Magnetization Dynamics in FexCo1-x in Presence of Chemical Disorder
Abstract
1. Introduction
2. Methodology
2.1. Spin Transport at Low Temperatures
2.2. Recursive Approach to Dynamical Spin Response Functions
2.3. Dynamical Spin Response Functions in the Presence of Disorder: The Augmented Space Approach
2.4. Atomistic Spin Dynamics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moriya, T. Electron Correlation and Magnetism in Narrow-Band Systems: Proceedings of the Third Taniguchi International Symposium, Mount Fuji, Japan, 1–5 November 1980; Springer Science, Business Media: Berlin/Heidelberg, Germany, 2012; Volume 29. [Google Scholar]
- Moriya, T.; Hasegawa, H. A Unified Theory of Magnetism in Narrow Band Electron Systems. J. Phys. Soc. Jpn. 1980, 48, 1490. [Google Scholar] [CrossRef]
- Antropov, V.P.; Katsnelson, M.I.; Harmon, B.N.; van Schilfgaarde, M.; Kusnezov, D. Spin dynamics in magnets: Equation of motion and finite temperature effects. Phys. Rev. B 1996, 54, 1019. [Google Scholar] [CrossRef] [PubMed]
- Nowak, U.; Mryasov, O.N.; Wieser, R.; Guslienko, K.; Chantrell, R. Spin dynamics of magnetic nanoparticles: Beyond Brown’s theory. Phys. Rev. B 2005, 72, 172410. [Google Scholar] [CrossRef]
- Hellsvik, J.; Thonig, D.; Modin, K.; Iusan, D.; Bergman, A.; Eriksson, O.; Bergqvist, L.; Delin, A. General method for atomistic spin-lattice dynamics with first-principles accuracy. Phys. Rev. B 2019, 99, 104302. [Google Scholar] [CrossRef]
- Eriksson, O.; Bergman, A.; Bergqvist, L.; Hellsvik, J. Atomistic Spin Dynamics: Foundations and Applications; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Skubic, B.; Hellsvik, J.; Nordström, L.; Eriksson, O. A method for atomistic spin dynamics simulations: Implementation and examples. J. Phys. Condens. Matter 2008, 20, 315203. [Google Scholar] [CrossRef]
- Dalosto, S.; Riera, J. Magnetic order in ferromagnetically coupled spin ladders. Phys. Rev. B 2000, 62, 928. [Google Scholar] [CrossRef]
- Hopster, H. Spin-polarized electron energy loss spectroscopy. Surf. Rev. Lett. 1994, 1, 89. [Google Scholar] [CrossRef]
- Vollmer, R.; Etzkorn, M.; Kumar, P.S.A.; Ibach, H.; Kirschner, J. Spin-Polarized Electron Energy Loss Spectroscopy of High Energy, Large Wave Vector Spin Waves in Ultrathin fcc Co Films on Cu(001). Phys. Rev. Lett. 2003, 91, 147201. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, R.; Etzkorn, M.; Kumar, P.A.; Ibach, H.; Kirschner, J. Spin-wave excitation observed by spin-polarized electron energy loss spectroscopy: A new method for the investigation of surface- and thin-film spin waves on the atomic scale. Thin Solid Films 2004, 464, 42. [Google Scholar] [CrossRef]
- Vollmer, R.; Etzkorn, M.; Kumar, P.A.; Ibach, H.; Kirschner, J. Spin-polarized electron energy loss spectroscopy: A method to measure magnon energies. J. Magn. Magn. Mater. 2004, 272, 2126. [Google Scholar] [CrossRef]
- Zhang, Y.; Chuang, T.-H.; Zakeri, K.; Kirschner, J. Relaxation Time of Terahertz Magnons Excited at Ferromagnetic Surfaces. Phys. Rev. Lett. 2012, 109, 087203. [Google Scholar] [CrossRef] [PubMed]
- Zakeri, K.; Zhang, Y.; Chuang, T.-H.; Kirschner, J. Magnon Lifetimes on the Fe(110) Surface: The Role of Spin-Orbit Coupling. Phys. Rev. Lett. 2012, 108, 197205. [Google Scholar] [CrossRef] [PubMed]
