Surface Modifications of Superparamagnetic Iron Oxide Nanoparticles with Polyvinyl Alcohol and Activated Charcoal as Methylene Blue Adsorbents
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Synthesis
2.3. Adsorption/Loading Experiment
3. Results and Discussion
3.1. Characterization of Adsorbent
3.1.1. FE-SEM
3.1.2. XRD Analysis
3.1.3. FTIR
3.1.4. Zeta Potential
3.1.5. BJH Analysis
3.1.6. VSM Analysis
3.2. Loading Capacity of SPION/PVA/AC and Modelling
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C0 | initial concentration |
concentration at time t | |
V | reaction volume |
m | mass of the nanoparticles |
initial adsorption rate | |
the amounts of MB (an adsorbate) adsorbed at the equilibrium | |
, | the amounts of MB adsorbed at time t |
the pseudo-first-order rate constant | |
pseudo-second-order rate constant | |
the equilibrium aqueous-phase concentration adsorbate | |
the monolayer adsorption capacity which can be understood as the theoretical adsorption capacity | |
the constant related to the free adsorption energy and the reciprocal of the concentration at which half saturation of the adsorbent is reached | |
the quantity of adsorbate adsorbed in a single monolayer | |
the fractional surface coverage | |
the respective rate constant for adsorption | |
the respective rate constant for desorption | |
the intensity of the adsorption | |
constant of the relative adsorption capacity of the adsorbent | |
theoretical saturation capacity | |
the activity coefficient related to mean free energy of adsorption | |
the Polanyi potential | |
R | universal gas constant |
T | temperature |
equilibrium binding constant | |
B1 | related to the heat of adsorption |
the Halsey isotherm constant | |
intraparticle diffusion rate constant | |
I | constant |
the theoretical initial adsorption rate | |
the theoretical desorption constant | |
Gibbs free energy change | |
standard enthalpy change | |
entropy change | |
K0 | thermodynamic equilibrium constant in the adsorption process |
References
- Doan, L.; Lu, Y.; Karatela, M.; Phan, V.; Jeffryes, C.; Benson, T.; Wujcik, E.K. Surface Modifications of Superparamagnetic Iron Oxide Nanoparticles with Polylactic Acid-Polyethylene Glycol Diblock Copolymer and Graphene Oxide for a Protein Delivery Vehicle. Eng. Sci. 2019, 7, 10–16. [Google Scholar] [CrossRef]
- Bayazit, Ş.S. Magnetic Multi-Wall Carbon Nanotubes for Methyl Orange Removal from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies. Sep. Sci. Technol. 2014, 49, 1389–1400. [Google Scholar] [CrossRef]
- Ge, M.; Xi, Z.; Zhu, C.; Liang, G.; Hu, G.; Jamal, L.; S. M., J.A. Preparation and Characterization of Magadiite–Magnetite Nanocomposite with Its Sorption Performance Analyses on Removal of Methylene Blue from Aqueous Solutions. Polymers 2019, 11, 607. [Google Scholar] [CrossRef]
- Nicola, R.; Costişor, O.; Muntean, S.-G.; Nistor, M.-A.; Putz, A.-M.; Ianăşi, C.; Lazău, R.; Almásy, L.; Săcărescu, L. Mesoporous Magnetic Nanocomposites: A Promising Adsorbent for the Removal of Dyes from Aqueous Solutions. J. Porous Mater. 2020, 27, 413–428. [Google Scholar] [CrossRef]
- Nicola, R.; Muntean, S.-G.; Nistor, M.-A.; Putz, A.-M.; Almásy, L.; Săcărescu, L. Highly Efficient and Fast Removal of Colored Pollutants from Single and Binary Systems, Using Magnetic Mesoporous Silica. Chemosphere 2020, 261, 127737. [Google Scholar] [CrossRef]
- Altıntıg, E.; Altundag, H.; Tuzen, M.; Sarı, A. Effective Removal of Methylene Blue from Aqueous Solutions Using Magnetic Loaded Activated Carbon as Novel Adsorbent. Chem. Eng. Res. Des. 2017, 122, 151–163. [Google Scholar] [CrossRef]
- Kim, D.K.; Zhang, Y.; Voit, W.; Rao, K.V.; Muhammed, M. Synthesis and Characterization of Surfactant-Coated Superparamagnetic Monodispersed Iron Oxide Nanoparticles. J. Magn. Magn. Mater. 2001, 225, 30–36. [Google Scholar] [CrossRef]
- Marinin, A. Synthesis and Characterization of Superparamagnetic Iron Oxide Nanoparticles Coated with Silica. Master’s Thesis, Royal Institute of Technology, Stockholm, Sweden, 2012. [Google Scholar]
- Muthiah, M.; Park, I.-K.; Cho, C.-S. Surface Modification of Iron Oxide Nanoparticles by Biocompatible Polymers for Tissue Imaging and Targeting. Biotechnol. Adv. 2013, 31, 1224–1236. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X.; et al. Use of Iron Oxide Nanomaterials in Wastewater Treatment: A Review. Sci. Total Environ. 2012, 424, 1–10. [Google Scholar] [CrossRef]
- Duan, J.; Liu, R.; Chen, T.; Zhang, B.; Liu, J. Halloysite Nanotube-Fe3O4 Composite for Removal of Methyl Violet from Aqueous Solutions. Desalination 2012, 293, 46–52. [Google Scholar] [CrossRef]
