable Zinc–Air Batteries. ACS Sustain. Chem. Eng. 2020, 8, 11079–11087. [Google Scholar] [CrossRef]
- Ma, T.Y.; Cao, J.L.; Jaroniec, M.; Qiao, S.Z. Interacting Carbon Nitride and Titanium Carbide Nanosheets for High-Performance Oxygen Evolution. Angew. Chem. 2016, 128, 1150–1154. [Google Scholar] [CrossRef]
- Cai, X.; Lai, L.; Lin, J.; Shen, Z. Recent advances in air electrodes for Zn–air batteries: Electrocatalysis and structural design. Mater. Horiz. 2017, 4, 945–976. [Google Scholar] [CrossRef]
- Rebrov, E.V.; Gao, P.-Z. Molecular Catalysts for OER/ORR in Zn–Air Batteries. Catalysts 2023, 13, 1289. [Google Scholar] [CrossRef]
- Xu, C.; Niu, Y.; Au, V.K.-M.; Gong, S.; Liu, X.; Wang, J.; Wu, D.; Chen, Z. Recent progress of self-supported air electrodes for flexible Zn-air batteries. J. Energy Chem. 2024, 89, 110–136. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, M.; Zhao, X.; Cai, J.; Yan, W.; Yen, J.C.; Chen, S.; Yu, Y.; Zhang, J. Advanced Noncarbon Materials as Catalyst Supports and Non-noble Electrocatalysts for Fuel Cells and Metal–Air Batteries. Electrochem. Energy Rev. 2021, 4, 336–381. [Google Scholar] [CrossRef]
- Liu, F.; Yang, X.; Dang, D.; Tian, X. Engineering of Hierarchical and Three-Dimensional Architectures Constructed by Titanium Nitride Nanowire Assemblies for Efficient Electrocatalysis. ChemElectroChem 2019, 6, 2208–2214. [Google Scholar] [CrossRef]
- Kim, B.G.; Jo, C.; Shin, J.; Mun, Y.; Lee, J.; Choi, J.W. Ordered Mesoporous Titanium Nitride as a Promising Carbon-Free Cathode for Aprotic Lithium-Oxygen Batteries. ACS Nano 2017, 11, 1736–1746. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.-R.; An, T.-H.; Li, Y.-J.; Wu, Q.-H.; Zheng, M.-S.; Dong, Q.-F. Hollow porous titanium nitride tubes as a cathode electrode for extremely stable Li–S batteries. J. Mater. Chem. A 2016, 4, 16184–16190. [Google Scholar] [CrossRef]
- Hubbard, D.; Nuruddin, M.; Tcherbi-Narteh, A.; Hosur, M.; Jeelani, S. In Proceedings of the CAMX 2015-Composites and Advanced Materials Expo 2015, Dallas, TX, USA, 27–29 October 2015; pp. 122–135.
- Choi, D.; Kumta, P.N. Synthesis of Nanostructured TiN Using a Two-Step Transition MetalHalide Approach. J. Am. Ceram. Soc. 2005, 88, 2030–2035. [Google Scholar] [CrossRef]
- Zhang, D.; Zheng, L.; Ma, Y.; Lei, L.; Li, Q.; Li, Y.; Luo, H.; Feng, H.; Hao, Y. Synthesis of Nitrogen- and Sulfur-Codoped 3D Cubic-Ordered Mesoporous Carbon with Superior Performance in Supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 2657–2665. [Google Scholar] [CrossRef] [PubMed]
- Ismagilov, Z.R.; Shalagina, A.E.; Podyacheva, O.Y.; Ischenko, A.V.; Kibis, L.S.; Boronin, A.I.; Chesalov, Y.A.; Kochubey, D.I.; Romanenko, A.I.; Anikeeva, O.B.; et al. Structure and electrical conductivity of nitrogen-doped carbon nanofibers. Carbon 2009, 47, 1922–1929. [Google Scholar] [CrossRef]
- Choi, D.; Kumta, P.N. Nanocrystalline TiN Derived by a Two-Step Halide Approach for Electrochemical Capacitors. J. Electrochem. Soc. 2006, 153, A2298–A2303. [Google Scholar] [CrossRef]
- Delegan, N.; Daghrir, R.; Drogui, P.; El Khakani, M.A. Bandgap tailoring of in-situ nitrogen-doped TiO2 sputtered films intended for electrophotocatalytic applications under solar light. J. Appl. Phys. 2014, 116, 153510. [Google Scholar] [CrossRef]
- Bagheri, S.; Shameli, K.; Abd Hamid, S.B. Synthesis and Characterization of Anatase Titanium Dioxide Nanoparticles Using Egg White Solution via Sol-Gel Method. J. Chem. 2013, 2013, 848205. [Google Scholar] [CrossRef]
