Magnetic and Impedance Analysis of Fe2O3 Nanoparticles for Chemical Warfare Agent Sensing Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ganesan, K.; Raza, S.; Vijayaraghavan, R. Chemical warfare agents. J. Pharm. Bioallied Sci. 2010, 2, 166. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Schoenitz, M.; Dreizin, E.L. Vapor-phase decomposition of dimethyl methylphosphonate (DMMP), a sarin surrogate, in presence of metal oxides. Def. Technol. 2021, 17, 1095–1114. [Google Scholar] [CrossRef]
- Munro, N. Toxicity of the Organophosphate Chemical Warfare Agents GA, GB, and VX: Implications for Public Protection. Environ. Health Perspect. 1994, 102, 18–37. [Google Scholar] [CrossRef]
- Singh, B.; Prasad, G.; Pandey, K.; Danikhel, R.; Vijayaraghavan, R. Decontamination of Chemical Warfare Agents. Def. Sci. J. 2010, 60, 428–441. [Google Scholar] [CrossRef]
- Curl, C.L.; Beresford, S.A.; Fenske, R.A.; Fitzpatrick, A.L.; Lu, C.; Nettleton, J.A.; Kaufman, J.D. Estimating pesticide exposure from dietary intake and organic food choices: The Multi-Ethnic Study of Atherosclerosis (MESA). Env. Health Perspect 2015, 123, 475–483. [Google Scholar] [CrossRef]
- Rosenstock, L.; Keifer, M.; Daniell, W.E.; McConnell, R.; Claypoole, K. Chronic central nervous system effects of acute organophosphate pesticide intoxication. Lancet 1991, 338, 223–227. [Google Scholar] [CrossRef]
- Engel, S.M.; Wetmur, J.; Chen, J.; Zhu, C.; Barr, D.B.; Canfield, R.L.; Wolff, M.S. Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood. Env. Health Perspect 2011, 119, 1182–1188. [Google Scholar] [CrossRef]
- Bouchard, M.F.; Chevrier, J.; Harley, K.G.; Kogut, K.; Vedar, M.; Calderon, N.; Trujillo, C.; Johnson, C.; Bradman, A.; Boyd Barr, D. Prenatal exposure to organophosphate pesticides and IQ in 7-year old children. Environ. Health Perspect. 2011, 119, 1189–1195. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Singh, P.; Banerjee, B.D.; Rautela, R.S.; Grover, S.S.; Rawat, D.S.; Pasha, S.T.; Jain, S.K.; Rai, A. Influence of CYP2C9, GSTM1, GSTT1 and NAT2 genetic polymorphisms on DNA damage in workers occupationally exposed to organophosphate pesticides. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2012, 741, 101–108. [Google Scholar] [CrossRef]
- Lu, C.; Barr, D.B.; Pearson, M.A.; Waller, L.A. Dietary intake and its contribution to longitudinal organophosphorus pesticide exposure in urban/suburban children. Env. Health Perspect 2008, 116, 537–542. [Google Scholar] [CrossRef]
- Eskenazi, B.; Bradman, A.; Castorina, R. Exposures of children to organophosphate pesticides and their potential adverse health effects. Environ. Health Perspect. 1999, 107, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Barr, D.B.; Wong, L.-Y.; Bravo, R.; Weerasekera, G.; Odetokun, M.; Restrepo, P.; Kim, D.-G.; Fernandez, C.; Perez, J.; Gallegos, M. Urinary concentrations of dialkylphosphate metabolites of organophosphorus pesticides: National Health and Nutrition Examination Survey 1999–2004. Int. J. Environ. Res. Public Health 2011, 8, 3063–3098. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Thakur, H.; Pathak, S.; Prabhakar, N. Acetylcholinesterase immobilised eggshell membrane-based optical biosensor for organophosphate detection. Int. J. Environ. Anal. Chem. 2015, 95, 1134–1147. [Google Scholar] [CrossRef]
