A State-of-Health Estimation Method for Lithium Batteries Based on Fennec Fox Optimization Algorithm–Mixed Extreme Learning Machine
Abstract
:1. Introduction
2. Analysis and Construction of Battery Health Indicators
2.1. Analysis of Battery Degradation Data
2.2. Health Indicators Construction Based on Charging Curve
2.3. Feature Analysis Based on GRA
3. SOH Estimation Model Based on Fennec Fox Optimization Algorithm–Mixed Extreme Learning Machine
3.1. Extreme Learning Machine
3.2. Mixed Extreme Learning Machine
3.3. Fennec Fox Optimization Algorithm
- (1)
- Phase1: Digging prey behavior in the sand (local search).
- (2)
- Phase2: Escaping predators (global search).
3.4. FFA-MELM
- (1)
- Data preprocessing: Standardize the features of the sample data according to Equation (16), ensuring that data conform to the standard normal distribution N(0, 1). The preprocessed data can then be divided into training and test samples.
- (2)
- Feature analysis and automatic feature selection: The features of the sample data are analyzed using GRA to determine their importance. The top K features are then selected as inputs for the SOH estimation model.
- (3)
- Set the model parameters: In the model, the number of fennec fox populations is set to 100, the position dimension is set to 2, the total number of iterations is set to 50, the hidden layer neurons n in MELM are set to [2, 50], the mixed parameter is set to (0, 1), and the optimized fitness function is defined as follows:
- (4)
- Random initialization of population position: Each fennec fox corresponds to a set of spatial position vectors (n, ). Randomly initialize the position of the fennec fox population based on the value range of n and defined in step 3.
- (5)
- MELM hyperparameter optimization: Utilize FFA to optimize the number of hidden layer neurons and mixed parameters of MELM.
- (6)
- Set termination condition: If the total number of iterations is reached, terminate the algorithm and output the global optimal position parameters (nbest, αbest).
- (7)
- Establish the optimal model: Based on the parameters (nbest, αbest), establish the final MELM estimation model and output the estimated SOH.
4. Experiment and Analysis
4.1. SOH Estimation Accuracy Experiment
4.2. SOH Estimation Experiments with Different Starting Points for Testing
4.3. Adaptability Experiments for Different Battery Types
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, X.; Zhang, K.; Liu, K.; Lin, X.; Dey, S.; Onori, S. Advanced Fault Diagnosis for Lithium-Ion Battery Systems: A Review of Fault Mechanisms, Fault Features, and Diagnosis Procedures. IEEE Ind. Electron. Mag. 2020, 14, 65–91. [Google Scholar] [CrossRef]
- Smarsly, K.; Law, K.H. Decentralized Fault Detection and Isolation in Wireless Structural Health Monitoring Systems Using Analytical Redundancy. Adv. Eng. Softw. 2014, 73, 1–10. [Google Scholar] [CrossRef]
- Rauf, H.; Khalid, M.; Arshad, N. Machine Learning in State of Health and Remaining Useful Life Estimation: Theoretical and Technological Development in Battery Degradation Modelling. Renew. Sustain. Energy Rev. 2022, 156, 111903. [Google Scholar] [CrossRef]
- Vennam, G.; Sahoo, A.; Ahmed, S. A Survey on Lithium-Ion Battery Internal and External Degradation Modeling and State of Health Estimation. J. Energy Storage 2022, 52, 104720. [Google Scholar] [CrossRef]