- Zhu, H.-Y.; Fu, Y.-Q.; Jiang, R.; Jiang, J.-H.; Xiao, L.; Zeng, G.-M.; Zhao, S.-L.; Wang, Y. Adsorption Removal of Congo Red onto Magnetic Cellulose/Fe3O4/Activated Carbon Composite: Equilibrium, Kinetic and Thermodynamic Studies. Chem. Eng. J. 2011, 173, 494–502. [Google Scholar] [CrossRef]
- Yang, N.; Zhu, S.; Zhang, D.; Xu, S. Synthesis and Properties of Magnetic Fe3O4-Activated Carbon Nanocomposite Particles for Dye Removal. Mater. Lett. 2008, 62, 645–647. [Google Scholar] [CrossRef]
- Wang, J.; Tang, B.; Tsuzuki, T.; Liu, Q.; Hou, X.; Sun, L. Synthesis, Characterization and Adsorption Properties of Superparamagnetic Polystyrene/Fe3O4/Graphene Oxide. Chem. Eng. J. 2012, 204–206, 258–263. [Google Scholar] [CrossRef]
- Ren, X.; Chen, C.; Nagatsu, M.; Wang, X. Carbon Nanotubes as Adsorbents in Environmental Pollution Management: A Review. Chem. Eng. J. 2011, 170, 395–410. [Google Scholar] [CrossRef]
- Gong, J.-L.; Wang, B.; Zeng, G.-M.; Yang, C.-P.; Niu, C.-G.; Niu, Q.-Y.; Zhou, W.-J.; Liang, Y. Removal of Cationic Dyes from Aqueous Solution Using Magnetic Multi-Wall Carbon Nanotube Nanocomposite as Adsorbent. J. Hazard. Mater. 2009, 164, 1517–1522. [Google Scholar] [CrossRef]
- Deligeer, W.; Gao, Y.W.; Asuha, S. Adsorption of Methyl Orange on Mesoporous γ-Fe2O3/SiO2 Nanocomposites. Appl. Surf. Sci. 2011, 257, 3524–3528. [Google Scholar] [CrossRef]
- Leodopoulos, C.; Doulia, D.; Gimouhopoulos, K.; Triantis, T.M. Single and Simultaneous Adsorption of Methyl Orange and Humic Acid onto Bentonite. Appl. Clay Sci. 2012, 70, 84–90. [Google Scholar] [CrossRef]
- Amin, N.K. Removal of Direct Blue-106 Dye from Aqueous Solution Using New Activated Carbons Developed from Pomegranate Peel: Adsorption Equilibrium and Kinetics. J. Hazard. Mater. 2009, 165, 52–62. [Google Scholar] [CrossRef]
- Ghaedi, M.; Taghavimoghadam, N.; Naderi, S.; Sahraei, R.; Daneshfar, A. Comparison of Removal of Bromothymol Blue from Aqueous Solution by Multiwalled Carbon Nanotube and Zn(OH)2 Nanoparticles Loaded on Activated Carbon: A Thermodynamic Study. J. Ind. Eng. Chem. 2013, 19, 1493–1500. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Y.; Xing, J.; Meng, A. Fast Removal of Methylene Blue by Fe3O4 Magnetic Nanoparticles and Their Cycling Property. J. Nanosci. Nanotechnol. 2019, 19, 2116–2123. [Google Scholar] [CrossRef]
- Ai, L.; Zhang, C.; Liao, F.; Wang, Y.; Li, M.; Meng, L.; Jiang, J. Removal of Methylene Blue from Aqueous Solution with Magnetite Loaded Multi-Wall Carbon Nanotube: Kinetic, Isotherm and Mechanism Analysis. J. Hazard. Mater. 2011, 198, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Habila, M.A.; Moshab, M.S.; El-Toni, A.M.; ALOthman, Z.A.; Badjah Hadj Ahmed, A.Y. Thermal Fabrication of Magnetic Fe3O4 (Nanoparticle)@Carbon Sheets from Waste Resources for the Adsorption of Dyes: Kinetic, Equilibrium, and UV–Visible Spectroscopy Investigations. Nanomaterials 2023, 13, 1266. [Google Scholar] [CrossRef] [PubMed]
- Tishbi, P.; Mosayebi, M.; Salehi, Z.; Fatemi, S.; Faegh, E. Synthesizing Magnetic Graphene Oxide Nanomaterial (GO-Fe3O4) and Kinetic Modelling of Methylene Blue Adsorption from Water. Can. J. Chem. Eng. 2022, 100, 3321–3334. [Google Scholar] [CrossRef]
- Wu, K.-H.; Huang, W.-C.; Hung, W.-C.; Tsai, C.-W. Modified Expanded Graphite/Fe3O4 Composite as an Adsorbent of Methylene Blue: Adsorption Kinetics and Isotherms. Mater. Sci. Eng. B 2021, 266, 115068. [Google Scholar] [CrossRef]
- Doan, L. Surface Modifications of Superparamagnetic Iron Oxide Nanoparticles with Polyvinyl Alcohol and Graphite as Methylene Blue Adsorbents. Coatings 2023, 13, 1558. [Google Scholar] [CrossRef]
- Castro, C.S.; Guerreiro, M.C.; Gonçalves, M.; Oliveira, L.C.A.; Anastácio, A.S. Activated Carbon/Iron Oxide Composites for the Removal of Atrazine from Aqueous Medium. J. Hazard. Mater. 2009, 164, 609–614. [Google Scholar] [CrossRef]
- Imamoglu, M.; Yıldız, H.; Altundag, H.; Turhan, Y. Efficient Removal of Cd(II) from Aqueous Solution by Dehydrated Hazelnut Husk Carbon. J. Dispers. Sci. Technol. 2015, 36, 284–290. [Google Scholar] [CrossRef]
- Aygun, A.; Yenisoy-Karakas, S.; Duman, I. Production of Granular Activated Carbon from Fruit Stones and Nutshells and Evaluation of Their Physical, Chemical and Adsorption Properties. Microporous Mesoporous Mater. 2003, 66, 189–195. [Google Scholar] [CrossRef]
- Senthilkumaar, S.; Varadarajan, P.R.; Porkodi, K.; Subbhuraam, C.V. Adsorption of Methylene Blue onto Jute Fiber Carbon: Kinetics and Equilibrium Studies. J. Colloid. Interface Sci. 2005, 284, 78–82. [Google Scholar] [CrossRef]