- Zakeri, K.; Zhang, Y.; Kirschner, J. Surface magnons probed by spin-polarized electron energy loss spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2013, 189, 157. [Google Scholar] [CrossRef]
- Prokop, J.; Zhang, Y.; Tudosa, I.; Peixoto, T.R.F.; Zakeri, K.; Kirschner, J. Magnons in a Ferromagnetic Monolayer. Phys. Rev. Lett. 2009, 102, 177206. [Google Scholar] [CrossRef]
- Bergman, A.; Taroni, A.; Bergqvist, L.; Hellsvik, J.; Hjörvarsson, B.; Eriksson, O. Magnon softening in a ferromagnetic monolayer: A first-principles spin dynamics study. Phys. Rev. B 2010, 81, 144416. [Google Scholar] [CrossRef]
- Fidler, J.; Schrefl, T. Micromagnetic modelling - the current state of the art. J. Phys. D Appl. Phys. 2000, 33, R135. [Google Scholar] [CrossRef]
- Krieger, K.; Dewhurst, J.; Elliott, P.; Sharma, S.; Gross, E. Laser-Induced Demagnetization at Ultrashort Time Scales: Predictions of TDDFT. J. Chem. Theory Comput. 2015, 11, 4870. [Google Scholar] [CrossRef]
- Gilbert, T.L. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 2004, 40, 3443. [Google Scholar] [CrossRef]
- Shimizu, M. Itinerant electron magnetism. Rep. Prog. Phys. 1981, 44, 329. [Google Scholar] [CrossRef]
- Sabiryanov, R.F.; Bose, S.K.; Mryasov, O.N. Effect of topological disorder on the itinerant magnetism of Fe and Co. Phys. Rev. B 1995, 51, 8958. [Google Scholar] [CrossRef]
- Sabiryanov, R.F.; Jaswal, S.S. Magnons and Magnon-Phonon Interactions in Iron. Phys. Rev. Lett. 1999, 83, 2062. [Google Scholar] [CrossRef]
- Bonetti, S.; Hoffmann, M.C.; Sher, M.-J.; Chen, Z.; Yang, S.-H.; Samant, M.G.; Parkin, S.S.P.; Dürr, H.A. THz-Driven Ultrafast Spin-Lattice Scattering in Amorphous Metallic Ferromagnets. Phys. Rev. Lett. 2016, 117, 087205. [Google Scholar] [CrossRef] [PubMed]
- Sadhukhan, B.; Bergman, A.; Kvashnin, Y.O.; Hellsvik, J.; Delin, A. Spin-lattice couplings in two-dimensional CrI3 from first-principles computations. Phys. Rev. B 2022, 105, 104418. [Google Scholar] [CrossRef]
- Kamberskỳ, V. On the Landau–Lifshitz relaxation in ferromagnetic metals. Can. J. Phys. 1970, 48, 2906. [Google Scholar] [CrossRef]
- Kamberskỳ, V. On ferromagnetic resonance damping in metals. Czechoslov. J. Phys. B 1976, 26, 1366. [Google Scholar] [CrossRef]
- Brataas, A.; Tserkovnyak, Y.; Bauer, G.E. Scattering Theory of Gilbert Damping. Phys. Rev. Lett. 2008, 101, 037207. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Starikov, A.A.; Yuan, Z.; Kelly, P.J. First-principles calculations of magnetization relaxation in pure Fe, Co, and Ni with frozen thermal lattice disorder. Phys. Rev. B 2011, 84, 014412. [Google Scholar] [CrossRef]
- Ebert, H.; Mankovsky, S.; Ködderitzsch, D.; Kelly, P.J. Ab Initio Calculation of the Gilbert Damping Parameter via the Linear Response Formalism. Phys. Rev. Lett. 2011, 107, 066603. [Google Scholar] [CrossRef]
- Hong, X.; Zou, K.; Zhu, J. Quantum scattering time and its implications on scattering sources in graphene. Phys. Rev. B 2009, 80, 241415. [Google Scholar] [CrossRef]
- Hwang, E.H.; Sarma, S.D. Single-particle relaxation time versus transport scattering time in a two-dimensional graphene layer. Phys. Rev. B 2008, 77, 195412. [Google Scholar] [CrossRef]
- Das, B.; Subramaniam, S.; Melloch, M.R.; Miller, D.C. Single-particle and transport scattering times in a back-gated GaAs/AlxGa1-xAs modulation-doped heterostructure. Phys. Rev. B 1993, 47, 9650. [Google Scholar] [CrossRef] [PubMed]
