Enhancing Virtual Inertia Control in Microgrids: A Novel Frequency Response Model Based on Storage Systems
Abstract
:1. Introduction
2. Fundamental Concept and Structure of Virtual Inertia Control
3. Frequency Analysis for Virtual Inertia Control and Virtual Dropping
4. Case Study Modeling
5. Simulation Results and Discussion
- Under operating conditions, the contributions of wind generation, solar generation, and electrical loads are treated as uncertainties or disturbances of the system.
- The dynamic effects of generation–load interaction are smoothed out, while primary, secondary, and virtual inertia control blocks are implemented. This is developed without compromising the results according to the literature collected in each corresponding block.
- The virtual inertia control utilizing Energy Storage Systems (ESS) is tasked with providing power that includes the necessary inertia within a timeframe of 1 to 5 s, coinciding with the onset of disturbances caused by the integration of renewable generation into the electrical system.
- The primary control unit’s governor is tasked with restoring the frequency system to a new stable state within the first 10 to 40 s as established by regulations.
- The secondary frequency control’s objective is to return the system frequency to its nominal value in a set range of up to 30 min.
5.1. Dynamic Simulation of Frequency Response without RES Penetration
5.2. Dynamic Simulation of Frequency Response with RES Penetration
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Denholm, P.; Mai, T.; Kenyon, R.W.; Kroposki, B.; O’Malley, M. Inertia and the Power Grid: A Guide without the Spin; Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2020.
- Denholm, P.; Ela, E.; Kirby, B.; Milligan, M. Role of Energy Storage with Renewable Electricity Generation; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2010; Volume 2. [CrossRef]
- Beaudin, M.; Zareipour, H.; Schellenberglabe, A.; Rosehart, W. Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy Sustain. Dev. 2010, 14, 302–314. [Google Scholar] [CrossRef]
- Eto, J.H.; Undrill, J.; Roberts, C.; Mackin, P.; Ellis, J. Frequency Control Requirements for Reliable Interconnection Frequency Response; Technical Report; Energy Analysis and Environmental Impacts Division Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2018.
- Morison, K.; Wang, L.; Kundur, P. Power system security assessment. IEEE Power Energy Mag. 2004, 2, 30–39. [Google Scholar] [CrossRef]
- Rakhshani, E.; Rodriguez, P. Inertia emulation in AC/DC interconnected power systems using derivative technique considering frequency measurement effects. IEEE Trans. Power Syst. 2016, 32, 3338–3351. [Google Scholar] [CrossRef]
- Kenyon, R.W.; Hoke, A.; Tan, J.; Hodge, B.M. Grid-following inverters and synchronous condensers: A grid-forming pair? In Proceedings of the 2020 Clemson University Power Systems Conference (PSC), Clemson, SC, USA, 10–13 March 2020; pp. 1–7. [Google Scholar]
- Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; et al. Active Power Controls from Wind Power: Bridging the Gaps; Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2014.
- Gevorgian, V.; Zhang, Y. Wind Generation Participation in Power System Frequency Response; Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2017.
- Brisebois, J.; Aubut, N. Wind farm inertia emulation to fulfill Hydro-Québec’s specific need. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–7. [Google Scholar]
- Loutan, C.; Klauer, P.; Chowdhury, S.; Hall, S.; Morjaria, M.; Chadliev, V.; Milam, N.; Milan, C.; Gevorgian, V. Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant; Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2017.
- Zhou, G.; Wang, D.; Atallah, A.; McElvain, F.; Nath, R.; Jontry, J.; Bolton, C.; Lin, H.; Haselbauer, A. Synchronous condenser applications: Under significant resource portfolio changes. IEEE Power Energy Mag. 2019, 17, 35–46. [Google Scholar] [CrossRef]
- Wu, Z.; Gao, W.; Gao, T.; Yan, W.; Zhang, H.; Yan, S.; Wang, X. State-of-the-art review on frequency response of wind power plants in power systems. J. Mod. Power Syst. Clean Energy 2018, 6, 1–16. [Google Scholar] [CrossRef]
- Matevosyan, J.; Badrzadeh, B.; Prevost, T.; Quitmann, E.; Ramasubramanian, D.; Urdal, H.; Achilles, S.; MacDowell, J.; Huang, S.H.; Vital, V.; et al. Grid-forming inverters: Are they the key for high renewable penetration? IEEE Power Energy Mag. 2019, 17, 89–98. [Google Scholar] [CrossRef]
- Lin, Y.; Eto, J.H.; Johnson, B.B.; Flicker, J.D.; Lasseter, R.H.; Villegas Pico, H.N.; Seo, G.S.; Pierre, B.J.; Ellis, A. Research Roadmap on Grid-Forming Inverters; Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2020.