- Janoš, P.; Kuráň, P.; Pilařová, V.; Trögl, J.; Šťastný, M.; Pelant, O.; Henych, J.; Bakardjieva, S.; Životský, O.; Kormunda, M. Magnetically separable reactive sorbent based on the CeO2/γ-Fe2O3 composite and its utilization for rapid degradation of the organophosphate pesticide parathion methyl and certain nerve agents. Chem. Eng. J. 2015, 262, 747–755. [Google Scholar] [CrossRef]
- Zenerino, A.; Boutard, T.; Bignon, C.; Amigoni, S.; Josse, D.; Devers, T.; Guittard, F. New CeO2 nanoparticles-based topical formulations for the skin protection against organophosphates. Toxicol. Rep. 2015, 2, 1007–1013. [Google Scholar] [CrossRef]
- Abdallah, M.A.-E.; Covaci, A. Organophosphate Flame Retardants in Indoor Dust from Egypt: Implications for Human Exposure. Environ. Sci. Technol. 2014, 48, 4782–4789. [Google Scholar] [CrossRef]
- Baker, P.A.; Goltz, M.N.; Schrand, A.M.; Kim, D.-S. Organophosphate vapor detection on gold electrodes using peptide nanotubes. Biosens. Bioelectron. 2014, 61, 119–123. [Google Scholar] [CrossRef]
- Janos, P.; Kuran, P.; Kormunda, M.; Stengl, V.; Grygar, T.M.; Dosek, M.; Stastny, M.; Ederer, J.; Pilarova, V.; Vrtoch, L. Cerium dioxide as a new reactive sorbent for fast degradation of parathion methyl and some other organophosphates. J. Rare Earths 2014, 32, 360–370. [Google Scholar] [CrossRef]
- Baker, P.A. Development of Peptide Nanotube-Modified Biosensors for Gas-Phase Organophosphate Detection. Master’s Thesis, Graduate School of Engineering and Management, Air Force Institute of Technology, New York, NY, USA, 2013. [Google Scholar]
- Musameh, M.; Notivoli, M.R.; Hickey, M.; Huynh, C.P.; Hawkins, S.C.; Yousef, J.M.; Kyratzis, I.L. Carbon nanotube-Web modified electrodes for ultrasensitive detection of organophosphate pesticides. Electrochim. Acta 2013, 101, 209–215. [Google Scholar] [CrossRef]
- Yang, Y.; Tu, H.; Zhang, A.; Du, D.; Lin, Y. Preparation and characterization of Au–ZrO2–SiO2 nanocomposite spheres and their application in enrichment and detection of organophosphorus agents. J. Mater. Chem. 2012, 22, 4977–4981. [Google Scholar] [CrossRef]
- Van Dyk, J.S.; Pletschke, B. Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere 2011, 82, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Guo, L.; Bao, Y.; Xie, J. A simple, label-free AuNPs-based colorimetric ultrasensitive detection of nerve agents and highly toxic organophosphate pesticide. Biosens. Bioelectron. 2011, 28, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Urek, Š.K.; Lobnik, A. Fluorescent-based chemical sensor for organophosphate detection. In Proceedings of the SPIE Optics + Optoelectronics, Prague, Czech Republic, 18–21 April 2011; p. 80730Y. [Google Scholar]