- Lipu, M.S.H.; Ansari, S.; Miah, M.S.; Meraj, S.T.; Hasan, K.; Shihavuddin, A.S.M.; Hannan, M.A.; Muttaqi, K.M.; Hussain, A. Deep Learning Enabled State of Charge, State of Health and Remaining Useful Life Estimation for Smart Battery Management System: Methods, Implementations, Issues and Prospects. J. Energy Storage 2022, 55, 105752. [Google Scholar] [CrossRef]
- Li, Q.; Li, D.; Zhao, K.; Wang, L.; Wang, K. State of Health Estimation of Lithium-Ion Battery Based on Improved Ant Lion Optimization and Support Vector Regression. J. Energy Storage 2022, 50, 104215. [Google Scholar] [CrossRef]
- Xiong, R.; Li, L.; Tian, J. Towards a Smarter Battery Management System: A Critical Review on Battery State of Health Monitoring Methods. J. Power Sources 2018, 405, 18–29. [Google Scholar] [CrossRef]
- Yao, L.; Xu, S.; Tang, A.; Zhou, F.; Hou, J.; Xiao, Y.; Fu, Z. A Review of Lithium-Ion Battery State of Health Estimation and Prediction Methods. World Electr. Veh. J. 2021, 12, 113. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, J.; Sun, Z.; Wang, L.; Chen, Z. A Comprehensive Review of Battery Modeling and State Estimation Approaches for Advanced Battery Management Systems. Renew. Sustain. Energy Rev. 2020, 131, 110015. [Google Scholar] [CrossRef]
- Bi, Y.; Yin, Y.; Choe, S.Y. Online State of Health and Aging Parameter Estimation Using a Physics-Based Life Model with a Particle Filter. J. Power Sources 2020, 476, 228655. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, K.; Zhu, C.; Zhang, X.; Zhang, D. Co-Estimation of State-of-Charge and State-of- Health for Lithium-Ion Batteries Using an Enhanced Electrochemical Model. IEEE Trans. Ind. Electron. 2022, 69, 2684–2696. [Google Scholar] [CrossRef]
- Li, J.; Adewuyi, K.; Yagin, N.L.; Landers, R.; Park, J. A Single Particle Model with Chemical/Mechanical Degradation Physics for Lithium Ion Battery State of Health (SOH) Estimation. Appl. Energy 2018, 212, 1178–1190. [Google Scholar] [CrossRef]
- Tran, M.-K.; Mathew, M.; Janhunen, S.; Panchal, S.; Raahemifar, K.; Fraser, R.; Fowler, M. A Comprehensive Equivalent Circuit Model for Lithium-Ion Batteries, Incorporating the Effects of State of Health, State of Charge, and Temperature on Model Parameters. J. Energy Storage 2021, 43, 103252. [Google Scholar] [CrossRef]
- Sihvo, J.; Roinila, T.; Stroe, D.I. SOH Analysis of Li-Ion Battery Based on ECM Parameters and Broadband Impedance Measurements. In Proceedings of the the 46th Annual Conference of the IEEE Industrial Electronics Society (IECON), Singapore, 18–21 October 2020. [Google Scholar]
- Chen, S.-Z.; Liang, Z.; Yuan, H.; Yang, L.; Xu, F.; Zhang, Y. Li-Ion Battery State-of-Health Estimation Based on the Combination of Statistical and Geometric Features of the Constant-Voltage Charging Stage. J. Energy Storage 2023, 72, 108647. [Google Scholar] [CrossRef]
- Hasib, S.A.; Islam, S.; Chakrabortty, R.K.; Ryan, M.J.; Saha, D.K.; Ahamed, M.H.; Moyeen, S.I.; Das, S.K.; Ali, M.F.; Islam, M.R. A Comprehensive Review of Available Battery Datasets, RUL Prediction Approaches, and Advanced Battery Management. IEEE Access 2021, 9, 86166–86193. [Google Scholar] [CrossRef]