- Kumar, P.S.; Ramalingam, S.; Sathishkumar, K. Removal of Methylene Blue Dye from Aqueous Solution by Activated Carbon Prepared from Cashew Nut Shell as a New Low-Cost Adsorbent. Korean J. Chem. Eng. 2011, 28, 149–155. [Google Scholar] [CrossRef]
- Altundag, H.; Bina, E.; Altıntıg, E. The Levels of Trace Elements in Honey and Molasses Samples That Were Determined by ICP-OES After Microwave Digestion Method. Biol. Trace Elem. Res. 2016, 170, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Lelifajri; Nawi, M.A.; Sabar, S.; Supriatno; Nawawi, W.I. Preparation of Immobilized Activated Carbon-Polyvinyl Alcohol Composite for the Adsorptive Removal of 2,4-Dichlorophenoxyacetic Acid. J. Water Process Eng. 2018, 25, 269–277. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Zhou, S.; Xue, A.; Zhang, Y.; Zhao, Y.; Zhong, J.; Zhang, Q. Graphitic Carbon Nitride Nanosheets Embedded in Poly(Vinyl Alcohol) Nanocomposite Membranes for Ethanol Dehydration via Pervaporation. Sep. Purif. Technol. 2017, 188, 24–37. [Google Scholar] [CrossRef]
- Hong, G.; Li, X.; Shen, L.; Wang, M.; Wang, C.; Yu, X.; Wang, X. High Recovery of Lead Ions from Aminated Polyacrylonitrile Nanofibrous Affinity Membranes with Micro/Nano Structure. J. Hazard. Mater. 2015, 295, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh Fard, M.; Vosoogh, A.; Barkdoll, B.; Aminzadeh, B. Using Polymer Coated Nanoparticles for Adsorption of Micropollutants from Water. Colloids Surf. Physicochem. Eng. Asp. 2017, 531, 189–197. [Google Scholar] [CrossRef]
- Wan Ismail, W.I.N.; Ain, S.K.; Zaharudin, R.; Jawad, A.H.; Ishak, M.A.M.; Ismail, K.; Sahid, S. New TiO2/DSAT Immobilization System for Photodegradation of Anionic and Cationic Dyes. Int. J. Photoenergy 2015, 2015, 232741. [Google Scholar] [CrossRef]
- Sabri, N.A.; Nawi, M.A.; Nawawi, W.I. Porous Immobilized C Coated N Doped TiO2 Containing In-Situ Generated Polyenes for Enhanced Visible Light Photocatalytic Activity. Opt. Mater. 2015, 48, 258–266. [Google Scholar] [CrossRef]
- Tran, H.V.; Bui, L.T.; Dinh, T.T.; Le, D.H.; Huynh, C.D.; Trinh, A.X. Graphene Oxide/Fe3O4/Chitosan Nanocomposite: A Recoverable and Recyclable Adsorbent for Organic Dyes Removal. Application to Methylene Blue. Mater. Res. Express 2017, 4, 035701. [Google Scholar] [CrossRef]
- Quach, T.P.T.; Doan, L. Surface Modifications of Superparamagnetic Iron Oxide Nanoparticles with Polyvinyl Alcohol, Chitosan, and Graphene Oxide as Methylene Blue Adsorbents. Coatings 2023, 13, 1333. [Google Scholar] [CrossRef]
- Doan, L. Modifying Superparamagnetic Iron Oxide Nanoparticles as Methylene Blue Adsorbents: A Review. ChemEngineering 2023, 7, 77. [Google Scholar] [CrossRef]
- Yusuf, M.S.; Sutriyo; Rahmasari, R. Synthesis Processing Condition Optimization of Citrate Stabilized Superparamagnetic Iron Oxide Nanoparticles Using Direct Co-Precipitation Method. Biomed. Pharmacol. J. 2021, 14, 1533–1542. [Google Scholar] [CrossRef]
- Loh, K.-S.; Lee, Y.; Musa, A.; Salmah, A.; Zamri, I. Use of Fe3O4 Nanoparticles for Enhancement of Biosensor Response to the Herbicide 2,4-Dichlorophenoxyacetic Acid. Sensors 2008, 8, 5775–5791. [Google Scholar] [CrossRef]
- Gong, J.; Lin, X. Facilitated Electron Transfer of Hemoglobin Embedded in Nanosized Fe3O4 Matrix Based on Paraffin Impregnated Graphite Electrode and Electrochemical Catalysis for Trichloroacetic Acid. Microchem. J. 2003, 75, 51–57. [Google Scholar] [CrossRef]
- Liao, M.-H.; Chen, D.-H. Immobilization of Yeast Alcohol Dehydrogenase on Magnetic Nanoparticles for Improving Its Stability. Biotechnol. Lett. 2001, 23, 1723–1727. [Google Scholar] [CrossRef]
- Deng, J.; Peng, Y.; He, C.; Long, X.; Li, P.; Chan, A.S.C. Magnetic and Conducting Fe3O4-Polypyrrole Nanoparticles with Core-Shell Structure. Polym. Int. 2003, 52, 1182–1187. [Google Scholar] [CrossRef]
- Sodipo, B.K.; Aziz, A.A. A Sonochemical Approach to the Direct Surface Functionalization of Superparamagnetic Iron Oxide Nanoparticles with (3-Aminopropyl)Triethoxysilane. Beilstein J. Nanotechnol. 2014, 5, 1472–1476. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.W.; Umar, A.; Dar, G.N.; Kim, S.H.; Badran, R.I. Synthesis and Characterization of Iron Oxide Nanoparticles for Phenyl Hydrazine Sensor Applications. Sens. Lett. 2014, 12, 97–101. [Google Scholar] [CrossRef]
- Lopez, J.A.; González, F.; Bonilla, F.A.; Zambrano, G.; Gómez, M.E. Synthesis and Characterization of Fe3O4 Magnetic Nanofluid. Rev. Latinoam. Metal. Mater. 2010, 30, 60–66. [Google Scholar]
- Adhikari, M.D.; Mukherjee, S.; Saikia, J.; Das, G.; Ramesh, A. Magnetic Nanoparticles for Selective Capture and Purification of an Antimicrobial Peptide Secreted by Food-Grade Lactic Acid Bacteria. J. Mater. Chem. B 2014, 2, 1432–1438. [Google Scholar] [CrossRef]
