Transition-Layer Implantation for Improving Magnetoelectric Response in Co-fired Laminated Composite
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giraldo, M.; Meier, Q.N.; Bortis, A.; Nowak, D.; Spaldin, N.A.; Fiebig, M.; Weber, M.C.; Lottermoser, T. Magnetoelectric coupling of domains, domain walls and vortices in a multiferroic with independent magnetic and electric order. Nat. Commun. 2021, 12, 3093. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Chen, H.; Sun, N.X. Magnetoelectric materials and devices. APL Mater. 2021, 9, 041114. [Google Scholar] [CrossRef]
- Ponet, L.; Artyukhin, S.; Kain, T.; Wettstein, J.; Pimenov, A.; Shuvaev, A.; Wang, X.; Cheong, S.W.; Mostovoy, M.; Pimenov, A. Topologically protected magnetoelectric switching in a multiferroic. Nature 2022, 607, 81. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019, 18, 203. [Google Scholar] [CrossRef]
- Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 2016, 1, 1–14. [Google Scholar] [CrossRef]
- Yīng, Y.; Zülicke, U. Magnetoelectricity in two-dimensional materials. Adv. Phys. 2022, 7, 2032343. [Google Scholar] [CrossRef]
- Bersuker, I.B. Origin of perovskite multiferroicity and magnetoelectric-multiferroic effects—The role of electronic spin in spontaneous polarization of crystals. Magnetochemistry 2022, 8, 9. [Google Scholar] [CrossRef]
- Martins, P.; Lima, A.C.; L’Vov, V.A.; Pereira, N.; Sratong-on, P.; Hosoda, H.; Chernenko, V.; Lanceros-Mendez, S. In a search for effective giant magnetoelectric coupling: Magnetically induced elastic resonance in Ni-Mn-Ga/P(VDF-TrFE) composites. Appl. Mater. Today 2022, 29, 101682. [Google Scholar] [CrossRef]
- Gupta, R.; Kotnala, R. A review on current status and mechanisms of room-temperature magnetoelectric coupling in multiferroics for device applications. J. Mater. Sci. 2022, 57, 12710. [Google Scholar] [CrossRef]
- Bansal, P.; Syal, R.; Singh, A.K.; Kumar, S. Enhanced magnetoelectric coupling in environmental friendly lead-free Ni0.8Zn0.2Fe2O4–Ba0.85Ca0.15Zr0.1Ti0.9O3 laminate composites. J. Mater. Sci. Mater. El. 2021, 32, 25481. [Google Scholar] [CrossRef]
- Venet, M.; Santa-Rosa, W.; Amorín, H.; Ramos, P.; Algueró, M. Enhanced magnetoelectric response of cofired ceramic layered composites by adjusting the grain boundary conductivity of the magnetostrictive component. Ceram. Int. 2021, 47, 17186. [Google Scholar] [CrossRef]
- Yang, N.; Wu, H.; Wang, S.; Yuan, G.; Zhang, J.; Sokolov, O.; Bichurin, M.; Wang, K.; Wang, Y. Ultrasensitive flexible magnetoelectric sensor. APL Mater. 2021, 9, 021123. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, Y.; Priya, S. Giant self-biased magnetoelectric coupling in co-fired textured layered composites. Appl. Phys. Lett. 2013, 102, 052907. [Google Scholar] [CrossRef]
- Niu, Y.; Ren, H. A high efficiency standalone magnetoelectric energy converter based on Terfenol-D and PZT laminate. Appl. Phys. Lett. 2021, 118, 044101. [Google Scholar] [CrossRef]
- Kalgin, A.; Kobyakov, I. Magnetoelectric response and internal friction in two-layer ceramic composites based on Mn0.4Zn0.6Fe2O4 magnetostrictor and PbZr0.53Ti0.47O3 piezoelectric. J. Alloy Compd. 2022, 899, 163318. [Google Scholar] [CrossRef]
- Kumar, A.; Park, S.H.; Patil, D.R.; Hwang, G.-T.; Ryu, J. Effect of aspect ratio of piezoelectric constituents on the energy harvesting performance of magneto-mechano-electric generators. Energy 2022, 239, 122078. [Google Scholar] [CrossRef]
- Moosavi, A.; Bahrevar, M.; Aghaei, A.; Ramos, P.; Algueró, M.; Amorín, H. High-field electromechanical response of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 across its morphotropic phase boundary. J. Phys. D Appl. Phys. 2014, 47, 055304. [Google Scholar]