- Van Wesenbeeck, M.; De Haan, S.; Varela, P.; Visscher, K. Grid tied converter with virtual kinetic storage. In Proceedings of the 2009 IEEE Bucharest PowerTech, Bucharest, Romania, 28 June–2 July 2009; pp. 1–7. [Google Scholar]
- Karapanos, V.; de Haan, S.; Zwetsloot, K. Real time simulation of a power system with VSG hardware in the loop. In Proceedings of the IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, VIC, Australia, 7–10 November 2011; pp. 3748–3754. [Google Scholar]
- Pogaku, N.; Prodanovic, M.; Green, T.C. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans. Power Electron. 2007, 22, 613–625. [Google Scholar] [CrossRef]
- Liu, J.; Miura, Y.; Ise, T. Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators. IEEE Trans. Power Electron. 2015, 31, 3600–3611. [Google Scholar] [CrossRef]
- Bonfiglio, A.; Invernizzi, M.; Labella, A.; Procopio, R. Design and implementation of a variable synthetic inertia controller for wind turbine generators. IEEE Trans. Power Syst. 2018, 34, 754–764. [Google Scholar] [CrossRef]
- Arani, M.F.M.; El-Saadany, E.F. Implementing virtual inertia in DFIG-based wind power generation. IEEE Trans. Power Syst. 2012, 28, 1373–1384. [Google Scholar] [CrossRef]
- Kerdphol, T.; Rahman, F.S.; Mitani, Y.; Hongesombut, K.; Küfeoğlu, S. Virtual inertia control-based model predictive control for microgrid frequency stabilization considering high renewable energy integration. Sustainability 2017, 9, 773. [Google Scholar] [CrossRef]
- Nanjun, L.; Fang, J.; Tang, Y.; Hredzak, B. A Frequency Deadband-Based Virtual Inertia Control for Grid-Connected Power Converters. In Proceedings of the 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019-ECCE Asia), Busan, Republic of Korea, 27–30 May 2019; pp. 1–6. [Google Scholar]
- Samanta, S.; Mishra, J.P.; Roy, B.K. Inertia enhancement of an isolated dc microgrid using hierarchical virtual inertia control. IETE J. Res. 2022, 68, 3149–3157. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Yan, S.; Jia, X. Modeling and Robust Control with Virtual Inertia for Super-large-Scale Battery Energy Storage System. In Proceedings of the 2019 Chinese Control And Decision Conference (CCDC), Nanchang, China, 3–5 June 2019; pp. 5563–5567. [Google Scholar]
- Ochoa, D.; Villa, E.; Iñiguez, V.; Larco, C.; Sempértegui, R. Uso de supercondensadores para brindar soporte de frecuencia en una microrred aislada. Rev. Tecnol.-ESPOL 2022, 34, 174–185. [Google Scholar] [CrossRef]
- Khalid, A.; Stevenson, A.; Sarwat, A.I. Overview of technical specifications for grid-connected microgrid battery energy storage systems. IEEE Access 2021, 9, 163554–163593. [Google Scholar] [CrossRef]
- Cavalieri, C.; Farias, V.; Kabalan, M. Microgrid protection: A case study of a real-world industry-grade microgrid. In Proceedings of the 2021 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA, 19–20 April 2021; pp. 1–5. [Google Scholar]
- Shahidehpour, M.; Li, Z.; Bahramirad, S.; Li, Z.; Tian, W. Networked microgrids: Exploring the possibilities of the IIT-Bronzeville grid. IEEE Power Energy Mag. 2017, 15, 63–71. [Google Scholar] [CrossRef]
- Xu, H.; Yu, C.; Liu, C.; Wang, Q.; Zhang, X. An improved virtual inertia algorithm of virtual synchronous generator. J. Mod. Power Syst. Clean Energy 2019, 8, 377–386. [Google Scholar] [CrossRef]
- Toma, L.; Sanduleac, M.; Baltac, S.A.; Arrigo, F.; Mazza, A.; Bompard, E.; Musa, A.; Monti, A. On the virtual inertia provision by BESS in low inertia power systems. In Proceedings of the 2018 IEEE International Energy Conference (ENERGYCON), Limassol, Cyprus, 3–7 June 2018; pp. 1–6. [Google Scholar]
- Shi, Y.; Peng, Q.; Liu, T.; Meng, J.; Zeng, X.; Chen, G. Coordinated Virtual Inertia Control of Grid-Connected Photovoltaic-Battery Energy Storage System Considering Power Reserve and Fluctuation Smoothing. In Proceedings of the 2023 IEEE 14th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Shanghai, China, 9–12 June 2023; pp. 428–433. [Google Scholar]
- Sharma, K.M.; Bhimasingu, R. Energy Storage Sizing for Enhancing Microgrid Resiliency using Virtual Inertia Emulation. In Proceedings of the 2022 22nd National Power Systems Conference (NPSC), New Delhi, India, 17–19 December 2022; pp. 320–325. [Google Scholar]
- Liu, H.; Yang, B.; Xu, S.; Du, M.; Lu, S. Universal virtual synchronous generator based on extended virtual inertia to enhance power and frequency response. Energies 2023, 16, 2983. [Google Scholar] [CrossRef]
- Ochoa, D.; Martinez, S. Frequency dependent strategy for mitigating wind power fluctuations of a doubly-fed induction generator wind turbine based on virtual inertia control and blade pitch angle regulation. Renew. Energy 2018, 128, 108–124. [Google Scholar] [CrossRef]
- Operador Nacional de Electricidad CENACE. Available online: https://www.cenace.gob.ec/ (accessed on 20 November 2023).