- Sadhukhan, B.; Bandyopadhyay, S.; Nayak, A.; Mookerjee, A. Disorder induced lifetime effects in binary disordered systems: A first principles formalism and an application to disordered graphene. Int. J. Mod. Phys. B 2017, 31, 1750218. [Google Scholar] [CrossRef]
- Sadhukhan, B.; Zhang, Y.; Ray, R.; van den Brink, J. First-principles calculation of shift current in chalcopyrite semiconductor ZnSnP2. Phys. Rev. Mater. 2020, 4, 064602. [Google Scholar] [CrossRef]
- Saha, T.; Mookerjee, A. The effects of local lattice distortion in non-isochoric alloys: CuPd and CuBe. J. Phys. Condens. Matter 1996, 8, 2915. [Google Scholar] [CrossRef]
- Kaphle, G.C.; Adhikari, N.; Mookerjee, A. Study of Spin Glass Behavior in Disordered PtxMn1-x Alloys: An Augmented Space Recursion Approach. Adv. Sci. Lett. 2015, 21, 2681. [Google Scholar] [CrossRef]
- Alam, A.; Mookerjee, A. Ab initio electronic structure calculation of disorder ternary alloys: A reciprocal-space formulation. Phys. Rev. B 2010, 81, 184205. [Google Scholar] [CrossRef]
- Ganguly, S.; Venkatasubramanian, A.; Tarafder, K.; Dasgupta, I.; Mookerjee, A. Augmented space recursion study of the effect of disorder on superconductivity. Phys. Rev. B 2009, 79, 224204. [Google Scholar] [CrossRef]
- Rahaman, M.; Mookerjee, A. Augmented-space cluster coherent potential approximation for binary random and short-range ordered alloys. Phys. Rev. B 2009, 79, 054201. [Google Scholar] [CrossRef]
- Alam, A.; Saha-Dasgupta, T.; Mookerjee, A.; Chakrabarti, A.; Das, G.P. Electronic structure and phase stability of disordered hexagonal close-packed alloys. Phys. Rev. B 2007, 75, 134203. [Google Scholar] [CrossRef]
- Alam, A.; Ghosh, S.; Mookerjee, A. Phonons in disordered alloys: Comparison between augmented-space-based approximations for configuration averaging to integration from first principles. Phys. Rev. B 2007, 75, 134202. [Google Scholar] [CrossRef]
- Saha, T.; Dasgupta, I.; Mookerjee, A. Augmented-space recursive method for the study of short-ranged ordering effects in binary alloys. Phys. Rev. B 1994, 50, 13267. [Google Scholar] [CrossRef]
- Sadhukhan, B.; Singh, P.; Nayak, A.; Datta, S.; Johnson, D.D.; Mookerjee, A. Band-gap tuning and optical response of two-dimensional SixC1-x : A first-principles real-space study of disordered two-dimensional materials. Phys. Rev. B 2017, 96, 054203. [Google Scholar] [CrossRef]
- Sadhukhan, B.; Nayak, A.; Mookerjee, A. Effect of disorder on the optical response of NiPt and Ni3Pt alloys. Comput. Mater. Sci. 2017, 140, 1. [Google Scholar] [CrossRef]
- Sadhukhan, B.; Nayak, A.; Mookerjee, A. Effect of random vacancies on the electronic properties of graphene and T graphene: A theoretical approach. Indian J. Phys. 2017, 91, 1541. [Google Scholar] [CrossRef]
- Kubo, R. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn. 1957, 12, 570. [Google Scholar] [CrossRef]
- Viswanath, V.; Müller, G. Recursion method in quantum spin dynamics: The art of terminating a continued fraction. J. Appl. Phys. 1990, 67, 5486. [Google Scholar] [CrossRef]
- Muller, G.; Viswanath, V. The Recursion Method: Application to Many-Body Dynamics; Springer: Berlin, Germany, 1994. [Google Scholar]
