Manipulating Electrolyte Interface Chemistry Enables High-Performance TiO2 Anode for Sodium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Materials Characterization
2.3. Electrochemical Measurements
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Chen, M.; Meng, Q.; Zhang, J.; Feng, G.; Ai, X.; Cao, Y.; Chen, Z. Reconstructing Helmholtz Plane Enables Robust F-Rich Interface for Long-Life and High-Safe Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2024, 63, e202407717. [Google Scholar] [CrossRef]
- Zhong, L.; Yue, M.; Liang, Y.; Xi, B.; An, X.; Xiao, Y.; Cheng, B.; Lei, S.; Xiong, S. In Situ Universal Construction of Thiophosphite/MXene Hybrids via Lewis Acidic Etching for Superior Sodium Storage. Adv. Funct. Mater. 2024, 2407740. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, Z.; Zhang, R.; Sun, D.; Fu, L.; Tang, Y.; Li, H.; Xie, H.; Wang, H. Significantly Improving the Initial Coulombic Efficiency of TiO2 Anode for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2023, 15, 40508–40518. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Lyu, J.; Tian, M.; Zhang, X.; Wang, K.; Yang, S.-W.; Zhang, Y.; Xu, G.Q. Unraveling the Synergistic Effects of Oxygen Vacancy and Amorphous Structure on TiO2 for High-Performance Lithium Storage. Small Struct. 2024, 5, 2300442. [Google Scholar] [CrossRef]
- Lv, D.; Wang, D.; Wang, N.; Liu, H.; Zhang, S.; Zhu, Y.; Song, K.; Yang, J.; Qian, Y. Nitrogen and fluorine co-doped TiO2/carbon microspheres for advanced anodes in sodium-ion batteries: High volumetric capacity, superior power density and large areal capacity. J. Energy Chem. 2022, 68, 104–112. [Google Scholar] [CrossRef]
- He, H.; Gan, Q.; Wang, H.; Xu, G.-L.; Zhang, X.; Huang, D.; Fu, F.; Tang, Y.; Amine, K.; Shao, M. Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy 2018, 44, 217–227. [Google Scholar] [CrossRef]
- Diao, Z.; Wang, Y.; Zhao, D.; Zhang, X.; Mao, S.S.; Shen, S. Ultra-small TiO2 nanoparticles embedded in carbon nanosheets for high-performance sodium storage. Chem. Eng. J. 2021, 417, 127928. [Google Scholar] [CrossRef]
- Gan, Q.; He, H.; Zhu, Y.; Wang, Z.; Qin, N.; Gu, S.; Li, Z.; Luo, W.; Lu, Z. Defect-Assisted Selective Surface Phosphorus Doping to Enhance Rate Capability of Titanium Dioxide for Sodium Ion Batteries. ACS Nano 2019, 13, 9247–9258. [Google Scholar] [CrossRef]
- Fan, M.; Lin, Z.; Zhang, P.; Ma, X.; Wu, K.; Liu, M.; Xiong, X. Synergistic Effect of Nitrogen and Sulfur Dual-Doping Endows TiO2 with Exceptional Sodium Storage Performance. Adv. Energy Mater. 2021, 11, 2003037. [Google Scholar] [CrossRef]
- Zheng, J.; Hu, C.; Nie, L.; Zang, S.; Chen, H.; Chen, N.; Ma, M.; Lai, Q. Electrolyte manipulation enhanced pseudo-capacitive K-storage for TiO2 anode. Appl. Surf. Sci. 2023, 611, 155617. [Google Scholar] [CrossRef]
- Tan, L.; Huang, X.; Yin, T.; Guo, Y.; Ning, T.; Mei, Y.; Zou, K.; Li, L.; Ji, X.; Zou, G. A 5 V ultrahigh energy density lithium metal capacitor enabled by the fluorinated electrolyte. Energy Storage Mater. 2024, 71, 103692. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Zhang, C.-H.; Guo, Y.-J.; Fan, M.; Zhao, Y.; Guo, H.; Wang, W.-P.; Tan, S.-J.; Yin, Y.-X.; Wang, F.; et al. Refined Electrolyte and Interfacial Chemistry toward Realization of High-Energy Anode-Free Rechargeable Sodium Batteries. J. Am. Chem. Soc. 2023, 145, 25643–25652. [Google Scholar] [CrossRef]