- Ali, H.; Ismail, A.M. Fabrication of Magnetic Fe3O4/Polypyrrole/Carbon Black Nanocomposite for Effective Uptake of Congo Red and Methylene Blue Dye: Adsorption Investigation and Mechanism. J. Polym. Environ. 2023, 31, 976–998. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Simchi, A.; Milani, A.S.; Stroeve, P. Cell Toxicity of Superparamagnetic Iron Oxide Nanoparticles. J. Colloid. Interface Sci. 2009, 336, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, M.; Simchi, A.; Imani, M.; Milani, A.S.; Stroeve, P. Optimal Design and Characterization of Superparamagnetic Iron Oxide Nanoparticles Coated with Polyvinyl Alcohol for Targeted Delivery and Imaging. J. Phys. Chem. B 2008, 112, 14470–14481. [Google Scholar] [CrossRef] [PubMed]
- Kostyukova, D.; Chung, Y.H. Synthesis of Iron Oxide Nanoparticles Using Isobutanol. J. Nanomater. 2016, 2016, 4982675. [Google Scholar] [CrossRef]
- Kharazmi, A.; Faraji, N.; Mat Hussin, R.; Saion, E.; Yunus, W.M.M.; Behzad, K. Structural, Optical, Opto-Thermal and Thermal Properties of ZnS–PVA Nanofluids Synthesized through a Radiolytic Approach. Beilstein J. Nanotechnol. 2015, 6, 529–536. [Google Scholar] [CrossRef]
- Bhat, N.V.; Nate, M.M.; Kurup, M.B.; Bambole, V.A.; Sabharwal, S. Effect of γ-Radiation on the Structure and Morphology of Polyvinyl Alcohol Films. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2005, 237, 585–592. [Google Scholar] [CrossRef]
- Lee, J.; Isobe, T.; Senna, M. Preparation of Ultrafine Fe3O4 Particles by Precipitation in the Presence of PVA at High pH. J. Colloid. Interface Sci. 1996, 177, 490–494. [Google Scholar] [CrossRef]
- Korbag, I.; Mohamed Saleh, S. Studies on the Formation of Intermolecular Interactions and Structural Characterization of Polyvinyl Alcohol/Lignin Film. Int. J. Environ. Stud. 2016, 73, 226–235. [Google Scholar] [CrossRef]
- Tang, C.; Shu, Y.; Zhang, R.; Li, X.; Song, J.; Li, B.; Zhang, Y.; Ou, D. Comparison of the Removal and Adsorption Mechanisms of Cadmium and Lead from Aqueous Solution by Activated Carbons Prepared from Typha Angustifolia and Salix Matsudana. RSC Adv. 2017, 7, 16092–16103. [Google Scholar] [CrossRef]
- Pochapski, D.J.; Carvalho dos Santos, C.; Leite, G.W.; Pulcinelli, S.H.; Santilli, C.V. Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir 2021, 37, 13379–13389. [Google Scholar] [CrossRef]
- Bondarenko, L.S.; Kovel, E.S.; Kydralieva, K.A.; Dzhardimalieva, G.I.; Illés, E.; Tombácz, E.; Kicheeva, A.G.; Kudryasheva, N.S. Effects of Modified Magnetite Nanoparticles on Bacterial Cells and Enzyme Reactions. Nanomaterials 2020, 10, 1499. [Google Scholar] [CrossRef]
- Soares, S.F.; Fernandes, T.; Trindade, T.; Daniel-da-Silva, A.L. Trimethyl Chitosan/Siloxane-Hybrid Coated Fe3O4 Nanoparticles for the Uptake of Sulfamethoxazole from Water. Molecules 2019, 24, 1958. [Google Scholar] [CrossRef] [PubMed]
- Wee, S.-B.; Oh, H.-C.; Kim, T.-G.; An, G.-S.; Choi, S.-C. Role of N-Methyl-2-Pyrrolidone for Preparation of Fe3O4@SiO2 Controlled the Shell Thickness. J. Nanoparticle Res. 2017, 19, 143. [Google Scholar] [CrossRef]
- Ma, P.; Luo, Q.; Chen, J.; Gan, Y.; Du, J.; Ding, S.; Xi, Z.; Yang, X. Intraperitoneal Injection of Magnetic Fe3O4-Nanoparticle Induces Hepatic and Renal Tissue Injury via Oxidative Stress in Mice. Int. J. Nanomed. 2012, 7, 4809–4818. [Google Scholar] [CrossRef]
- Ferrah, N. Comparative Study of Mercury(II) Species Removal onto Naked and Modified Magnetic Chitosan Flakes Coated Ethylenediaminetetraacetic-Disodium: Kinetic and Thermodynamic Modeling. Environ. Sci. Pollut. Res. 2018, 25, 24923–24938. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Ryu, J.; Kim, B.; Ko, S. Application of Iron Oxide as a pH-Dependent Indicator for Improving the Nutritional Quality. Clin. Nutr. Res. 2016, 5, 172. [Google Scholar] [CrossRef]
- Zhu, A.; Yuan, L.; Liao, T. Suspension of Fe3O4 Nanoparticles Stabilized by Chitosan and O-Carboxymethylchitosan. Int. J. Pharm. 2008, 350, 361–368. [Google Scholar] [CrossRef]
- Sotomayor, F.J.; Cychosz, K.A.; Thommes, M. Characterization of Micro/Mesoporous Materials by Physisorption: Concepts and Case Studies. Acc. Mater. Surf. Res. 2018, 3, 34–50. [Google Scholar]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Paramarta, V.; Kristianto, Y.; Taufik, A.; Saleh, R. Improve Sonocatalytic Performance Using Modified Semiconductor Catalyst SnO 2 and ZrO 2 by Magnetite Materials. IOP Conf. Ser. Mater. Sci. Eng. 2017, 188, 012042. [Google Scholar] [CrossRef]