- Denet, E.; Espina-Benitez, M.B.; Pitault, I.; Pollet, T.; Blaha, D.; Bolzinger, M.-A.; Rodriguez-Nava, V.; Briancon, S. Metal oxide nanoparticles for the decontamination of toxic chemical and biological compounds. Int. J. Pharm. 2020, 583, 119373. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Tsay, O.G.; Atwood, D.A.; Churchill, D.G. Destruction and detection of chemical warfare agents. Chem. Rev. 2011, 111, 5345–5403. [Google Scholar] [CrossRef]
- Gordon, W.O.; Morris, J.R.; Tissue, B.M. Control of morphology in inert-gas condensation of metal oxide nanoparticles. J. Mater. Sci. 2009, 44, 4286–4295. [Google Scholar] [CrossRef]
- Eilers, H.; Tissue, B.M. Synthesis of nanophase ZnO, Eu2O3, and ZrO2 by gas-phase condensation with cw-CO2 laser heating. Mater. Lett. 1995, 24, 261–265. [Google Scholar] [CrossRef]
- Suryanarayanan, V.; Tom, R.T.; Nair, A.S.; Pradeep, T. Electrochemical investigations of oxide coated nanoparticles. Proc. Natl. Acad. Sci. USA 2004, 70, 483–488. [Google Scholar]
- Mitchell, M.B.; Sheinker, V.N.; Mintz, E.A. Adsorption and decomposition of dimethyl methylphosphonate on metal oxides. J. Phys. Chem. B 1997, 101, 11192–11203. [Google Scholar] [CrossRef]
- Soliz, J.R.; Klevitch, A.D.; Harris, C.R.; Rossin, J.A.; Ng, A.; Stroud, R.M.; Hauser, A.J.; Peterson, G.W. Structural Impact on Dielectric Properties of Zirconia. J. Phys. Chem. C 2016, 120, 26834–26840. [Google Scholar] [CrossRef]
- DeSario, P.A.; Gordon, W.O.; Balboa, A.; Pennington, A.M.; Pitman, C.L.; McEntee, M.; Pietron, J.J. Photoenhanced degradation of sarin at Cu/TiO2 composite aerogels: Roles of bandgap excitation and surface plasmon excitation. ACS Appl. Mater. Interfaces 2021, 13, 12550–12561. [Google Scholar] [CrossRef]
- Štengl, V.C.; St’astný, M.; Janoš, P.; Mazanec, K.; Perez-Diaz, J.L.; Štenglová-Netíková, I.R. From the decomposition of chemical warfare agents to the decontamination of cytostatics. Ind. Eng. Chem. Res. 2018, 57, 2114–2122. [Google Scholar] [CrossRef]
- Wu, R.-A.; Lin, C.W.; Tseng, W.J. Preparation of electrospun Cu-doped α-Fe2O3 semiconductor nanofibers for NO2 gas sensor. Ceram. Int. 2017, 43, S535–S540. [Google Scholar] [CrossRef]
- Harraz, F.A.; Faisal, M.; Jalalah, M.; Almadiy, A.; Al-Sayari, S.; Al-Assiri, M. Conducting polythiophene/α-Fe2O3 nanocomposite for efficient methanol electrochemical sensor. Appl. Surf. Sci. 2020, 508, 145226. [Google Scholar] [CrossRef]
- Guo, L.; Kou, X.; Ding, M.; Wang, C.; Dong, L.; Zhang, H.; Feng, C.; Sun, Y.; Gao, Y.; Sun, P. Reduced graphene oxide/α-Fe2O3 composite nanofibers for application in gas sensors. Sens. Actuators B Chem. 2017, 244, 233–242. [Google Scholar] [CrossRef]
- Geupel, A.; Schönauer, D.; Röder-Roith, U.; Kubinski, D.; Mulla, S.; Ballinger, T.; Chen, H.-Y.; Visser, J.; Moos, R. Integrating nitrogen oxide sensor: A novel concept for measuring low concentrations in the exhaust gas. Sens. Actuators B Chem. 2010, 145, 756–761. [Google Scholar] [CrossRef]
- Boarino, L.; Baratto, C.; Geobaldo, F.; Amato, G.; Comini, E.; Rossi, A.; Faglia, G.; Lerondel, G.; Sberveglieri, G. NO2 monitoring at room temperature by a porous silicon gas sensor. Mater. Sci. Eng. B 2000, 69, 210–214. [Google Scholar] [CrossRef]