- Gagliano, E.R.; Balseiro, C.A. Dynamical Properties of Quantum Many-Body Systems at Zero Temperature. Phys. Rev. Lett. 1987, 59, 2999. [Google Scholar] [CrossRef] [PubMed]
- Viswanath, V.S.; Zhang, S.; Müller, G.; Stolze, J. Zero-temperature dynamics of the one-dimensional XXZ and t-J models: A weak-coupling continued-fraction analysis. Phys. Rev. B 1995, 51, 368. [Google Scholar] [CrossRef] [PubMed]
- Viswanath, V.; Müller, G. The recursion method applied to the T=0 dynamics of the 1D s=1/2 Heisenberg and XY models. J. Appl. Phys. 1991, 70, 6178. [Google Scholar] [CrossRef]
- Mookerjee, A. A new formalism for the study of configuration-averaged properties of disordered systems. J. Phys. C Solid State Phys. 1973, 6, L205. [Google Scholar] [CrossRef]
- Mookerjee, A. Averaged density of states in disordered systems. J. Phys. C Solid State Phys. 1973, 6, 1340. [Google Scholar] [CrossRef]
- Mookerjee, A. Fermion-field theory and configuration averaging. J. Phys. C Solid State Phys. 1975, 8, 1524. [Google Scholar] [CrossRef]
- Mookerjee, A. Structure of the scattering diagrams for conductivity in random binary alloys and the self-consistent CCPA. J. Phys. C Solid State Phys. 1986, 19, 193. [Google Scholar] [CrossRef]
- Mookerjee, A. Cluster approximations to response functions in disordered systems and macroscopic conservation laws. J. Phys. C Solid State Phys. 1976, 9, 1225. [Google Scholar] [CrossRef]
- Chowdhury, S.; Jana, D.; Sadhukhan, B.; Nafday, D.; Baidya, S.; Saha-Dasgupta, T.; Mookerjee, A. Configuration and self-averaging in disordered systems. Indian J. Phys. 2016, 90, 649. [Google Scholar] [CrossRef]
- Haydock, R.; Nex, C.M.M. Densities of states, moments, and maximally broken time-reversal symmetry. Phys. Rev. B 2006, 74, 205121. [Google Scholar] [CrossRef]
- Luchini, M.; Nex, C. A new procedure for appending terminators in the recursion method. J. Phys. C Solid State Phys. 1987, 20, 3125. [Google Scholar] [CrossRef]
- Beer, N.; Pettifor, D.G. The Recursion Method and the Estimation of Local Densities of States. In The Electronic Structure of Complex Systems; Phariseau, P., Temmerman, W.M., Eds.; NATO ASI Series (Series B: Physics); Springer: Boston, MA, USA, 1984; Volume 113. [Google Scholar]
- Pettifor, D.G.; Weaire, D.L. The Recursion Method and Its Applications: Proceedings of the Conference, Imperial College, London, England, 13–14 September 1984; Springer Science, Business Media: Berlin/Heidelberg, Germany, 2012; Volume 58. [Google Scholar]
- Lee, C. New Approach to Study Critical Dynamics by Using Continued Fraction Representation. J. Phys. Soc. Jpn. 1989, 58, 3910. [Google Scholar] [CrossRef]
- Haydock, R.; Heine, V.; Kelly, M. Electronic structure based on the local atomic environment for tight-binding bands. J. Phys. C Solid State Phys. 1972, 5, 2845. [Google Scholar] [CrossRef]
- Ebert, H. The Munich SPR-KKR Package. Available online: https://www.ebert.cup.uni-muenchen.de/kkr/kkrlicense/ (accessed on 11 November 2022).
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Liechtenstein, A.; Katsnelson, M.; Gubanov, V. Exchange interactions and spin-wave stiffness in ferromagnetic metals. J. Phys. Met. Phys. 1984, 14, L125. [Google Scholar] [CrossRef]
- Uppsala Atomistic Spin Dynamics (Uppasd). Available online: http://www.physics.uu.se/uppasd (accessed on 11 November 2022).