- Esmaeili, H.; Tamjidi, S. Ultrasonic-Assisted Synthesis of Natural Clay/Fe3O4/Graphene Oxide for Enhance Removal of Cr (VI) from Aqueous Media. Environ. Sci. Pollut. Res. 2020, 27, 31652–31664. [Google Scholar] [CrossRef]
- DemiRel Topel, S.; Gürkan Polat, T. pH-RESPONSIVE CARBOXYMETHYL CELLULOSE CONJUGATED SUPERPARAMAGNETIC IRON OXIDE NANOCARRIERS. J. Sci. Perspect. 2019, 3, 99–110. [Google Scholar] [CrossRef]
- Munasir; Kusumawati, R.P. Synthesis and Characterization of Fe3O4@rGO Composite with Wet-Mixing (Ex-Situ) Process. J. Phys. Conf. Ser. 2019, 1171, 012048. [Google Scholar] [CrossRef]
- Norouzian Baghani, A.; Mahvi, A.H.; Gholami, M.; Rastkari, N.; Delikhoon, M. One-Pot Synthesis, Characterization and Adsorption Studies of Amine-Functionalized Magnetite Nanoparticles for Removal of Cr (VI) and Ni (II) Ions from Aqueous Solution: Kinetic, Isotherm and Thermodynamic Studies. J. Environ. Health Sci. Eng. 2016, 14, 11. [Google Scholar] [CrossRef] [PubMed]
- Heydari Sheikh Hossein, H.; Jabbari, I.; Zarepour, A.; Zarrabi, A.; Ashrafizadeh, M.; Taherian, A.; Makvandi, P. Functionalization of Magnetic Nanoparticles by Folate as Potential MRI Contrast Agent for Breast Cancer Diagnostics. Molecules 2020, 25, 4053. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Miao, S.; Liu, S.; Ma, L.P.; Sun, H.; Wang, S. Synthesis, Characterization, and Adsorption Properties of Magnetic Fe3O4@graphene Nanocomposite. Chem. Eng. J. 2012, 184, 326–332. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, F.; Chen, M.; Xu, Z.; Zhu, Z. Adsorption Behavior of Methylene Blue on Carbon Nanotubes. Bioresour. Technol. 2010, 101, 3040–3046. [Google Scholar] [CrossRef]
- Pigatto, G.; Lodi, A.; Finocchio, E.; Palma, M.S.A.; Converti, A. Chitin as Biosorbent for Phenol Removal from Aqueous Solution: Equilibrium, Kinetic and Thermodynamic Studies. Chem. Eng. Process. Process Intensif. 2013, 70, 131–139. [Google Scholar] [CrossRef]
- Seki, Y.; Yurdakoç, K. Adsorption of Promethazine Hydrochloride with KSF Montmorillonite. Adsorption 2006, 12, 89–100. [Google Scholar] [CrossRef]
- Sharma, P.; Kaur, R.; Baskar, C.; Chung, W.-J. Removal of Methylene Blue from Aqueous Waste Using Rice Husk and Rice Husk Ash. Desalination 2010, 259, 249–257. [Google Scholar] [CrossRef]
- Peydayesh, M.; Rahbar-Kelishami, A. Adsorption of Methylene Blue onto Platanus Orientalis Leaf Powder: Kinetic, Equilibrium and Thermodynamic Studies. J. Ind. Eng. Chem. 2015, 21, 1014–1019. [Google Scholar] [CrossRef]
- Nekouei, F.; Nekouei, S.; Tyagi, I.; Gupta, V.K. Kinetic, Thermodynamic and Isotherm Studies for Acid Blue 129 Removal from Liquids Using Copper Oxide Nanoparticle-Modified Activated Carbon as a Novel Adsorbent. J. Mol. Liq. 2015, 201, 124–133. [Google Scholar] [CrossRef]
- Luo, X.-P.; Fu, S.-Y.; Du, Y.-M.; Guo, J.-Z.; Li, B. Adsorption of Methylene Blue and Malachite Green from Aqueous Solution by Sulfonic Acid Group Modified MIL-101. Microporous Mesoporous Mater. 2017, 237, 268–274. [Google Scholar] [CrossRef]
- Sharma, P.; Hussain, N.; Borah, D.J.; Das, M.R. Kinetics and Adsorption Behavior of the Methyl Blue at the Graphene Oxide/Reduced Graphene Oxide Nanosheet–Water Interface: A Comparative Study. J. Chem. Eng. Data 2013, 58, 3477–3488. [Google Scholar] [CrossRef]
- Ai, L.; Li, M.; Li, L. Adsorption of Methylene Blue from Aqueous Solution with Activated Carbon/Cobalt Ferrite/Alginate Composite Beads: Kinetics, Isotherms, and Thermodynamics. J. Chem. Eng. Data 2011, 56, 3475–3483. [Google Scholar] [CrossRef]
- Karaer, H.; Kaya, İ. Synthesis, Characterization of Magnetic Chitosan/Active Charcoal Composite and Using at the Adsorption of Methylene Blue and Reactive Blue4. Microporous Mesoporous Mater. 2016, 232, 26–38. [Google Scholar] [CrossRef]
- Singh, D. Studies of the Adsorption Thermodynamics of Oxamyl on Fly Ash. Adsorpt. Sci. Technol. 2000, 18, 741–748. [Google Scholar] [CrossRef]
- Özcan, A.; Öncü, E.M.; Özcan, A.S. Kinetics, Isotherm and Thermodynamic Studies of Adsorption of Acid Blue 193 from Aqueous Solutions onto Natural Sepiolite. Colloids Surf. Physicochem. Eng. Asp. 2006, 277, 90–97. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Sharma, A. Kinetics and Thermodynamics of Methylene Blue Adsorption on Neem (Azadirachta Indica) Leaf Powder. Dye. Pigment. 2005, 65, 51–59. [Google Scholar] [CrossRef]
- Umoren, S.A.; Etim, U.J.; Israel, A.U. Adsorption of Methylene Blue from Industrial Effluent Using Poly (Vinyl Alcohol). J. Mater. Environ. Sci. 2013, 4, 75–86. [Google Scholar]
- Ofomaja, A.E.; Ho, Y.-S. Equilibrium Sorption of Anionic Dye from Aqueous Solution by Palm Kernel Fibre as Sorbent. Dye. Pigment. 2007, 74, 60–66. [Google Scholar] [CrossRef]