- Chen, D.A.; Ratliff, J.S.; Hu, X.; Gordon, W.O.; Senanayake, S.D.; Mullins, D.R. Dimethyl methylphosphonate decomposition on fully oxidized and partially reduced ceria thin films. Surf. Sci. 2010, 604, 574–587. [Google Scholar] [CrossRef]
- Janoš, P.; Henych, J.; Pelant, O.; Pilařová, V.; Vrtoch, L.; Kormunda, M.; Mazanec, K.; Štengl, V. Cerium oxide for the destruction of chemical warfare agents: A comparison of synthetic routes. J. Hazard. Mater. 2016, 304, 259–268. [Google Scholar] [CrossRef]
- Khuspe, G.; Sakhare, R.; Navale, S.; Chougule, M.; Kolekar, Y.; Mulik, R.; Pawar, R.; Lee, C.; Patil, V. Nanostructured SnO2 thin films for NO2 gas sensing applications. Ceram. Int. 2013, 39, 8673–8679. [Google Scholar] [CrossRef]
- Sakhare, R.; Khuspe, G.; Navale, S.; Mulik, R.; Chougule, M.; Pawar, R.; Lee, C.; Sen, S.; Patil, V. Nanocrystalline SnO2 thin films: Structural, morphological, electrical transport and optical studies. J. Alloys Compd. 2013, 563, 300–306. [Google Scholar] [CrossRef]
- Mohanta, D.; Gupta, S.V.; Gadore, V.; Paul, S.; Ahmaruzzaman, M. SnO2 nanoparticles–CeO2 nanorods enriched with oxygen vacancies for bifunctional sensing performances toward toxic CO gas and arsenate ions. ACS Omega 2022, 7, 20357–20368. [Google Scholar] [CrossRef] [PubMed]
- Navale, S.T.; Bandgar, D.K.; Nalage, S.R.; Khuspe, G.D.; Chougule, M.A.; Kolekar, Y.D.; Sen, S.; Patil, V.B. Synthesis of Fe2O3 nanoparticles for nitrogen dioxide gas sensing applications. Ceram. Int. 2013, 39, 6453–6460. [Google Scholar] [CrossRef]
- Pan, H.; Li, Z.; Lou, C.; Lei, G.; Xie, J.; Zheng, W.; Liu, X.; Zhang, J. Anchoring Fe2O3 nanosheets on NiO nanoprisms to regulate the electronic properties for improved n-butanol detection. Sens. Actuators B Chem. 2022, 354, 131223. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.-J.; Chen, S.-S.; Liu, C.-C.; Chen, L.; Liu, Z.-G.; Guo, Z. Chemiresistive sensor based on hollow Fe2O3 octahedrons incorporated into porous In2O3 nanofibers for enhanced sensing performance and recognition toward triethylamine. Sens. Actuators B Chem. 2023, 393, 134129. [Google Scholar] [CrossRef]
- Baratto, C.; Sberveglieri, G.; Onischuk, A.; Caruso, B.; Di Stasio, S. Low temperature selective NO2 sensors by nanostructured fibres of ZnO. Sens. Actuators B Chem. 2004, 100, 261–265. [Google Scholar] [CrossRef]
- Mun, Y.; Park, S.; An, S.; Lee, C.; Kim, H.W. NO2 gas sensing properties of Au-functionalized porous ZnO nanosheets enhanced by UV irradiation. Ceram. Int. 2013, 39, 8615–8622. [Google Scholar] [CrossRef]
- Cheng, Y.; Guo, H.; Wang, Y.; Zhao, Y.; Li, Y.; Liu, L.; Li, H.; Duan, H. Low cost fabrication of highly sensitive ethanol sensor based on Pd-doped α-Fe2O3 porous nanotubes. Mater. Res. Bull. 2018, 105, 21–27. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Krishnamoorthy, K.; Sekar, C.; Wilson, J.; Kim, S.J. A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl. Catal. B Environ. 2014, 148, 22–28. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, X.; Sun, C. Transition-metal-doped Fe2O3 nanoparticles for oxygen evolution reaction. Prog. Nat. Sci. Mater. Int. 2018, 28, 430–436. [Google Scholar] [CrossRef]