- Tang, X.; Xie, F.; Lu, Y.; Mao, H.; Chen, Z.; Pan, H.; Weng, S.; Yang, Y.; Li, X.; Guo, Z.; et al. Kinetics Manipulation for Improved Solid Electrolyte Interphase and Reversible Na Storage. ACS Energy Lett. 2024, 9, 1158–1167. [Google Scholar] [CrossRef]
- Yao, Q.; Zheng, C.; Ji, D.L.; Du, Y.Z.; Su, J.; Wang, N.A.; Yang, J.; Dou, S.X.; Qian, Y.T. Superior sodiophilicity and molecule crowding of crown ether boost the electrochemical performance of all- climate sodium- ion batteries. Proc. Natl. Acad. Sci. USA 2024, 121, e2312337121. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Liu, B.; Chen, J.; Jian, Q.; Li, Y.; Zhao, T. A Steric-Hindrance-Induced Weakly Solvating Electrolyte Boosting the Cycling Performance of a Micrometer-Sized Silicon Anode. ACS Energy Lett. 2023, 8, 3586–3594. [Google Scholar] [CrossRef]
- Jin, Y.; Le, P.M.L.; Gao, P.; Xu, Y.; Xiao, B.; Engelhard, M.H.; Cao, X.; Vo, T.D.; Hu, J.; Zhong, L.; et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Energy 2022, 7, 718–725. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Li, F.; Cheng, F.; Chen, J. Bulk Bismuth as a High-Capacity and Ultralong Cycle-Life Anode for Sodium-Ion Batteries by Coupling with Glyme-Based Electrolytes. Adv. Mater. 2017, 29, 1702212. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, H.; Wu, P.-F.; Zhou, S.-Y.; Huang, Y.-C.; Zhang, R.; Sun, D.; Tang, Y.-G.; Wang, H.-Y. Electrode–Electrolyte Interfacial Chemistry Modulation for Ultra-High Rate Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2022, 61, e202200475. [Google Scholar] [CrossRef]
- Xu, Z.-L.; Lim, K.; Park, K.-Y.; Yoon, G.; Seong, W.M.; Kang, K. Engineering Solid Electrolyte Interphase for Pseudocapacitive Anatase TiO2 Anodes in Sodium-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1802099. [Google Scholar] [CrossRef]
- Zhao, L.; Yin, J.; Lin, J.; Chen, C.; Chen, L.; Qiu, X.; Alshareef, H.N.; Zhang, W. Highly Stable ZnS Anodes for Sodium-Ion Batteries Enabled by Structure and Electrolyte Engineering. ACS Nano 2024, 18, 3763–3774. [Google Scholar] [CrossRef]
- Zou, K.; Deng, W.; Silvester, D.S.; Zou, G.; Hou, H.; Banks, C.E.; Li, L.; Hu, J.; Ji, X. Carbonyl Chemistry for Advanced Electrochemical Energy Storage Systems. ACS Nano 2024, 18, 19950–20000. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Q.; Zeng, Y.; Tang, Z.; Sun, D.; Huang, D.; Tang, Y.; Wang, H. Weakly Solvating Cyclic Ether Electrolyte for High-Voltage Lithium Metal Batteries. ACS Energy Lett. 2023, 8, 1752–1761. [Google Scholar] [CrossRef]
- Yin, L.; Wang, M.; Xie, C.; Yang, C.; Han, J.; You, Y. High-Voltage Cyclic Ether-Based Electrolytes for Low-Temperature Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2023, 15, 9517–9523. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Yu, C.; Li, D.; Zhang, X.; Li, J.; Lu, T.; Pan, L. Improved sodium-ion storage performance of TiO2 nanotubes by Ni2+ doping. J. Mater. Chem. A 2016, 4, 11077–11085. [Google Scholar] [CrossRef]
