Si3N4-Assisted Densification Sintering of Na3Zr2Si2PO12 Ceramic Electrolyte toward Solid-State Sodium Metal Batteries
Abstract
1. Introduction
2. Experimental Section
2.1. Synthesis of Na3Zr2Si2PO12-xSi3N4 Ceramics
2.2. Material Characterization
2.3. Electrochemical Performance Evaluation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goodenough, J. Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 2014, 7, 14–18. [Google Scholar] [CrossRef]
- Kim, T.-H.; Park, J.-S.; Chang, S.K.; Choi, S.; Ryu, J.H.; Song, H.-K. The current move of lithium ion batteries towards the next phase. Adv. Energy Mater. 2012, 2, 860–872. [Google Scholar] [CrossRef]
- Chayambuka, K.; Mulder, G.; Danilov, D.L.; Notten, P.H.L. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities. Adv. Energy Mater. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef]
- Kim, S.-W.; Seo, D.-H.; Ma, X.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721. [Google Scholar] [CrossRef]
- Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K.B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901. [Google Scholar] [CrossRef]
- Wang, L.G.; Li, J.; Lu, G.L.; Li, W.Y.; Tao, Q.Q.; Shi, C.H.; Huile, J.; Chen, G.; Wang, S. Fundamentals of electrolytes for solid-state batteries: Challenges and perspectives. Front. Mater. 2020, 7, 111. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Sun, Z.; Ni, Q.; Jin, H.B.; Zhao, Y.J. Recent advance on NASICON electrolyte in solid-state sodium metal batteries. Energy Storage Mater. 2023, 56, 582–599. [Google Scholar] [CrossRef]
- Krok, F. Influence of sintering conditions on chemical composition of NASICON. Solid State Ion. 1987, 24, 21–28. [Google Scholar] [CrossRef]
- Dai, H.Q.; Chen, Y.Y.; Xu, W.Q.; Hu, Z.; Gu, J.; Wei, X.; Xie, F.X.; Zhang, W.L.; Wei, W.; Guo, R.Q.; et al. A review of modification methods of solid electrolytes for all-solid-state sodium-ion batteries. Energy Technol. 2021, 9, 1–13. [Google Scholar] [CrossRef]
- Zhao, C.L.; Liu, L.; Qi, X.G.; Lu, Y.X.; Wu, F.X.; Zhao, J.M.; Yu, Y.; Hu, Y.-S.; Chen, L.Q. Solid-state sodium batteries. Adv. Energy Mater. 2018, 8, 1–20. [Google Scholar] [CrossRef]
- Ma, Q.L.; Tietz, F. Solid-state electrolyte materials for sodium batteries: Towards practical applications. ChemElectroChem 2020, 7, 2693–2713. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Xie, J.; Pei, A.L.; Liu, B.F.; Wu, Y.C.; Lin, D.C.; Li, J.; Wang, H.S.; Chen, H.; Xu, J.W.; et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries. Nat. Commun. 2019, 10, 2067. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Lin, Z.J.; Deng, J.J.; Chen, H.X.; Chen, X.; Tian, J.; Bao, B.L.; Dai, P.Q.; Sun, X.D. Effects of β-Si3N4 seeds on microstructure and performance of Si3N4 ceramics in semiconductor package. Materials 2023, 16, 4461. [Google Scholar] [CrossRef]
- Lukianova, O.A.; Khmara, A.N.; Perevislov, S.N.; Kolesnikov, D.A.; Krasilnikov, V.V. Electrical resistivity of silicon nitride produced by various methods. Ceram. Int. 2019, 45, 9497–9501. [Google Scholar] [CrossRef]
- Jiang, Q.-G.; Guo, W.-M.; Liu, W.; Gu, S.-X.; Cheng, L.-X.; Liu, J.; Zhou, M.-P.; Wu, S.-H. Influence of powder characteristics on hot-pressed Si3N4. Ceramics. Sci. Sinter. 2017, 49, 81–89. [Google Scholar] [CrossRef]
- Xing, H.Y.; Liu, B.Q.; Sun, J.; Zou, B. Mechanical properties of Si3N4 ceramics from an in-situ synthesized a-Si3N4/β-Si3N4 composite powder. Ceram. Int. 2017, 43, 2150–2154. [Google Scholar] [CrossRef]
