On the Stability of the Interface between Li2TiS3 Cathode and Li6PS5Cl Solid State Electrolytes for Battery Applications: A DFT Study
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. Li6PS5Cl and LTS Surfaces
3.1.1. Li6PS5Cl
3.1.2. Li2TiS3 (LTS)
3.2. LTS/Li6PS5Cl Interfaces
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sakuda, A.; Takeuchi, T.; Shikano, M.; Ohara, K.; Fukuda, K.; Uchimoto, Y.; Ogumi, Z.; Kobayashi, H.; Sakaebe, H. Development of Li2TiS3–Li3NbS4 by a mechanochemical process. J. Ceram. Soc. Jpn. 2017, 125, 268–271. [Google Scholar] [CrossRef]
- Grimaud, A.; Hong, W.T.; Shao-Horn, Y.; Tarascon, J.-M. Anionic redox processes for electrochemical devices. Nat. Mater. 2016, 15, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Sakuda, A.; Ohara, K.; Kawaguchi, T.; Fukuda, K.; Nakanishi, K.; Arai, H.; Uchimoto, Y.; Ohta, T.; Matsubara, E.; Ogumi, Z.; et al. A Reversible Rocksalt to Amorphous Phase Transition Involving Anion Redox. Sci. Rep. 2018, 8, 15086. [Google Scholar] [CrossRef] [PubMed]
- Sakuda, A.; Takeuchi, T.; Okamura, K.; Kobayashi, H.; Sakaebe, H.; Tatsumi, K.; Ogumi, Z. Rock-salt-type lithium metal sulphides as novel positive-electrode materials. Sci. Rep. 2015, 4, 4883. [Google Scholar] [CrossRef]
- Sakuda, A.; Kuratani, K.; Takeuchi, T.; Kiuchi, H.; Kawaguchi, T.; Shikano, M.; Sakaebe, H.; Kobayashi, H. Cubic Rocksalt Li2SnS3 and a Solid Solution with Li3NbS4 Prepared by Mechanochemical Synthesis. Electrochemistry 2017, 85, 580–584. [Google Scholar] [CrossRef]
- Rocca, R.; Sgroi, M.F.; Camino, B.; D’Amore, M.; Ferrari, A.M. Disordered Rock-Salt Type Li2TiS3 as Novel Cathode for LIBs: A Computational Point of View. Nanomaterials 2022, 12, 1832. [Google Scholar] [CrossRef]
- Rocca, R.; Sgroi, M.F.; D’amore, M.; Li Pira, N.; Ferrari, A.M. Computational Understanding of Delithiation, Overlithiation, and Transport Properties in Disordered Cubic Rock-Salt Type Li2TiS3. Nanomaterials 2023, 13, 3013. [Google Scholar] [CrossRef]
- Le Mong, A.; Ahn, Y.; Puttaswamy, R.; Kim, D. Pore filled solid electrolytes with high ionic conduction and electrochemical stability for lithium sulfur battery. Energy Mater. 2023, 3, 300035. [Google Scholar] [CrossRef]
- D’Amore, M.; Daga, L.E.; Rocca, R.; Sgroi, M.F.; Marana, N.L.; Casassa, S.M.; Maschio, L.; Ferrari, A.M. From symmetry breaking in the bulk to phase transitions at the surface: A quantum-mechanical exploration of Li6PS5 Cl argyrodite superionic conductor. Phys. Chem. Chem. Phys. 2022, 24, 22978–22986. [Google Scholar] [CrossRef]
- Deiseroth, H.; Kong, S.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M. Li6PS5X: A Class of Crystalline Li-Rich Solids with an Unusually High Li+ Mobility. Angew. Chem. Int. Ed. 2008, 47, 755–758. [Google Scholar] [CrossRef]
- Yu, C.; Ganapathy, S.; Hageman, J.; Van Eijck, L.; Van Eck, E.R.H.; Zhang, L.; Schwietert, T.; Basak, S.; Kelder, E.M.; Wagemaker, M. Facile Synthesis toward the Optimal Structure-Conductivity Characteristics of the Argyrodite Li6PS5Cl Solid-State Electrolyte. ACS Appl. Mater. Interfaces 2018, 10, 33296–33306. [Google Scholar] [CrossRef] [PubMed]