- Feng, W.; Meng, C.; Guo, X.; Wu, B.; Sui, X.; Wang, Z. Defect-Driven Reconstruction of Na-Ion Diffusion Channels Enabling High-Performance Co-Doped TiO2 Anodes for Na-Ion Hybrid Capacitors. Adv. Energy Mater. 2024, 14, 2400558. [Google Scholar] [CrossRef]
- Yang, X.; Wang, S.; Zhuang, X.; Tomanec, O.; Zboril, R.; Yu, D.Y.W.; Rogach, A.L. Polypyrrole and Carbon Nanotube Co-Composited Titania Anodes with Enhanced Sodium Storage Performance in Ether-Based Electrolyte. Adv. Sustain. Syst. 2019, 3, 1800154. [Google Scholar] [CrossRef]
- Li, K.; Zhang, J.; Lin, D.; Wang, D.-W.; Li, B.; Lv, W.; Sun, S.; He, Y.-B.; Kang, F.; Yang, Q.-H.; et al. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat. Commun. 2019, 10, 725. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Shi, W.; Leng, S.; Cheng, D.; Hou, H. Ultra-high initial coulombic efficiency of the TiO2 anode induced by the synergistic role of the electrolyte and binder for sodium-ion batteries. J. Mater. Chem. A 2023, 11, 17710–17717. [Google Scholar] [CrossRef]
- He, Y.; Liu, D.; Jiao, J.; Liu, Y.; He, S.; Zhang, Y.; Cheng, Q.; Fang, Y.; Mo, X.; Pan, H.; et al. Pyridinic N-Dominated Hard Carbon with Accessible Carbonyl Groups Enabling 98% Initial Coulombic Efficiency for Sodium-Ion Batteries. Adv. Funct. Mater. 2024, 34, 2403144. [Google Scholar] [CrossRef]
- Wu, N.; Zhao, Z.; Hua, R.; Wang, X.; Zhang, Y.; Li, J.; Liu, G.; Guo, D.; Sun, G.; Liu, X.; et al. Pre-Doping of Dual-Functional Sodium to Weaken Fe–S Bond and Stabilize Interfacial Chemistry for High-Rate Reversible Sodium Storage. Adv. Energy Mater. 2024, 14, 2400371. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, N.; Liu, J.; Sun, S.; Wang, X.; Yang, J.; Yang, C.; Liu, Y. Ultralong Lifespan Zero-Cobalt/Nickel Prussian Blue Analogs Cathode Realized by Solid Solution Reaction Sodium Storage Mechanism. Adv. Funct. Mater. 2024, 2406809. [Google Scholar] [CrossRef]
- Li, J.; He, Y.; Dai, Y.; Zhang, H.; Zhang, Y.; Gu, S.; Wang, X.; Gao, T.; Zhou, G.; Xu, L. Heterostructure Interface Construction of Cobalt/Molybdenum Selenides toward Ultra-Stable Sodium-Ion Half/Full Batteries. Adv. Funct. Mater. 2024, 2406915. [Google Scholar] [CrossRef]
- Tian, S.; Chen, W.; Wang, R.; Qin, C.; Jiang, Z.-J.; Jiang, Z. Ar/NH3 Radio-Frequency Plasma Etching and N-doping to Stabilize Metallic Phase 1T-MoS2 for Fast and Durable Sodium-Ion Storage. Adv. Funct. Mater. 2024, 2408035. [Google Scholar] [CrossRef]
- Yi, X.; Li, X.; Zhong, J.; Wang, S.; Wang, Z.; Guo, H.; Wang, J.; Yan, G. Unraveling the Mechanism of Different Kinetics Performance between Ether and Carbonate Ester Electrolytes in Hard Carbon Electrode. Adv. Funct. Mater. 2022, 32, 2209523. [Google Scholar] [CrossRef]
- Zheng, Y.-Q.; Sun, M.-Y.; Yu, F.-D.; Deng, L.; Xia, Y.; Jiang, Y.-S.; Que, L.-F.; Zhao, L.; Wang, Z.-B. Utilizing weakly-solvated diglyme-based electrolyte to achieve a 10,000-cycles durable Na3V2(PO4)2F3 cathode endured at −20 °C. Nano Energy 2022, 102, 107693. [Google Scholar] [CrossRef]