- Friedrich, R.P.; Cicha, I.; Alexiou, C. Iron oxide nanoparticles in regenerative medicine and tissue engineering. Nanomaterials 2021, 11, 2337. [Google Scholar] [CrossRef]
- Dadfar, S.M.; Roemhild, K.; Drude, N.I.; von Stillfried, S.; Knüchel, R.; Kiessling, F.; Lammers, T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 2019, 138, 302–325. [Google Scholar] [CrossRef] [PubMed]
- Niska, K.; Zielinska, E.; Radomski, M.W.; Inkielewicz-Stepniak, I. Metal nanoparticles in dermatology and cosmetology: Interactions with human skin cells. Chem. Biol. Interact. 2018, 295, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.R.; Soliz, J.R.; Klevitch, A.D.; Bartz, M.J.; Rossin, J.A.; Fountain, A.W.; Hauser, A.J.; Peterson, G.W. Sensing of NO2 with zirconium hydroxide via frequency-dependent electrical impedance spectroscopy. Dalton Trans. 2017, 46, 10791–10797. [Google Scholar] [CrossRef] [PubMed]
- Peterson, G.W.; Mcentee, M.; Harris, C.R.; Klevitch, A.D.; Fountain, A.W.; Soliz, J.; Balboa, A.; Hauser, A. Detection of an explosive simulant via electrical impedance spectroscopy utilizing the UiO-66-NH2 metal–organic framework. Dalton Trans. 2016, 45, 17113–17116. [Google Scholar] [CrossRef]
- Henderson, M.A. Surface Chemistry of Trimethyl Phosphate on α-Fe2O3. J. Phys. Chem. C 2011, 115, 23527–23534. [Google Scholar] [CrossRef]
- Henderson, M.A.; Jin, T.; White, J.M. A TPD/AES study of the interaction of dimethyl methylphosphonate with iron oxide (.alpha.-Fe2O3) and silicon dioxide. J. Phys. Chem. 1986, 90, 4607–4611. [Google Scholar] [CrossRef]
- Tesfai, T.M.; Sheinker, V.N.; Mitchell, M.B. Decomposition of Dimethyl Methylphosphonate (DMMP) on Alumina-Supported Iron Oxide. J. Phys. Chem. B 1998, 102, 7299–7302. [Google Scholar] [CrossRef]
- Zhang, X.; Niu, Y.; Meng, X.; Li, Y.; Zhao, J. Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmospheres. CrystEngComm 2013, 15, 8166–8172. [Google Scholar] [CrossRef]
- Chen, L.X.; Liu, T.; Thurnauer, M.C.; Csencsits, R.; Rajh, T. Fe2O3 nanoparticle structures investigated by X-ray absorption near-edge structure, surface modifications, and model calculations. J. Phys. Chem. B 2002, 106, 8539–8546. [Google Scholar] [CrossRef]
- Nagao, M.; Otani, M.; Tomita, H.; Kanzaki, S.; Yamada, A.; Kanno, R. New three-dimensional electrode structure for the lithium battery: Nano-sized γ-Fe2O3 in a mesoporous carbon matrix. J. Power Sources 2011, 196, 4741–4746. [Google Scholar] [CrossRef]
- Teramura, Y.; Tanaka, A.; Jo, T. Effect of coulomb interaction on the X-ray magnetic circular dichroism spin sum rule in 3 d transition elements. J. Phys. Soc. Jpn. 1996, 65, 1053–1055. [Google Scholar] [CrossRef]