- Dai, H.; Huang, Y.; Huang, H. Eco-Friendly Polyvinyl Alcohol/Carboxymethyl Cellulose Hydrogels Reinforced with Graphene Oxide and Bentonite for Enhanced Adsorption of Methylene Blue. Carbohydr. Polym. 2018, 185, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bulut, Y.; Aydın, H. A Kinetics and Thermodynamics Study of Methylene Blue Adsorption on Wheat Shells. Desalination 2006, 194, 259–267. [Google Scholar] [CrossRef]
- Dai, H.; Huang, H. Synthesis, Characterization and Properties of Pineapple Peel Cellulose-g-Acrylic Acid Hydrogel Loaded with Kaolin and Sepia Ink. Cellulose 2017, 24, 69–84. [Google Scholar] [CrossRef]
- Sekhavat Pour, Z.; Ghaemy, M. Removal of Dyes and Heavy Metal Ions from Water by Magnetic Hydrogel Beads Based on Poly(Vinyl Alcohol)/Carboxymethyl Starch-g-Poly(Vinyl Imidazole). RSC Adv. 2015, 5, 64106–64118. [Google Scholar] [CrossRef]
- Sharma, G.; Naushad, M.; Al-Muhtaseb, A.H.; Kumar, A.; Khan, M.R.; Kalia, S.; Shweta; Bala, M.; Sharma, A. Fabrication and Characterization of Chitosan-Crosslinked-Poly(Alginic Acid) Nanohydrogel for Adsorptive Removal of Cr(VI) Metal Ion from Aqueous Medium. Int. J. Biol. Macromol. 2017, 95, 484–493. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, A.; Devi, K.; Sharma, S.; Naushad, M.; Ghfar, A.A.; Ahamad, T.; Stadler, F.J. Guar Gum-Crosslinked-Soya Lecithin Nanohydrogel Sheets as Effective Adsorbent for the Removal of Thiophanate Methyl Fungicide. Int. J. Biol. Macromol. 2018, 114, 295–305. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, A.; Naushad, M.; García-Peñas, A.; Al-Muhtaseb, A.H.; Ghfar, A.A.; Sharma, V.; Ahamad, T.; Stadler, F.J. Fabrication and Characterization of Gum Arabic-Cl-Poly(Acrylamide) Nanohydrogel for Effective Adsorption of Crystal Violet Dye. Carbohydr. Polym. 2018, 202, 444–453. [Google Scholar] [CrossRef]
- Ma, J.; Huang, D.; Zou, J.; Li, L.; Kong, Y.; Komarneni, S. Adsorption of Methylene Blue and Orange II Pollutants on Activated Carbon Prepared from Banana Peel. J. Porous Mater. 2015, 22, 301–311. [Google Scholar] [CrossRef]
- Hameed, B.H.; Din, A.T.M.; Ahmad, A.L. Adsorption of Methylene Blue onto Bamboo-Based Activated Carbon: Kinetics and Equilibrium Studies. J. Hazard. Mater. 2007, 141, 819–825. [Google Scholar] [CrossRef]
- Theydan, S.K.; Ahmed, M.J. Adsorption of Methylene Blue onto Biomass-Based Activated Carbon by FeCl3 Activation: Equilibrium, Kinetics, and Thermodynamic Studies. J. Anal. Appl. Pyrolysis 2012, 97, 116–122. [Google Scholar] [CrossRef]
- Hameed, B.H.; Ahmad, A.L.; Latiff, K.N.A. Adsorption of Basic Dye (Methylene Blue) onto Activated Carbon Prepared from Rattan Sawdust. Dye. Pigment. 2007, 75, 143–149. [Google Scholar] [CrossRef]
- Bestani, B.; Benderdouche, N.; Benstaali, B.; Belhakem, M.; Addou, A. Methylene Blue and Iodine Adsorption onto an Activated Desert Plant. Bioresour. Technol. 2008, 99, 8441–8444. [Google Scholar] [CrossRef] [PubMed]
- El Qada, E.N.; Allen, S.J.; Walker, G.M. Adsorption of Methylene Blue onto Activated Carbon Produced from Steam Activated Bituminous Coal: A Study of Equilibrium Adsorption Isotherm. Chem. Eng. J. 2006, 124, 103–110. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Microwave-Assisted Preparation of Oil Palm Fiber Activated Carbon for Methylene Blue Adsorption. Chem. Eng. J. 2011, 166, 792–795. [Google Scholar] [CrossRef]
- Belhachemi, M.; Addoun, F. Comparative Adsorption Isotherms and Modeling of Methylene Blue onto Activated Carbons. Appl. Water Sci. 2011, 1, 111–117. [Google Scholar] [CrossRef]
- Deng, H.; Yang, L.; Tao, G.; Dai, J. Preparation and Characterization of Activated Carbon from Cotton Stalk by Microwave Assisted Chemical Activation—Application in Methylene Blue Adsorption from Aqueous Solution. J. Hazard. Mater. 2009, 166, 1514–1521. [Google Scholar] [CrossRef]
- Vargas, A.M.M.; Cazetta, A.L.; Kunita, M.H.; Silva, T.L.; Almeida, V.C. Adsorption of Methylene Blue on Activated Carbon Produced from Flamboyant Pods (Delonix Regia): Study of Adsorption Isotherms and Kinetic Models. Chem. Eng. J. 2011, 168, 722–730. [Google Scholar] [CrossRef]
- Wang, S.; Boyjoo, Y.; Choueib, A. A Comparative Study of Dye Removal Using Fly Ash Treated by Different Methods. Chemosphere 2005, 60, 1401–1407. [Google Scholar] [CrossRef]
- Tsai, W.T.; Yang, J.M.; Lai, C.W.; Cheng, Y.H.; Lin, C.C.; Yeh, C.W. Characterization and Adsorption Properties of Eggshells and Eggshell Membrane. Bioresour. Technol. 2006, 97, 488–493. [Google Scholar] [CrossRef]
- Banerjee, S.; Dastidar, M.G. Use of Jute Processing Wastes for Treatment of Wastewater Contaminated with Dye and Other Organics. Bioresour. Technol. 2005, 96, 1919–1928. [Google Scholar] [CrossRef]