- Zhang, Y.; Yue, L.; Ding, H.; Xiong, Z.; Bai, L.; Xu, M.; Qi, Y. Carbon dots promoting surface defect and interphase high anion concentration for sodium-ion battery carbon anodes. Nano Energy 2024, 127, 109696. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, G.; Fang, W.; Qin, Z.; Zhang, T.; Yan, J.; Zhong, Y.; Zhang, N.; Chen, G. Transesterification Induced Multifunctional Additives Enable High-Performance Lithium Metal Batteries. Angew. Chem. Int. Ed. 2024, 63, e202403668. [Google Scholar] [CrossRef]
- Liu, M.; Wu, F.; Gong, Y.; Li, Y.; Li, Y.; Feng, X.; Li, Q.; Wu, C.; Bai, Y. Interfacial-Catalysis-Enabled Layered and Inorganic-Rich SEI on Hard Carbon Anodes in Ester Electrolytes for Sodium-Ion Batteries. Adv. Mater. 2023, 35, 2300002. [Google Scholar] [CrossRef]
- Meng, W.; Dang, Z.; Li, D.; Jiang, L. Long-Cycle-Life Sodium-Ion Battery Fabrication via a Unique Chemical Bonding Interface Mechanism. Adv. Mater. 2023, 35, 2301376. [Google Scholar] [CrossRef]
- Cheng, F.; Cao, M.; Li, Q.; Fang, C.; Han, J.; Huang, Y. Electrolyte Salts for Sodium-Ion Batteries: NaPF6 or NaClO4? ACS Nano 2023, 17, 18608–18615. [Google Scholar] [CrossRef]
- Wu, L.; Bresser, D.; Buchholz, D.; Giffin, G.A.; Castro, C.R.; Ochel, A.; Passerini, S. Unfolding the Mechanism of Sodium Insertion in Anatase TiO2 Nanoparticles. Adv. Energy Mater. 2015, 5, 1401142. [Google Scholar] [CrossRef]
- Portenkirchner, E.; Rommel, S.; Szabados, L.; Griesser, C.; Werner, D.; Stock, D.; Kunze-Liebhäuser, J. Sodiation mechanism via reversible surface film formation on metal oxides for sodium-ion batteries. Nano Sel. 2021, 2, 1533–1543. [Google Scholar] [CrossRef]
- Qin, M.; Zeng, Z.; Wu, Q.; Ma, F.; Liu, Q.; Cheng, S.; Xie, J. Microsolvating Competition in Li+ Solvation Structure Affording PC-Based Electrolyte with Fast Kinetics for Lithium-Ion Batteries. Adv. Funct. Mater. 2024, 34, 2406357. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Yun, X.; Li, J.; Yu, H.; Peng, L.; Xi, Z.; Wang, R.; Yang, L.; Xie, W.; et al. Anchored Weakly-Solvated Electrolytes for High-Voltage and Low-Temperature Lithium-ion Batteries. Angew. Chem. Int. Ed. 2024, 63, e202406596. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Zhang, R.; Sun, D.; Wang, H.; Tang, Y. Manipulating Electrolyte Interface Chemistry Enables High-Performance TiO2 Anode for Sodium-Ion Batteries. Batteries 2024, 10, 362. https://doi.org/10.3390/batteries10100362
Wang Q, Zhang R, Sun D, Wang H, Tang Y. Manipulating Electrolyte Interface Chemistry Enables High-Performance TiO2 Anode for Sodium-Ion Batteries. Batteries. 2024; 10(10):362. https://doi.org/10.3390/batteries10100362
Chicago/Turabian StyleWang, Qi, Rui Zhang, Dan Sun, Haiyan Wang, and Yougen Tang. 2024. "Manipulating Electrolyte Interface Chemistry Enables High-Performance TiO2 Anode for Sodium-Ion Batteries" Batteries 10, no. 10: 362. https://doi.org/10.3390/batteries10100362
APA StyleWang, Q., Zhang, R., Sun, D., Wang, H., & Tang, Y. (2024). Manipulating Electrolyte Interface Chemistry Enables High-Performance TiO2 Anode for Sodium-Ion Batteries. Batteries, 10(10), 362. https://doi.org/10.3390/batteries10100362