- Li, X.; Ju, L.; Geng, G.; Jiang, Q. Data-Driven State-of-Health Estimation for Lithium-Ion Battery Based on Aging Features. Energy 2023, 274, 127378. [Google Scholar] [CrossRef]
- Pan, H.; Lü, Z.; Wang, H.; Wei, H.; Chen, L. Novel Battery State-of-Health Online Estimation Method Using Multiple Health Indicators and an Extreme Learning Machine. Energy 2018, 160, 466–477. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, S.; Yu, C.; Xie, Y.; Fernandez, C. Improved Particle Swarm Optimization-Extreme Learning Machine Modeling Strategies for the Accurate Lithium-Ion Battery State of Health Estimation and High-Adaptability Remaining Useful Life Prediction. J. Electrochem. Soc. 2022, 169, 080520. [Google Scholar] [CrossRef]
- Zuo, H.; Liang, J.; Zhang, B.; Wei, K.; Zhu, H.; Tan, J. Intelligent Estimation on State of Health of Lithium-Ion Power Batteries Based on Failure Feature Extraction. Energy 2023, 282, 128794. [Google Scholar] [CrossRef]
- Yun, Z.; Qin, W.; Shi, W.; Ping, P. State-of-Health Prediction for Lithium-Ion Batteries Based on a Novel Hybrid Approach. Energies 2020, 13, 4858. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, S.; Shi, N.; Li, F.; Wang, Y.; Cui, J. Online State-of-Health Estimation of Lithium-Ion Battery Based on Relevance Vector Machine with Dynamic Integration. Appl. Soft Comput. 2022, 129, 109615. [Google Scholar] [CrossRef]
- Jia, J.; Liang, J.; Shi, Y.; Wen, J.; Pang, X.; Zeng, J. SOH and RUL Prediction of Lithium-Ion Batteries Based on Gaussian Process Regression with Indirect Health Indicators. Energies 2020, 13, 375. [Google Scholar] [CrossRef]
- Xu, X.; Yu, C.; Tang, S.; Sun, X.; Si, X.; Wu, L. State-of-Health Estimation for Lithium-Ion Batteries Based on Wiener Process with Modeling the Relaxation Effect. IEEE Access 2019, 7, 105186–105201. [Google Scholar] [CrossRef]
- Khumprom, P.; Yodo, N. A Data-Driven Predictive Prognostic Model for Lithium-Ion Batteries Based on a Deep Learning Algorithm. Energies 2019, 12, 660. [Google Scholar] [CrossRef]
- Li, Y.; Li, K.; Liu, X.; Zhang, L. Fast Battery Capacity Estimation Using Convolutional Neural Networks. Trans. Inst. Meas. Control 2020, 0142331220966425. [Google Scholar] [CrossRef]
- Raman, M.; Champa, V.; Prema, V. State of Health Estimation of Lithium Ion Batteries Using Recurrent Neural Network and Its Variants. In Proceedings of the 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 9–11 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Bao, Q.; Qin, W.; Yun, Z. A Multi-Stage Adaptive Method for Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Swarm Intelligence Optimization. Batteries 2023, 9, 224. [Google Scholar] [CrossRef]
- Saha, B.; Goebel, K. “Battery Data Set”, NASA Ames Prognostics Data Repository; NASA Ames Research Center: Moffett Field, CA, USA, 2007. Available online: https://www.Nasa.Gov/Intelligent-Systems-Division/Discovery-and-Systems-Health/Pcoe/Pcoe-Data-Set-Repository/ (accessed on 29 November 2023).
- CALCE Battery Research Group of the University of Maryland. Battery Data Set. Available online: https://Calce.Umd.Edu/Battery-Data (accessed on 29 November 2023).
- Feng, X.; Weng, C.; He, X.; Wang, L.; Ren, D.; Lu, L.; Han, X.; Ouyang, M. Incremental Capacity Analysis on Commercial Lithium-Ion Batteries Using Support Vector Regression: A Parametric Study. Energies 2018, 11, 2323. [Google Scholar] [CrossRef]