- Čolović, B.; Kisić, D.; Jokanović, B.; Rakočević, Z.; Nasov, I.; Petkoska, A.T.; Jokanović, V. Wetting properties of titanium oxides, oxynitrides and nitrides obtained by DC and pulsed magnetron sputtering and cathodic arc evaporation. Mater. Sci. 2019, 37, 173–181. [Google Scholar] [CrossRef]
- Zhao, F.; Xue, X.; Fu, W.; Liu, Y.; Ling, Y.; Zhang, Z. TiN Nanorods as Effective Substrate for Surface-Enhanced Raman Scattering. J. Phys. Chem. C 2019, 123, 29353–29359. [Google Scholar] [CrossRef]
- Nishikiori, H.; Takei, M.; Oki, K.; Takano, S.; Tanaka, N.; Fujii, T. Photocatalytic activity of titania layer prepared by oxidizing titanium compounds on titanium plate surface. Appl. Catal. B Environ. 2012, 127, 227–233. [Google Scholar] [CrossRef]
- Wei, H.; Wu, M.; Dong, Z.; Chen, Y.; Bu, J.; Lin, J.; Yu, Y.; Wei, Y.; Cui, Y.; Wang, R. Composition, microstructure and SERS properties of titanium nitride thin film prepared via nitridation of sol–gel derived titania thin films. J. Raman Spectrosc. 2017, 48, 578–585. [Google Scholar] [CrossRef]
- Zhu, S.; Xiao, L.; Cortie, M. Surface enhanced Raman spectroscopy on metal nitride thin films. Vib. Spectrosc. 2016, 85, 146–148. [Google Scholar] [CrossRef]
- Ma, Y.; Nagai, T.; Inoue, Y.; Ikegami, K.; Kuroda, Y.; Matsuzawa, K.; Napporn, T.W.; Liu, Y.; Mitsushima, S.; Ishihara, A. Control of surface area and conductivity of niobium-added titanium oxides as durable supports for cathode of polymer electrolyte fuel cells. Mater. Des. 2021, 203, 109623. [Google Scholar] [CrossRef]
- Li, J.; Gao, L.; Sun, J.; Zhang, Q.; Guo, J.; Yan, D. Synthesis of Nanocrystalline Titanium Nitride Powders by Direct Nitridation of Titanium Oxide. J. Am. Ceram. Soc. 2001, 84, 3045–3047. [Google Scholar] [CrossRef]
- Vany, P. CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press: Boca Ratón, FL, USA, 2016. [Google Scholar]
- Stumpp, M.; Damtew, D.; Stock, D.; Hess, K.; Schröder, D.; Schlettwein, D. Controlled Electrodeposition of Zinc Oxide on Conductive Meshes and Foams Enabling Its Use as Secondary Anode. J. Electrochem. Soc. 2018, 165, D461–D466. [Google Scholar] [CrossRef]
Sample | Surface Area (m2/g) | Electric Conductivity (mS/cm) |
---|---|---|
100-air | 0.1 | 3 × 10−7 |
500-air | 347 | ---- |
500–800-NH3 | 3.3 | 0.97 |
500–900-NH3 | 4.9 | ---- |
500–1000-NH3 | 1.7 | 1.4 |
800-N2 | 85 | 0.97 |
800-NH3 | 237 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Morales, J.; Mosa, J.; Ishiyama, S.; Rosero-Navarro, N.C.; Miura, A.; Tadanaga, K.; Aparicio, M. Carbon-Free Cathode Materials Based on Titanium Compounds for Zn-Oxygen Aqueous Batteries. Batteries 2024, 10, 94. https://doi.org/10.3390/batteries10030094
González-Morales J, Mosa J, Ishiyama S, Rosero-Navarro NC, Miura A, Tadanaga K, Aparicio M. Carbon-Free Cathode Materials Based on Titanium Compounds for Zn-Oxygen Aqueous Batteries. Batteries. 2024; 10(3):94. https://doi.org/10.3390/batteries10030094
Chicago/Turabian StyleGonzález-Morales, Jorge, Jadra Mosa, Sho Ishiyama, Nataly Carolina Rosero-Navarro, Akira Miura, Kiyoharu Tadanaga, and Mario Aparicio. 2024. "Carbon-Free Cathode Materials Based on Titanium Compounds for Zn-Oxygen Aqueous Batteries" Batteries 10, no. 3: 94. https://doi.org/10.3390/batteries10030094
APA StyleGonzález-Morales, J., Mosa, J., Ishiyama, S., Rosero-Navarro, N. C., Miura, A., Tadanaga, K., & Aparicio, M. (2024). Carbon-Free Cathode Materials Based on Titanium Compounds for Zn-Oxygen Aqueous Batteries. Batteries, 10(3), 94. https://doi.org/10.3390/batteries10030094