- Pearson, R.G. Bond energies, force constants and electronegativities. J. Mol. Struct. 1993, 300, 519–525. [Google Scholar] [CrossRef]
- Bickmore, B.R.; Craven, O.; Wander, M.C.F.; Checketts, H.; Whitmer, J.; Shurtleff, C.; Yeates, D.; Ernstrom, K.; Andros, C.; Thompson, H. Bond valence and bond energy. Am. Mineral. 2017, 102, 804–812. [Google Scholar] [CrossRef]
- Qteish, A. Electronegativity scales and electronegativity-bond ionicity relations: A comparative study. J. Phys. Chem. Solids 2019, 124, 186–191. [Google Scholar] [CrossRef]
- Fuentes, R.O.; Figueiredo, F.L.; Marques, F.M.B.; Franco, J.I. Processing and electrical properties of NASICON prepared from yttria-doped zirconia precursors. J. Eur. Ceram. Soc. 2001, 21, 737–743. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z.; Jin, H.B.; Zhao, Y.J. Engineered grain boundary enables the room temperature solid-state sodium metal batteries. Batteries 2023, 9, 252. [Google Scholar] [CrossRef]
- Zheng, C.J.; Lu, Y.; Su, J.M.; Song, Z.; Xiu, T.P.; Jin, J.; Badding, M.E.; Wen, Z.Y. Grain boundary engineering enabled high-performance garnet-type electrolyte for lithium dendrite free lithium metal batteries. Small Methods 2022, 6, e2200667. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.C.; Luo, Y.S.; Zhao, X.J. Effect of TeO2 sintering aid on the microstructure and electrical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. J. Alloys Compd. 2022, 927, 167019. [Google Scholar] [CrossRef]
- Thokchom, J.S.; Kumar, B. The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass–ceramic. J. Power Sources 2010, 195, 2870–2876. [Google Scholar] [CrossRef]
- Naqash, S.; Ma, Q.L.; Tietz, F.; Guillon, O. Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid state reaction. Solid State Ion. 2017, 302, 83–91. [Google Scholar] [CrossRef]
- Shao, Y.J.; Zhong, G.M.; Lu, Y.X.; Liu, L.L.; Zhao, C.L.; Zhang, Q.Q.; Hu, Y.-S.; Yang, Y.; Chen, L.Q. A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity. Energy Storage Mater. 2019, 23, 514–521. [Google Scholar] [CrossRef]
- He, S.S.; Xu, Y.L.; Chen, Y.J.; Ma, X.N. Enhanced ionic conductivity of an F−-assisted Na3Zr2Si2PO12 solid electrolyte for solid-state sodium batteries. J. Mater. Chem. A 2020, 8, 12594–12602. [Google Scholar] [CrossRef]
- Park, H.; Jung, K.; Nezafati, M.; Kim, C.-S.; Kang, B. Sodium ion diffusion in NASICON (Na3Zr2Si2PO12) solid electrolytes: Effects of excess sodium. ACS Appl. Mater. Interfaces 2016, 8, 27814–27824. [Google Scholar] [CrossRef]
- Wu, B.B.; Wang, S.Y.; Lochala, J.; Desrochers, D.; Liu, B.; Zhang, W.Q.; Yang, J.H.; Xiao, J. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ. Sci. 2018, 11, 1803–1810. [Google Scholar] [CrossRef]
- Ning, Z.Y.; Jolly, D.S.; Li, G.C.; Meyere, R.D.; Pu, S.D.; Chen, Y.; Kasemchainan, J.; Ihli, J.; Gong, C.; Liu, B.Y.; et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 2021, 20, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Z.; Wenzel, S.; Zhu, Y.Z.; Sann, J.; Shen, L.; Yang, J.; Yao, X.Y.; Hu, Y.-S.; Wolverton, C.; Li, H.; et al. Na3Zr2Si2PO12: A stable Na+-ion solid electrolyte for solid-state batteries. ACS Appl. Energy Mater. 2020, 3, 7427–7437. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, Y.J.; Ni, Q.; Liu, Y.; Sun, C.; Li, J.; Jin, H.B. Solid-state Na metal batteries with superior cycling stability enabled by ferroelectric enhanced Na/Na3Zr2Si2PO12 interface. Small 2022, 18, 2200716. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, Y.J.; Ni, Q.; Sun, Z.; Yuan, X.Y.; Li, J.B.; Jin, H.B. Reversible multielectron redox in NASICON cathode with high energy density for low-temperature sodium-ion batteries. Energy Storage Mater. 2022, 49, 291–298. [Google Scholar] [CrossRef]