- Tron, A.; Orue, A.; López-Aranguren, P.; Beutl, A. Critical Current Density Measurements of Argyrodite Li6PS5Cl Solid Electrolyte at Ambient Pressure. J. Electrochem. Soc. 2023, 170, 100525. [Google Scholar] [CrossRef]
- Celasun, Y.; Colin, J.-F.; Martinet, S.; Benayad, A.; Peralta, D. Lithium-Rich Rock Salt Type Sulfides-Selenides (Li2TiSexS3−x): High Energy Cathode Materials for Lithium-Ion Batteries. Materials 2022, 15, 3037. [Google Scholar] [CrossRef] [PubMed]
- Erba, A.; Desmarais, J.K.; Casassa, S.; Civalleri, B.; Donà, L.; Bush, I.J.; Searle, B.; Maschio, L.; Edith-Daga, L.; Cossard, A.; et al. CRYSTAL23: A Program for Computational Solid State Physics and Chemistry. J. Chem. Theory Comput. 2023, 19, 6891–6932. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Ojamäe, L.; Hermansson, K.; Pisani, C.; Causà, M.; Roetti, C. Structural, vibrational and electronic properties of a crystalline hydrate from ab initio periodic Hartree–Fock calculations. Acta Crystallogr. B 1994, 50, 268–279. [Google Scholar] [CrossRef]
- Lichanot, A.; Aprà, E.; Dovesi, R. Quantum Mechnical Hartree-Fock Study of the Elastic Properties of Li2S and Na2S. Phys. Status Solidi B 1993, 177, 157–163. [Google Scholar] [CrossRef]
- Zicovich-Wilson, C.M.; Bert, A.; Roetti, C.; Dovesi, R.; Saunders, V.R. Characterization of the electronic structure of crystalline compounds through their localized Wannier functions. J. Chem. Phys. 2002, 116, 1120–1127. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310. [Google Scholar] [CrossRef]
- Marana, N.L.; Silveri, F.; de Oliveira Gomes, E.; Donà, L.; D’Amore, M.; Ascrizzi, E.; Sgroi, M.F.; Maschio, L.; Ferrari, A.M. A computational study of the negative LiIn modified anode and its interaction with β-Li3PS4 solid–electrolyte for battery applications. Phys. Chem. Chem. Phys. 2024, 26, 15648–15656. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, A.L.; Serrano, G.; Poggini, L.; Cortigiani, B.; El-Kelany, K.E.; D’Amore, M.; Ferrari, A.M.; Atrei, A.; Caneschi, A.; Sessoli, R.; et al. Quasi-Hexagonal to Lepidocrocite-like Transition in TiO2 Ultrathin Films on Cu(001). J. Phys. Chem. C 2021, 125, 10621–10630. [Google Scholar] [CrossRef]
- Yu, H.S.; He, X.; Li, S.L.; Truhlar, D.G. MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 2016, 7, 5032–5051. [Google Scholar] [CrossRef] [PubMed]
- Van Duijneveldt, F.B.; Van Duijneveldt-van De Rijdt, J.G.C.M.; Van Lenthe, J.H. State of the Art in Counterpoise Theory. Chem. Rev. 1994, 94, 1873–1885. [Google Scholar] [CrossRef]
- Yu, C.; Zhao, F.; Luo, J.; Zhang, L.; Sun, X. Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics. Nano Energy 2021, 83, 105858. [Google Scholar] [CrossRef]
- Marana, N.L.; Casassa, S.; Sgroi, M.F.; Maschio, L.; Silveri, F.; D’Amore, M.; Ferrari, A.M. Stability and Formation of the Li3PS4/Li, Li3PS4/Li2S, and Li2S/Li Interfaces: A Theoretical Study. Langmuir 2023, 39, 18797–18806. [Google Scholar] [CrossRef]
- D’Amore, M.; Yang, M.Y.; Das, T.; Ferrari, A.M.; Kim, M.M.; Rocca, R.; Sgroi, M.; Fortunelli, A.; Goddard, W.A.I. Understanding Ionic Diffusion Mechanisms in Li2S Coatings for Solid-State Batteries: Development of a Tailored Reactive Force Field for Multiscale Simulations. J. Phys. Chem. C 2023, 127, 22880–22888. [Google Scholar] [CrossRef]