- Garg, V.K.; Amita, M.; Kumar, R.; Gupta, R. Basic Dye (Methylene Blue) Removal from Simulated Wastewater by Adsorption Using Indian Rosewood Sawdust: A Timber Industry Waste. Dye. Pigment. 2004, 63, 243–250. [Google Scholar] [CrossRef]
- Fytianos, K.; Voudrias, E.; Kokkalis, E. Sorption–Desorption Behaviour of 2,4-Dichlorophenol by Marine Sediments. Chemosphere 2000, 40, 3–6. [Google Scholar] [CrossRef]
- Reed, B.E.; Matsumoto, M.R. Modeling Cadmium Adsorption by Activated Carbon Using the Langmuir and Freundlich Isotherm Expressions. Sep. Sci. Technol. 1993, 28, 2179–2195. [Google Scholar] [CrossRef]
- Samrot, A.V.; Ali, H.H.; Selvarani, J.; Faradjeva, E.; Raji, P.; Prakash, P.; Kumar S, S. Adsorption Efficiency of Chemically Synthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on Crystal Violet Dye. Curr. Res. Green. Sustain. Chem. 2021, 4, 100066. [Google Scholar] [CrossRef]
- Üner, O.; Geçgel, Ü.; Bayrak, Y. Adsorption of Methylene Blue by an Efficient Activated Carbon Prepared from Citrullus Lanatus Rind: Kinetic, Isotherm, Thermodynamic, and Mechanism Analysis. Water. Air. Soil. Pollut. 2016, 227, 247. [Google Scholar] [CrossRef]
- Sheha, R.R.; Metwally, E. Equilibrium Isotherm Modeling of Cesium Adsorption onto Magnetic Materials. J. Hazard. Mater. 2007, 143, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Chabani, M.; Amrane, A.; Bensmaili, A. Kinetic Modelling of the Adsorption of Nitrates by Ion Exchange Resin. Chem. Eng. J. 2006, 125, 111–117. [Google Scholar] [CrossRef]
- Özcan, A.; Özcan, A.S.; Tunali, S.; Akar, T.; Kiran, I. Determination of the Equilibrium, Kinetic and Thermodynamic Parameters of Adsorption of Copper(II) Ions onto Seeds of Capsicum Annuum. J. Hazard. Mater. 2005, 124, 200–208. [Google Scholar] [CrossRef]
- Helfferich, F.G. Ion Exchange; Courier Corporation: Chelmsford, MA, USA, 1995; ISBN 978-0-486-68784-1. [Google Scholar]
- Onyango, M.S.; Kojima, Y.; Aoyi, O.; Bernardo, E.C.; Matsuda, H. Adsorption Equilibrium Modeling and Solution Chemistry Dependence of Fluoride Removal from Water by Trivalent-Cation-Exchanged Zeolite F-9. J. Colloid. Interface Sci. 2004, 279, 341–350. [Google Scholar] [CrossRef]
- Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H. Adsorption of Basic Dye on High-Surface-Area Activated Carbon Prepared from Coconut Husk: Equilibrium, Kinetic and Thermodynamic Studies. J. Hazard. Mater. 2008, 154, 337–346. [Google Scholar] [CrossRef]
- Liu, Y.; Bai, Q.; Lou, S.; Di, D.; Li, J.; Guo, M. Adsorption Characteristics of (−)-Epigallocatechin Gallate and Caffeine in the Extract of Waste Tea on Macroporous Adsorption Resins Functionalized with Chloromethyl, Amino, and Phenylamino Groups. J. Agric. Food Chem. 2012, 60, 1555–1566. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Jawad, A.H.; Surip, S.N. Upgrading Low Rank Coal into Mesoporous Activated Carbon via Microwave Process for Methylene Blue Dye Adsorption: Box Behnken Design and Mechanism Study. Diam. Relat. Mater. 2022, 127, 109199. [Google Scholar] [CrossRef]
- Jawad, A.H.; Ismail, K.; Ishak, M.A.M.; Wilson, L.D. Conversion of Malaysian Low-Rank Coal to Mesoporous Activated Carbon: Structure Characterization and Adsorption Properties. Chin. J. Chem. Eng. 2019, 27, 1716–1727. [Google Scholar] [CrossRef]
- Jawad, A.H.; Mohd Firdaus Hum, N.N.; Abdulhameed, A.S.; Mohd Ishak, M.A. Mesoporous Activated Carbon from Grass Waste via H3PO4-Activation for Methylene Blue Dye Removal: Modelling, Optimisation, and Mechanism Study. Int. J. Environ. Anal. Chem. 2020, 102, 6061–6077. [Google Scholar] [CrossRef]
- Kannan, N.; Sundaram, M.M. Kinetics and Mechanism of Removal of Methylene Blue by Adsorption on Various Carbons—A Comparative Study. Dye. Pigment. 2001, 51, 25–40. [Google Scholar] [CrossRef]
Adsorption | |
---|---|
Surface area (m2/g) | 751 |
Pore diameter (Amstrong) | 10 |
Pore volume (cm3/g) | 0.38 |
Initial MB Concentration (mg/mL) | (mg/g) | %LC (%) | %EE (%) |
---|---|---|---|
333.15 K | |||
0.017 | 30.31 ± 2.51 | 3.03 ± 0.25 | 87.69 ± 4.56 |
0.018 | 29.16 ± 1.27 | 2.92 ± 0.13 | 85.39 ± 1.11 |
0.019 | 33.13 ± 2.22 | 3.31 ± 0.22 | 92.09 ± 1.42 |
0.020 | 37.48 ± 3.45 | 3.75 ± 0.35 | 94.35 ± 1.72 |
310.15 K | |||
0.017 | 27.91 ± 0.41 | 2.79 ± 0.04 | 79.97 ± 2.11 |
0.018 | 28.33 ± 1.66 | 2.83 ± 0.17 | 78.95 ± 2.97 |
0.019 | 31.31 ± 1.60 | 3.13 ± 0.16 | 74.04 ± 7.38 |
0.020 | 35.04 ± 0.77 | 3.50 ± 0.08 | 81.57 ± 1.84 |
298.15 K | |||
0.017 | 18.64 ± 0.79 | 1.86 ± 0.08 | 55.21 ± 2.52 |
0.018 | 21.85 ± 1.20 | 2.18 ± 0.12 | 57.91 ± 2.50 |
0.019 | 25.31 ± 0.97 | 2.53 ± 0.10 | 57.22 ± 1.78 |