- Zhi, Y.; Wang, H.; Wang, L. A State of Health Estimation Method for Electric Vehicle Li-Ion Batteries Using GA-PSO-SVR. Complex Intell. Syst. 2022, 8, 2167–2182. [Google Scholar] [CrossRef]
- Tosun, N. Determination of Optimum Parameters for Multi-Performance Characteristics in Drilling by Using Grey Relational Analysis. Int. J. Adv. Manuf. Technol. 2006, 28, 450–455. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme Learning Machine: Theory and Applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Huang, G.-B.; Siew, C.-K. Extreme Learning Machine: RBF Network Case. In Proceedings of the ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, Kunming, China, 6–9 December 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 2, pp. 1029–1036. [Google Scholar]
- Trojovská, E.; Dehghani, M.; Trojovský, P. Fennec Fox Optimization: A New Nature-Inspired Optimization Algorithm. IEEE Access 2022, 10, 84417–84443. [Google Scholar] [CrossRef]
No. | Temperature (°C) | Charging Current (A) | Charging Cut-Off Voltage (V) | Discharging Current (A) | Discharging Cut-Off Voltage (V) |
---|---|---|---|---|---|
B05 | 24 | 1.5 | 4.2 | 2.0 | 2.7 |
B06 | 24 | 1.5 | 4.2 | 2.0 | 2.5 |
B07 | 24 | 1.5 | 4.2 | 2.0 | 2.2 |
B18 | 24 | 1.5 | 4.2 | 2.0 | 2.5 |
B34 | 24 | 1.5 | 4.2 | 4.0 | 2.2 |
B55 | 4 | 1.5 | 4.2 | 2.0 | 2.5 |
B45 | 4 | 1.5 | 4.2 | 1.0 | 2.0 |
B31 | 43 | 1.5 | 4.2 | 4.0 | 2.5 |
CS2_35 | \ | 0.55 | 4.2 | 1.1 | 2.7 |
CS2_36 | \ | 0.55 | 4.2 | 1.1 | 2.7 |
CS2_37 | \ | 0.55 | 4.2 | 1.1 | 2.7 |
CS2_38 | \ | 0.55 | 4.2 | 1.1 | 2.7 |
GRA Algorithm Process |
---|
Step 1: For a given dataset, define the reference sequence , with n denoting the length of the sequence; and define the comparative sequence , with d denoting the number of feature sequences. Step 2: Dimensionless normalize the dataset: . Step 3: Calculate the relational coefficients: , where is the identification coefficient, , and is 0.5 in this paper. Step 4: Calculate the relational grade , which is defined as the mean value of : . Step 5: Sort the features by relational grade, and automatically select the top K features as model inputs; K is set to 5 in this paper. |
No. | Method | MAE(%) | RMSE (%) | MAPE (%) |
---|---|---|---|---|
B05 | FFA-MELM | 0.26 | 0.42 | 0.39 |
MELM | 0.40 | 0.67 | 0.59 | |
ELM | 0.66 | 0.97 | 0.98 | |
B06 | FFA-MELM | 0.44 | 0.71 | 0.69 |
MELM | 1.15 | 1.27 | 1.84 | |
ELM | 1.49 | 1.68 | 2.33 | |
B07 | FFA-MELM | 0.28 | 0.36 | 0.38 |
MELM | 0.43 | 0.67 | 0.59 | |
ELM | 1.15 | 1.37 | 1.57 | |
B18 | FFA-MELM | 0.88 | 1.12 | 1.26 |
MELM | 1.10 | 1.36 | 1.59 | |
ELM | 1.03 | 1.59 | 1.46 | |
B34 | FFA-MELM | 0.71 | 0.82 | 1.07 |
MELM | 1.29 | 1.52 | 1.96 | |
ELM | 1.86 | 2.39 | 2.80 | |
B55 | FFA-MELM | 1.13 | 1.37 | 2.24 |
MELM | 1.31 | 1.65 | 2.58 | |
ELM | 1.47 | 1.89 | 2.89 | |
B45 | FFA-MELM | 0.49 | 0.59 | 1.54 |
MELM | 0.62 | 0.79 | 1.97 | |
ELM | 0.65 | 0.90 | 2.07 | |
B31 | FFA-MELM | 0.23 | 0.26 | 0.27 |
MELM | 0.59 | 0.69 | 0.70 | |
ELM | 0.73 | 1.00 | 0.86 | |
AVG | FFA-MELM | 0.55 | 0.71 | 0.98 |
MELM | 0.86 | 1.08 | 1.48 | |
ELM | 1.13 | 1.47 | 1.87 |
No. | Training Data (%) | Starting Point | MAE (%) | RMSE (%) | MAPE (%) |