- Yang, M.; Liu, Y.; Nolan, A.M.; Mo, Y. Interfacial Atomistic Mechanisms of Lithium Metal Stripping and Plating in Solid-State Batteries. Adv. Mater. 2021, 33, 2008081. [Google Scholar] [CrossRef]
- Peljo, P.; Girault, H.H. Electrochemical potential window of battery electrolytes: The HOMO–LUMO misconception. Energy Environ. Sci 2018, 11, 2306–2309. [Google Scholar] [CrossRef]
LTS | nlayer | z-Thickness | dinner | douter | Esurf | EG |
---|---|---|---|---|---|---|
(100) | 5 | 10.5 | 2.59 | 2.48 | 20.85 | 2.87 |
(100) | 7 | 15.3 | 2.54 | 2.46 | 22.60 | 2.81 |
(100) | 13 | 30.6 | 2.54 | 2.46 | 22.52 | 2.74 |
(110) | 6 | 8.9 | 1.78–1.88 | 1.70–1.72 | 43.40 | 1.17 |
(110) | 12 | 19.7 | 1.80–1.85 | 1.70–1.74 | 44.30 | 1.46 |
Interface | a | a% | b | b% |
---|---|---|---|---|
Argy | 21.16 | 20.72 | ||
LTS/Argy | 21.54 | 1.73 | 21.59 | 4.21 |
LTSeven/Argy | 22.38 | 5.77 | 22.38 | 8.04 |
LTSodd/Argy | 22.38 | 5.77 | 22.38 | 8.04 |
LTSover/Argy | 21.77 | 2.89 | 21.79 | 5.20 |
Functional | Interface | EBSSE | CT | |||
---|---|---|---|---|---|---|
PBE0 | LTS/Argy-Li2S | −25.32 | +3.03 | +3.71 | −21.62 | 1.147 |
PBE0 | LTS/Argy-LPSC | −9.18 | +3.03 | +3.06 | −6.12 | 0.724 |
MN15//PBE0 | LTS/Argy-Li2S | −35.68 | - | +4.46 | −31.21 | 0.885 |
MN15//PBE0 | LTS/Argy-LPSC | −22.76 | - | +3.96 | −18.79 | 0.402 |
PBE0 | LTSeven/Argy-Li2S | −22.73 | +12.14 | +3.58 | −19.15 | 1.18 |
MN15//PBE0 | LTSeven/Argy-Li2S | −32.02 | - | +3.82 | −28.20 | 0.82 |
PBE0 | LTSodd/Argy-Li2S | −23.95 | +11.95 | +3.32 | −20.63 | 1.31 |
MN15//PBE0 | LTSodd/Argy-Li2S | −33.28 | - | +3.83 | −29.45 | 1.01 |
PBE0 | LTSover/Argy-Li2S | −23.45 | +5.43 | +3.26 | −20.19 | 2.04 |
MN15//PBE0 | LTSover/Argy-Li2S | −34.94 | - | +4.37 | −30.57 | 1.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocca, R.; Marana, N.L.; Silveri, F.; D’Amore, M.; Ascrizzi, E.; Sgroi, M.F.; Li Pira, N.; Ferrari, A.M. On the Stability of the Interface between Li2TiS3 Cathode and Li6PS5Cl Solid State Electrolytes for Battery Applications: A DFT Study. Batteries 2024, 10, 351. https://doi.org/10.3390/batteries10100351
Rocca R, Marana NL, Silveri F, D’Amore M, Ascrizzi E, Sgroi MF, Li Pira N, Ferrari AM. On the Stability of the Interface between Li2TiS3 Cathode and Li6PS5Cl Solid State Electrolytes for Battery Applications: A DFT Study. Batteries. 2024; 10(10):351. https://doi.org/10.3390/batteries10100351
Chicago/Turabian StyleRocca, Riccardo, Naiara Leticia Marana, Fabrizio Silveri, Maddalena D’Amore, Eleonora Ascrizzi, Mauro Francesco Sgroi, Nello Li Pira, and Anna Maria Ferrari. 2024. "On the Stability of the Interface between Li2TiS3 Cathode and Li6PS5Cl Solid State Electrolytes for Battery Applications: A DFT Study" Batteries 10, no. 10: 351. https://doi.org/10.3390/batteries10100351
APA StyleRocca, R., Marana, N. L., Silveri, F., D’Amore, M., Ascrizzi, E., Sgroi, M. F., Li Pira, N., & Ferrari, A. M. (2024). On the Stability of the Interface between Li2TiS3 Cathode and Li6PS5Cl Solid State Electrolytes for Battery Applications: A DFT Study. Batteries, 10(10), 351. https://doi.org/10.3390/batteries10100351