- Otoničar, M.; Škapin, S.; Spreitzer, M.; Suvorov, D. Compositional range and electrical properties of the morphotropic phase boundary in the Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 system. J. Eur. Ceram. Soc. 2010, 30, 971. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, G.; Lin, Y. Enhanced magnetoelectric properties of the laminated BaTiO3/CoFe2O4 composites. J. Alloy Compd. 2015, 644, 390. [Google Scholar] [CrossRef]
- Praveen, J.P.; Monaji, V.R.; Kumar, S.D.; Subramanian, V.; Das, D. Enhanced magnetoelectric response from lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3–CoFe2O4 laminate and particulate composites. Ceram. Int. 2018, 44, 4298. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, G.; Lin, Y. Enhanced electrical properties and observation of magnetoelectric effect in the BiFeO3–BaTiO3/CoFe2O4 laminate composites. Mater. Lett. 2016, 164, 388. [Google Scholar] [CrossRef]
- Li, S.B.; Wang, C.B.; Shen, Q.; Hu, M.Z.; Zhang, L.M. Thickness ratio effect on multiferroic properties of BCZT-LCMO laminated composites prepared by plasma activated sintering. J. Alloy Compd. 2018, 762, 415. [Google Scholar] [CrossRef]
- Dinesh Kumar, S.; Magesh, J.; Subramanian, V. Temperature dependent magnetoelectric studies in co-fired bilayer laminate composites. J. Alloy Compd. 2018, 753, 595. [Google Scholar] [CrossRef]
- Amorín, H.; Algueró, M.; Campo, R.D.; Vila, E.; Ramos, P.; Dollé, M.; Romaguera-Barcelay, Y.; Cruz, J.P.D.L.; Castro, A. High-sensitivity piezoelectric perovskites for magnetoelectric composites. Sci. Technol. Adv. Mat. 2015, 16, 016001. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Xing, Z.; Dong, S.; Li, J.; Viehland, D. Magnetoelectric laminate composites: An overview. J. Am. Ceram. Soc. 2008, 91, 351. [Google Scholar] [CrossRef]
- Islam, R.A.; Rong, C.-b.; Liu, J.; Priya, S. Effect of gradient composite structure in cofired bilayer composites of Pb(Zr0.56Ti0.44)O3–Ni0.6Zn0.2Cu0.2Fe2O4 system on magnetoelectric coefficient. J. Mater. Sci. 2008, 43, 6337. [Google Scholar] [CrossRef]
- Wang, Y.; Pu, Y.; Shi, Y.; Cui, Y. Ferroelectric, magnetic, magnetoelectric properties of the Ba0.9Ca0.1Ti0.9Zr0.1O3/CoFe2O4 laminated composites. J. Mater. Sci. Mater. El. 2017, 28, 11125. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, S.; Wei, K.; Yan, S.; Huang, S.; Deng, L. Tunable magnetoelectric response in cofired (Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3)/CoFe2O4 laminated composite. J. Electron. Mater. 2020, 49, 650. [Google Scholar] [CrossRef]
- Liu, S.; Yan, S.; Luo, H.; Yao, L.; Li, Y.; He, J.; He, L.; Huang, S.; Deng, L. Magnetoelectric effect in cofired lead-free laminated (Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3)/(Ni0.8Zn0.2)Fe2O4 composites. Phys. Status Solidi A 2017, 214, 1700533. [Google Scholar] [CrossRef]
- Feng, M.; Wang, J.-j.; Hu, J.-M.; Wang, J.; Ma, J.; Li, H.-B.; Shen, Y.; Lin, Y.-H.; Chen, L.-Q.; Nan, C.-W. Optimizing direct magnetoelectric coupling in Pb(Zr,Ti)O3/Ni multiferroic film heterostructures. Appl. Phys. Lett. 2015, 106, 072901. [Google Scholar] [CrossRef]
- Hwang, G.-T.; Palneedi, H.; Jung, B.M.; Kwon, S.J.; Peddigari, M.; Min, Y.; Kim, J.-W.; Ahn, C.-W.; Choi, J.-J.; Hahn, B.-D.; et al. Enhancement of magnetoelectric conversion achieved by optimization of interfacial adhesion layer in laminate composites. ACS Appl. Mater. Inter. 2018, 10, 32323. [Google Scholar] [CrossRef]
- Liu, S.; Yan, S.; Luo, H.; He, L.; He, J.; Hu, Z.; Huang, S.; Deng, L. Size-dependent magnetoelectric response of (Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3)-(Ni0.8Zn0.2)Fe2O4 particulate composites. Ceram. Int. 2018, 44, 3712. [Google Scholar] [CrossRef]