---|---|---|---|---|---|
B05 | 60 | 100 | 0.31 | 0.48 | 0.44 |
50 | 84 | 0.36 | 0.69 | 0.51 | |
40 | 67 | 0.59 | 0.92 | 0.82 | |
30 | 50 | 2.17 | 2.36 | 2.94 | |
B06 | 60 | 100 | 0.44 | 0.70 | 0.67 |
50 | 84 | 0.50 | 1.10 | 0.73 | |
40 | 67 | 0.60 | 1.14 | 0.86 | |
30 | 50 | 1.45 | 1.90 | 2.02 | |
B07 | 60 | 100 | 0.31 | 0.39 | 0.42 |
50 | 84 | 0.46 | 0.73 | 0.60 | |
40 | 67 | 0.78 | 1.05 | 1.01 | |
30 | 50 | 2.44 | 2.80 | 3.07 | |
B18 | 60 | 79 | 0.79 | 1.11 | 1.11 |
50 | 66 | 0.85 | 1.13 | 1.20 | |
40 | 53 | 0.95 | 1.18 | 1.30 | |
30 | 40 | 1.21 | 1.70 | 1.60 | |
B34 | 60 | 118 | 0.77 | 0.89 | 1.16 |
50 | 97 | 1.12 | 2.08 | 1.66 | |
40 | 78 | 0.90 | 2.06 | 1.31 | |
30 | 59 | 0.77 | 2.00 | 1.09 | |
B55 | 60 | 61 | 1.20 | 1.39 | 2.35 |
50 | 51 | 1.11 | 1.49 | 2.17 | |
40 | 41 | 1.48 | 1.97 | 2.86 | |
30 | 31 | 1.19 | 1.72 | 2.31 | |
B45 | 60 | 46 | 0.50 | 0.62 | 1.56 |
50 | 38 | 0.44 | 0.56 | 1.39 | |
40 | 31 | 0.50 | 0.67 | 1.55 | |
30 | 23 | 0.54 | 0.67 | 1.64 | |
B31 | 60 | 24 | 0.34 | 0.42 | 0.40 |
50 | 20 | 0.30 | 0.37 | 0.36 | |
40 | 16 | 0.53 | 0.63 | 0.62 | |
30 | 12 | 0.58 | 0.74 | 0.67 |
No. | Method | MAE (%) | RMSE (%) | MAPE (%) |
---|---|---|---|---|
CS2_35 | FFA-MELM | 1.22 | 1.84 | 2.80 |
MELM | 4.17 | 4.98 | 10.26 | |
ELM | 4.79 | 6.94 | 13.31 | |
CS2_36 | FFA-MELM | 1.00 | 1.32 | 2.78 |
MELM | 5.34 | 7.84 | 23.17 | |
ELM | 3.77 | 5.91 | 16.08 | |
CS2_37 | FFA-MELM | 0.99 | 1.34 | 2.44 |
MELM | 2.69 | 3.52 | 7.10 | |
ELM | 2.17 | 2.89 | 5.96 | |
CS2_38 | FFA-MELM | 1.14 | 1.70 | 2.49 |
MELM | 2.19 | 3.01 | 5.36 | |
ELM | 2.80 | 3.58 | 5.83 |
No. | Training Data (%) | Starting Point | MAE (%) | RMSE (%) | MAPE (%) |
---|---|---|---|---|---|
CS2_35 | 60 | 530 | 0.87 | 1.57 | 1.86 |
50 | 443 | 1.52 | 2.27 | 2.97 | |
40 | 355 | 0.88 | 1.54 | 1.61 | |
30 | 266 | 1.01 | 1.60 | 2.09 | |
CS2_36 | 60 | 562 | 1.30 | 1.65 | 3.51 |
50 | 468 | 2.23 | 2.80 | 6.51 | |
40 | 375 | 1.04 | 1.41 | 2.41 | |
30 | 281 | 2.18 | 3.13 | 5.99 | |
CS2_37 | 60 | 584 | 0.99 | 1.42 | 2.21 |
50 | 486 | 1.08 | 1.73 | 2.68 | |
40 | 389 | 1.16 | 1.62 | 2.38 | |
30 | 292 | 1.54 | 2.03 | 2.77 | |
CS2_38 | 60 | 600 | 0.89 | 1.40 | 1.87 |
50 | 500 | 1.39 | 1.91 | 2.77 | |
40 | 400 | 0.87 | 1.30 | 1.75 | |
30 | 300 | 1.02 | 1.42 | 1.79 | |
AVG | 1.25 | 1.80 | 2.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Qin, W.; Yun, Z. A State-of-Health Estimation Method for Lithium Batteries Based on Fennec Fox Optimization Algorithm–Mixed Extreme Learning Machine. Batteries 2024, 10, 87. https://doi.org/10.3390/batteries10030087
Sun C, Qin W, Yun Z. A State-of-Health Estimation Method for Lithium Batteries Based on Fennec Fox Optimization Algorithm–Mixed Extreme Learning Machine. Batteries. 2024; 10(3):87. https://doi.org/10.3390/batteries10030087
Chicago/Turabian StyleSun, Chongbin, Wenhu Qin, and Zhonghua Yun. 2024. "A State-of-Health Estimation Method for Lithium Batteries Based on Fennec Fox Optimization Algorithm–Mixed Extreme Learning Machine" Batteries 10, no. 3: 87. https://doi.org/10.3390/batteries10030087
APA StyleSun, C., Qin, W., & Yun, Z. (2024). A State-of-Health Estimation Method for Lithium Batteries Based on Fennec Fox Optimization Algorithm–Mixed Extreme Learning Machine. Batteries, 10(3), 87. https://doi.org/10.3390/batteries10030087