- Nibarger, J.; Lopusnik, R.; Celinski, Z.; Silva, T. Variation of magnetization and the Landé g factor with thickness in Ni–Fe films. Appl. Phys. Lett. 2003, 83, 93–95. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Gota, S.; Jollet, F.; Pollak, M.; Gautier-Soyer, M.; Natoli, C.R. Characterization of iron oxides by x-ray absorption at the oxygen K edgeusing a full multiple-scattering approach. Phys. Rev. B 1997, 55, 2570–2577. [Google Scholar] [CrossRef]
- Colliex, C.; Manoubi, T.; Ortiz, C. Electron-energy-loss-spectroscopy near-edge fine structures in the iron-oxygen system. Phys. Rev. B 1991, 44, 11402. [Google Scholar] [CrossRef]
- Mohamed, A.Y.; Park, W.G.; Cho, D.-Y. Chemical structure and magnetism of FeOx/Fe2O3 interface studied by X-ray absorption spectroscopy. Magnetochemistry 2020, 6, 33. [Google Scholar] [CrossRef]
- Bielecki, M.; Witkiewicz, Z.; Rogala, P. Sensors to detect sarin simulant. Crit. Rev. Anal. Chem. 2021, 51, 299–311. [Google Scholar] [CrossRef]
- Kalnina, R.; Priednieks, V.; Lukins, K.; Gasparjans, A.; Rijkure, A. Corrosion and electrochemical impedance spectroscopy of thin TiALN and TiCN PVD coatings for protection of ballast water screen filters. Latv. J. Phys. Tech. Sci. 2021, 58, 64–78. [Google Scholar] [CrossRef]
- Li, X.; Dutta, P.K. Interaction of Dimethylmethylphosphonate with Zeolite Y: Impedance-Based Sensor for Detecting Nerve Agent Simulants. J. Phys. Chem. C 2010, 114, 7986–7994. [Google Scholar] [CrossRef]
- Sohrabi, H.; Ghasemzadeh, S.; Ghoreishi, Z.; Majidi, M.R.; Yoon, Y.; Dizge, N.; Khataee, A. Metal-organic frameworks (MOF)-based sensors for detection of toxic gases: A review of current status and future prospects. Mater. Chem. Phys. 2023, 299, 127512. [Google Scholar] [CrossRef]
- Chittibabu, S.K.; Chintagumpala, K.; Chandrasekhar, A. Porous dielectric materials based wearable capacitance pressure sensors for vital signs monitoring: A review. Mater. Sci. Semicond. Process. 2022, 151, 106976. [Google Scholar] [CrossRef]
- Liu, S.; Duan, R.; He, S.; Liu, H.; Huang, M.; Liu, X.; Liu, W.; Zhu, C. Research progress on dielectric properties of PU and its application on capacitive sensors and OTFTs. React. Funct. Polym. 2022, 181, 105420. [Google Scholar] [CrossRef]
- Afroozeh, A.; Zeinali, B. Improving the sensitivity of new passive optical fiber ring sensor based on meta-dielectric materials. Opt. Fiber Technol. 2022, 68, 102797. [Google Scholar] [CrossRef]
- Liu, K.; Qin, M.; Shi, Q.; Wang, G.; Zhang, J.; Ding, N.; Xi, H.; Liu, T.; Kong, J.; Fang, Y. Fast and selective detection of trace chemical warfare agents enabled by an ESIPT-based fluorescent film sensor. Anal. Chem. 2022, 94, 11151–11158. [Google Scholar] [CrossRef] [PubMed]
- Revilla-Cuesta, A.; Abajo-Cuadrado, I.; Medrano, M.; Salgado, M.M.; Avella, M.; Rodríguez, M.T.; García-Calvo, J.; Torroba, T. Silica Nanoparticle/Fluorescent Dye Assembly Capable of Ultrasensitively Detecting Airborne Triacetone Triperoxide: Proof-of-Concept Detection of Improvised Explosive Devices in the Workroom. ACS Appl. Mater. Interfaces 2023, 15, 32024–32036. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Cho, B.K. Conductometric gas sensors based on metal oxides modified with gold nanoparticles: A review. Microchim. Acta 2016, 183, 1033–1054. [Google Scholar] [CrossRef]