0.020 | 21.75 ± 1.03 | 2.17 ± 0.10 | 56.53 ± 0.93 |
Temperature (K) | (J/mol) | (J/mol) | (J/mol K) |
---|---|---|---|
298.15 | −666.14 | 7.11 | 2.26 |
310.15 | −693.237 | ||
333.15 | −745.173 |
Initial MB Concentration (mg/mL) | (mg/g) | %LC (%) | %EE (%) |
---|---|---|---|
333.15 K | |||
0.017 | 33.99 ± 1.30 | 3.40 ± 0.13 | 98.46 ± 0.99 |
0.018 | 33.37 ± 1.13 | 3.34 ± 0.11 | 97.76 ± 1.00 |
0.019 | 35.45 ± 1.84 | 3.55 ± 0.18 | 98.63 ± 0.23 |
0.020 | 39.22 ± 4.03 | 3.92 ± 0.40 | 98.60 ± 0.72 |
310.15 K | |||
0.017 | 32.74 ± 0.42 | 3.27 ± 0.04 | 93.80 ± 0.96 |
0.018 | 33.33 ± 1.62 | 3.33 ± 0.16 | 92.89 ± 2.17 |
0.019 | 37.17 ± 0.52 | 3.72 ± 0.05 | 87.72 ± 5.54 |
0.020 | 40.21 ± 1.30 | 4.02 ± 0.13 | 93.57 ± 1.29 |
298.15 K | |||
0.017 | 26.50 ± 0.99 | 2.65 ± 0.10 | 78.50 ± 3.42 |
0.018 | 30.09 ± 1.69 | 3.01 ± 0.17 | 79.75 ± 3.41 |
0.019 | 34.72 ± 1.50 | 3.47 ± 0.15 | 78.50 ± 2.68 |
0.020 | 31.33 ± 0.97 | 3.13 ± 0.10 | 81.47 ± 1.07 |
Initial MB Concentration (mg/mL) | |||||
---|---|---|---|---|---|
0.017 | 0.018 | 0.019 | 0.020 | ||
333.15 K | |||||
Pseudo-first order | mg MB (g particles)−1 | 32.61 | 31.99 | 34.61 | 38.65 |
k1 (g mg−1 min−1) | 1.07 | 1.07 | 1.07 | 1.07 | |
0.24 | 0.36 | 0.09 | 0.05 | ||
Pseudo-second order | mg MB (g particles)−1 | 36.89 | 37.16 | 37.23 | 40.60 |
k2 (g mg−1 day−1) | 0.123 | 0.099 | 0.214 | 0.296 | |
0.008 | 0.034 | 0.005 | 0.005 | ||
Simplified Elovich | (mg/(g day)) | 43.56 | 42.57 | 47.00 | 52.83 |
(mg/g) | 0.050 | 0.047 | 0.047 | 0.042 | |
R2 | 0.40 | 0.44 | 0.39 | 0.38 | |
310.15 K | |||||
Pseudo-first order | mg MB (g particles)−1 | 30.98 | 31.56 | 34.93 | 38.25 |
k1 (g mg−1 min−1) | 1.07 | 1.07 | 1.07 | 1.07 | |
0.44 | 0.48 | 0.55 | 0.40 | ||
Pseudo-second order | mg MB (g particles)−1 | 36.91 | 37.75 | 42.12 | 44.39 |
k2 (g mg−1 day−1) | 0.083 | 0.079 | 0.068 | 0.083 | |
0.02 | 0.03 | 0.01 | 0.01 | ||
Simplified Elovich | (mg/(g day)) | 41.20 | 41.70 | 46.39 | 51.06 |
(mg/g) | 0.048 | 0.048 | 0.042 | 0.040 | |
R2 | 0.45 | 0.45 | 0.46 | 0.43 | |
273.15 K | |||||
Pseudo-first order | mg MB (g particles)−1 | 22.58 | 25.35 | 29.94 | 26.73 |
k1 (g mg−1 min−1) | 1.07 | 1.07 | 1.07 | 1.07 | |
1.39 | 1.53 | 1.51 | 1.73 | ||
Pseudo-second order | mg MB (g particles)−1 | 33.92 | 36.15 | 42.73 | 40.97 |
k2 (g mg−1 day−1) | 0.033 | 0.037 | 0.031 | 0.026 | |
0.07 | 0.34 | 0.10 | 0.05 | ||
Simplified Elovich | (mg/(g day)) | 29.64 | 34.13 | 39.33 | 35.09 |
(mg/g) | 0.056 | 0.050 | 0.044 | 0.047 | |
R2 | 0.59 | 0.57 | 0.57 | 0.60 |
Model | Constant | 298.15 K | 310.15 K | 333.15 K |
---|---|---|---|---|
Langmuir | kL (L/mg) | −0.03 | 3 | 2.58 |
Q0 (mg/g) | −243.90 | 42.19 | 24.51 | |
Average RL | 1.00 ± 3 × 10−5 | 0.95 ± 0.003 | 0.95 ± 0.003 | |
R2 | 0.28 | 0.998 | 0.998 | |
Freundlich | kF (mg/g) | 2.28 | 4.52 | 4.83 |
(mg/L) | 1.17 | 0.18 | −0.28 | |
R2 | 0.998 | 0.990 | 0.9485 | |
Dubinin–Radushkevich | kDR (mol2 J2) | 2 | 0.02 | −0.09 |
Qm (mg/g) | 59.18 | 40.19 | 26.70 | |
E (kJ mol−1) | 250 | 7142.86 | −5555.56 | |
R2 | 0.9794 | 0.9751 | 0.9578 | |
Temkin and Pyzhev | B1 | 37.94 | 6.39 | −9.47 |
kTP (mg/g) | −0.49 | 5.04 | −3.96 | |
R2 | 0.999 | 0.990 | 0.938 | |
Halsey | n | −0.85 | −5.46 | 3.52 |
kHa | 5.07 | 1.71 × 108 | 2.84 × 10−6 | |
R2 | 0.998 | 0.990 | 0.9485 |
Initial MB Concentration (mg/mL) | kI | I |
---|---|---|
298.15 K | ||
0.017 | 3.04 | 29.38 |
0.018 | 5.06 | 27.00 |
0.019 | 3.05 | 31.83 |
0.020 | 2.91 | 36.15 |
310.15 K | ||
0.017 | 5.15 | 25.94 |
0.018 | 5.35 | 26.12 |
0.019 | 6.25 | 28.80 |
0.020 | 5.52 | 32.86 |
333.15 K | ||
0.017 | 8.60 | 14.05 |
0.018 | 9.01 | 17.07 |
0.019 | 10.31 | 19.74 |
0.020 | 10.44 | 16.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doan, L. Surface Modifications of Superparamagnetic Iron Oxide Nanoparticles with Polyvinyl Alcohol and Activated Charcoal as Methylene Blue Adsorbents. Magnetochemistry 2023, 9, 211. https://doi.org/10.3390/magnetochemistry9090211
Doan L. Surface Modifications of Superparamagnetic Iron Oxide Nanoparticles with Polyvinyl Alcohol and Activated Charcoal as Methylene Blue Adsorbents. Magnetochemistry. 2023; 9(9):211. https://doi.org/10.3390/magnetochemistry9090211
Chicago/Turabian StyleDoan, Linh. 2023. "Surface Modifications of Superparamagnetic Iron Oxide Nanoparticles with Polyvinyl Alcohol and Activated Charcoal as Methylene Blue Adsorbents" Magnetochemistry 9, no. 9: 211. https://doi.org/10.3390/magnetochemistry9090211
APA StyleDoan, L. (2023). Surface Modifications of Superparamagnetic Iron Oxide Nanoparticles with Polyvinyl Alcohol and Activated Charcoal as Methylene Blue Adsorbents. Magnetochemistry, 9(9), 211. https://doi.org/10.3390/magnetochemistry9090211