- Lidjici, H.; Lagoun, B.; Berrahal, M.; Rguitti, M.; Hentatti, M.A.; Khemakhem, H. XRD, Raman and electrical studies on the (1−x)(Na0.5Bi0.5)TiO3−xBaTiO3 lead free ceramics. J. Alloy Compd. 2015, 618, 643. [Google Scholar] [CrossRef]
- Rout, D.; Moon, K.-S.; Rao, V.S.; Kang, S.-J.L. Study of the morphotropic phase boundary in the lead-free Na1/2Bi1/2TiO3-BaTiO3 system by Raman spectroscopy. J. Ceram. Soc. Jpn. 2009, 117, 797. [Google Scholar] [CrossRef]
- Wang, L.; Yu, G.; Zhu, C.; Yao, M.; Liu, F.; Kong, W. Synthesis and room-temperature multiferroic properties of lead-free Bi4Ti3O12/NiFe2O4 nanocomposite films. Ceram. Int. 2020, 46, 16973. [Google Scholar] [CrossRef]
- Kumari, M.; Singh, A.; Gupta, A.; Prakash, C.; Chatterjee, R. Self-biased large magnetoelectric coupling in co-sintered Bi0.5Na0.5TiO3 based piezoelectric and CoFe2O4 based magnetostrictive bilayered composite. J. Appl. Phys. 2014, 116, 244101. [Google Scholar] [CrossRef]
- Filippov, D.; Liu, Y.; Zhou, P.; Ge, B.; Liu, J.; Zhang, J.; Zhang, T.; Srinivasan, G. Low-frequency magnetoelectric effects in magnetostrictive–piezoelectric bilayers: Longitudinal and bending deformations. J. Compos. Sci. 2021, 5, 287. [Google Scholar] [CrossRef]
- Wang, Y.; Pu, Y.; Tian, Y.; Li, X.; Wang, Z.; Shi, Y.; Zhang, J.; Zhang, G. Enhanced magnetoelectric properties of the laminated Ba0.9Ca0.1Ti0. 9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4 composites. J. Alloy Compd. 2017, 696, 1307. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, G.; Lin, Y.; Wang, F. Preparation and characterization of BaTiO3–Bi0.5Na0.5TiO3/BiY2Fe5O12 laminate composites. J. Mater. Sci. Mater. El. 2016, 27, 6586. [Google Scholar] [CrossRef]
- Santa Rosa, W.; Venet, M.; M’Peko, J.-C.; Amorin, H.; Alguero, M. Processing issues and their influence in the magnetoelectric performance of (K,Na)NbO3/CoFe2O4-based layered composites. J. Alloy Compd. 2018, 744, 691. [Google Scholar] [CrossRef]
- Bichurin, M.; Petrov, V.; Srinivasan, G. Theory of low-frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites. J. Appl. Phys. 2002, 92, 7681. [Google Scholar] [CrossRef]
- Bichurin, M.; Petrov, V.; Srinivasan, G. Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys. Rev. B 2003, 68, 054402. [Google Scholar] [CrossRef]
- Dong, S.; Zhai, J. Equivalent circuit method for static and dynamic analysis of magnetoelectric laminated composites. Chinese Sci. Bull. 2008, 53, 2113. [Google Scholar] [CrossRef]
- Takenaka, T.; Maruyama, K.-i.M.K.-i.; Sakata, K.S.K. (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 1991, 30, 2236. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liao, S.; Zou, H.; Qin, B.; Deng, L. Transition-Layer Implantation for Improving Magnetoelectric Response in Co-fired Laminated Composite. Magnetochemistry 2023, 9, 50. https://doi.org/10.3390/magnetochemistry9020050
Liu S, Liao S, Zou H, Qin B, Deng L. Transition-Layer Implantation for Improving Magnetoelectric Response in Co-fired Laminated Composite. Magnetochemistry. 2023; 9(2):50. https://doi.org/10.3390/magnetochemistry9020050
Chicago/Turabian StyleLiu, Sheng, Sihua Liao, Hongxiang Zou, Bo Qin, and Lianwen Deng. 2023. "Transition-Layer Implantation for Improving Magnetoelectric Response in Co-fired Laminated Composite" Magnetochemistry 9, no. 2: 50. https://doi.org/10.3390/magnetochemistry9020050
APA StyleLiu, S., Liao, S., Zou, H., Qin, B., & Deng, L. (2023). Transition-Layer Implantation for Improving Magnetoelectric Response in Co-fired Laminated Composite. Magnetochemistry, 9(2), 50. https://doi.org/10.3390/magnetochemistry9020050