- Amoah, P.K.; Hassan, Z.M.; Lin, P.; Redel, E.; Baumgart, H.; Obeng, Y.S. Broadband dielectric spectroscopic detection of ethanol: A side-by-side comparison of ZnO and HKUST-1 MOFs as sensing media. Chemosensors 2022, 10, 241. [Google Scholar] [CrossRef]
- Koo, W.-T.; Jang, J.-S.; Kim, I.-D. Metal-organic frameworks for chemiresistive sensors. Chem 2019, 5, 1938–1963. [Google Scholar] [CrossRef]
- Sharma, A.K.; Mahajan, A. Potential applications of chemiresistive gas sensors. In Carbon Nanomaterials and Their Nanocomposite-Based Chemiresistive Gas Sensors; Elsevier: Amsterdam, The Netherlands, 2023; pp. 223–245. [Google Scholar]
- Patil, L.A.; Bari, A.R.; Shinde, M.D.; Deo, V.; Kaushik, M.P. Detection of dimethyl methyl phosphonate—A simulant of sarin: The highly toxic chemical warfare—Using platinum activated nanocrystalline ZnO thick films. Sens. Actuators B Chem. 2012, 161, 372–380. [Google Scholar] [CrossRef]
- Powroźnik, P.; Solecka, B.; Pander, P.; Jakubik, W.; Dias, F.B.; Krzywiecki, M. Zinc Phthalocyanine Sensing Mechanism Quantification for Potential Application in Chemical Warfare Agent Detectors. Sensors 2022, 22, 9947. [Google Scholar] [CrossRef]
Compound | Fe L3/L2 Branching Ratio | Spin Moment mS per Fe by XMCD (μB/Fe) | Orbital Moment mL per Fe by XMCD (μB/Fe) | mL/mS | g-Factor | Total Moment per Fe Site by XMCD (μB/Fe) | Magnetization per Fe Site by SQUID (μB/Fe) |
---|---|---|---|---|---|---|---|
Fe2O3 | 3.0 (2) | 0.91 (4) | 0.12 (2) | 0.13 (2) | 2.26 (2) | 1.03 (5) | 1.03 |
Fe2O3, DMCP | 3.0 (1) | 0.60 (3) | 0.004 (4) | 0.007 (6) | 2.013 (6) | 0.60 (3) | 0.64 |
Fe2O3, DMMP | 3.4 (2) | 0.78 (4) | 0.03 (1) | 0.04 (1) | 2.09 (1) | 0.81 (4) | 0.79 |
Fe2O3, DIMP | 3.3 (2) | 0.89 (4) | 0.11 (2) | 0.12 (2) | 2.25 (2) | 1.00 (5) | |
Fe2O3, 2-CEES | 3.0 (2) | 0.84 (4) | 0.09 (1) | 0.10 (1) | 2.21 (1) | 0.92 (4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soliz, J.R.; Ranjit, S.; Phillips, J.J.; Rosenberg, R.A.; Hauser, A.J. Magnetic and Impedance Analysis of Fe2O3 Nanoparticles for Chemical Warfare Agent Sensing Applications. Magnetochemistry 2023, 9, 206. https://doi.org/10.3390/magnetochemistry9090206
Soliz JR, Ranjit S, Phillips JJ, Rosenberg RA, Hauser AJ. Magnetic and Impedance Analysis of Fe2O3 Nanoparticles for Chemical Warfare Agent Sensing Applications. Magnetochemistry. 2023; 9(9):206. https://doi.org/10.3390/magnetochemistry9090206
Chicago/Turabian StyleSoliz, Jennifer R., Smriti Ranjit, Joshua J. Phillips, Richard A. Rosenberg, and Adam J. Hauser. 2023. "Magnetic and Impedance Analysis of Fe2O3 Nanoparticles for Chemical Warfare Agent Sensing Applications" Magnetochemistry 9, no. 9: 206. https://doi.org/10.3390/magnetochemistry9090206
APA StyleSoliz, J. R., Ranjit, S., Phillips, J. J., Rosenberg, R. A., & Hauser, A. J. (2023). Magnetic and Impedance Analysis of Fe2O3 Nanoparticles for Chemical Warfare Agent Sensing Applications. Magnetochemistry, 9(9), 206. https://doi.org/10.3390/magnetochemistry9090206