- Kerdphol, T.; Rahman, F.S.; Watanabe, M.; Mitani, Y. Virtual Inertia Synthesis and Control; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Kerdphol, T.; Rahman, F.S.; Watanabe, M.; Mitani, Y.; Turschner, D.; Beck, H.P. Enhanced virtual inertia control based on derivative technique to emulate simultaneous inertia and damping properties for microgrid frequency regulation. IEEE Access 2019, 7, 14422–14433. [Google Scholar] [CrossRef]
- Ohmae, T.; Sawai, K.; Shiomi, M.; Osumi, S. Advanced technologies in VRLA batteries for automotive applications. J. Power Sources 2006, 154, 523–529. [Google Scholar] [CrossRef]
- Espinoza, J.; Gonzalez, L.; Sempertegui, R. Micro grid laboratory as a tool for research on non-conventional energy sources in Ecuador. In Proceedings of the 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 8–10 November 2017; pp. 1–7. [Google Scholar]
Condition | % Reserve under the Effective Power of the Generators |
---|---|
Interconnected Ecuador | 2.0 |
Isolated Ecuador | 3.0 |
DEMAND | Above Reserve Required for SFR (MW) | Below Reserve Required for SFR (MW) |
---|---|---|
Minimum | 187.50 | 105 |
Half | 187.50 | 105 |
Maximum | 187.50 | 105 |
Description | Symbol | Parameter Value |
---|---|---|
Thermal Power Station (Governor) | 0.07 | |
Thermal Power Station (Turbine) | 0.37 | |
Wind Generation Unit | 1.4 | |
Solar Generation Unit | 1.9 | |
Primary control loop—droop | 1/2.6 | |
Secondary control loop—bias | 0.98 | |
Area control error | 0.1 | |
Proporcional compoment VIC | 2.7 | |
Virtual damping coefficient | 0.016 | |
Inertia constant | H | 0.083 |
Virtual inertia characteristics | −0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Criollo, A.; Minchala-Avila, L.I.; Benavides, D.; Arévalo, P.; Tostado-Véliz, M.; Sánchez-Lozano, D.; Jurado, F. Enhancing Virtual Inertia Control in Microgrids: A Novel Frequency Response Model Based on Storage Systems. Batteries 2024, 10, 18. https://doi.org/10.3390/batteries10010018
Criollo A, Minchala-Avila LI, Benavides D, Arévalo P, Tostado-Véliz M, Sánchez-Lozano D, Jurado F. Enhancing Virtual Inertia Control in Microgrids: A Novel Frequency Response Model Based on Storage Systems. Batteries. 2024; 10(1):18. https://doi.org/10.3390/batteries10010018
Chicago/Turabian StyleCriollo, Adrián, Luis I. Minchala-Avila, Dario Benavides, Paul Arévalo, Marcos Tostado-Véliz, Daniel Sánchez-Lozano, and Francisco Jurado. 2024. "Enhancing Virtual Inertia Control in Microgrids: A Novel Frequency Response Model Based on Storage Systems" Batteries 10, no. 1: 18. https://doi.org/10.3390/batteries10010018
APA StyleCriollo, A., Minchala-Avila, L. I., Benavides, D., Arévalo, P., Tostado-Véliz, M., Sánchez-Lozano, D., & Jurado, F. (2024). Enhancing Virtual Inertia Control in Microgrids: A Novel Frequency Response Model Based on Storage Systems. Batteries, 10(1), 18. https://doi.org/10.3390/batteries10010018