- Oh, J.A.S.; He, L.; Chua, B.; Zeng, K.; Lu, L. Inorganic sodium solid-state electrolyte and interface with sodium metal for room-temperature metal solid-state batteries. Energy Storage Mater. 2021, 34, 28–44. [Google Scholar] [CrossRef]
- Wang, X.X.; Chen, J.J.; Mao, Z.Y.; Wang, D.J. Effective resistance to dendrite growth of NASICON solid electrolyte with lower electronic conductivity. Chem. Eng. J. 2022, 427, 130899. [Google Scholar] [CrossRef]
- Ruan, Y.L.; Guo, F.; Liu, J.J.; Song, S.D.; Jiang, N.Y.; Cheng, B.W. Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery. Ceram. Int. 2019, 45, 1770–1776. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, X.C.; Nie, Z.W.; Wu, C.; Zheng, N.; Chen, S.J.; Yang, Y.H.; Wei, R.; Yu, J.M.; Yang, N.; et al. High-performance Ta-doped Li7La3Zr2O12 garnet oxides with AlN additive. J. Adv. Ceram. 2022, 11, 1530–1541. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z.; Yuan, X.Y.; Jin, H.B.; Zhao, Y.J. NaBr-assisted sintering of Na3Zr2Si2PO12 ceramic electrolyte stabilizes a rechargeable solid-state sodium metal battery. ACS Appl. Mater. Interfaces 2023, 15, 49321–49328. [Google Scholar] [CrossRef]
- Li, M.; Sun, C.; Yuan, X.Y.; Li, Y.; Yuan, Y.F.; Jin, H.B.; Lu, J.; Zhao, Y.J. A configuration entropy enabled high performance polyanionic cathode for sodium-ion batteries. Adv. Funct. Mater. 2024, 34, 1–10. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Wang, C.Z.; Dai, Y.J.; Jin, H.B. Homogeneous Na+ transfer dynamic at Na/Na3Zr2Si2PO12 interface for all solid-state sodium metal batteries. Nano Energy 2021, 88, 106293. [Google Scholar] [CrossRef]
- Miao, X.; Di, H.; Ge, X.; Zhao, D.; Wang, P.; Wang, R.; Wang, C.; Yin, L. AlF3-modified anode-electrolyte interface for effective Na dendrites restriction in NASICON-based solid-state electrolyte. Energy Storage Mater. 2020, 30, 170–178. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Tang, Y.; Chen, J.; Wang, D.; Mao, Z. Low temperature and rapid microwave sintering of Na3Zr2Si2PO12 solid electrolytes for Na-ion batteries. J. Power Sources 2021, 481, 228924. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Li, Y.; Sun, C.; Sun, Z.; Jin, H.; Zhao, Y. Si3N4-Assisted Densification Sintering of Na3Zr2Si2PO12 Ceramic Electrolyte toward Solid-State Sodium Metal Batteries. Batteries 2024, 10, 359. https://doi.org/10.3390/batteries10100359
Sun W, Li Y, Sun C, Sun Z, Jin H, Zhao Y. Si3N4-Assisted Densification Sintering of Na3Zr2Si2PO12 Ceramic Electrolyte toward Solid-State Sodium Metal Batteries. Batteries. 2024; 10(10):359. https://doi.org/10.3390/batteries10100359
Chicago/Turabian StyleSun, Wenwen, Yang Li, Chen Sun, Zheng Sun, Haibo Jin, and Yongjie Zhao. 2024. "Si3N4-Assisted Densification Sintering of Na3Zr2Si2PO12 Ceramic Electrolyte toward Solid-State Sodium Metal Batteries" Batteries 10, no. 10: 359. https://doi.org/10.3390/batteries10100359
APA StyleSun, W., Li, Y., Sun, C., Sun, Z., Jin, H., & Zhao, Y. (2024). Si3N4-Assisted Densification Sintering of Na3Zr2Si2PO12 Ceramic Electrolyte toward Solid-State Sodium Metal Batteries. Batteries, 10(10), 359. https://doi.org/10.3390/batteries10100359