- Sasıoğlu, E.; Friedrich, C.; Blügel, S. Strong magnon softening in tetragonal FeCo compounds. Phys. Rev. B 2013, 87, 020410. [Google Scholar] [CrossRef]
- Jakobsson, A.; Sasıoğlu, E.; Mavropoulos, P.; Ležaić, M.; Sanyal, B.; Bihlmayer, G.; Blügel, S. Tuning the Curie temperature of FeCo compounds by tetragonal distortion. Appl. Phys. Lett. 2013, 103, 102404. [Google Scholar] [CrossRef]
- Lynn, J.W. Temperature dependence of the magnetic excitations in iron. Phys. Rev. B 1975, 11, 2624. [Google Scholar] [CrossRef]
- Mook, H.A.; Nicklow, R.M. Neutron Scattering Investigation of the Magnetic Excitations in Iron. Phys. Rev. B 1973, 7, 336. [Google Scholar] [CrossRef]
- Halilov, S.; Perlov, A.; Oppeneer, P.; Eschrig, H. Magnon spectrum and related finite-temperature magnetic properties: A first-principle approach. Europhys. Lett. 1997, 39, 91. [Google Scholar] [CrossRef]
- Oogane, M.; Wakitani, T.; Yakata, S.; Yilgin, R.; Ando, Y.; Sakuma, A.; Miyazaki, T. Magnetic Damping in Ferromagnetic Thin Films. Jpn. J. Appl. Phys. 2006, 45, 3889. [Google Scholar] [CrossRef]
- Muniz, R.B.; Mills, D.L. Theory of spin excitations in Fe(110) monolayers. Phys. Rev. B 2002, 66, 174417. [Google Scholar] [CrossRef]
- Costa, A.T.; Muniz, R.B.; Cao, J.X.; Wu, R.Q.; Mills, D.L. Magnetism of an Fe monolayer on W(110). Phys. Rev. B 2008, 78, 054439. [Google Scholar] [CrossRef]
- Zakeri, K.; Peixoto, T.; Zhang, Y.; Prokop, J.; Kirschner, J. On the preparation of clean tungsten single crystals. Surf. Sci. 2010, 604, L1. [Google Scholar] [CrossRef]
- Ikeda, S.; Miura, K.; Yamamoto, H.; Mizunuma, K.; Gan, H.; Endo, M.; Kanai, S.; Hayakawa, J.; Matsukura, F.; Ohno, H. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 2010, 9, 721. [Google Scholar] [CrossRef]
- Liu, L.; Pai, C.; Li, Y.; Tseng, H.; Ralph, D.; Buhrman, R. Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. Science 2012, 336, 555. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Lee, O.J.; Gudmundsen, T.J.; Ralph, D.C.; Buhrman, R.A. Current-Induced Switching of Perpendicularly Magnetized Magnetic Layers Using Spin Torque from the Spin Hall Effect. Phys. Rev. Lett. 2012, 109, 096602. [Google Scholar] [CrossRef] [PubMed]
Alloy | Fe0.5Co0.5 | |||||
---|---|---|---|---|---|---|
Component | Fe | Co | ||||
Atomic radius | = 2.64 Å | = 2.60 Å | ||||
Charge | sp | d | Tot | sp | d | Tot |
Atomic state | 2.0 | 6.0 | 8.0 | 2.0 | 7.0 | 9.0 |
B2 ordered | 1.44 | 6.52 | 7.96 | 1.46 | 7.58 | 9.04 |
BCC disordered | 1.43 | 6.55 | 7.99 | 1.43 | 7.63 | 9.06 |
Alloy | Fe-Fe | Fe-Co | Co-Co |
---|---|---|---|
(meV) | (meV) | (meV) | |
FeCo | 2.065 | 2.302 | 1.740 |
FeCo | 2.083 | 2.117 | 1.418 |
Fe20Co80 | 1.919 | 1.880 | 1.208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadhukhan, B.; Chimata, R.; Sanyal, B.; Mookerjee, A. Magnetization Dynamics in FexCo1-x in Presence of Chemical Disorder. Magnetochemistry 2023, 9, 44. https://doi.org/10.3390/magnetochemistry9020044
Sadhukhan B, Chimata R, Sanyal B, Mookerjee A. Magnetization Dynamics in FexCo1-x in Presence of Chemical Disorder. Magnetochemistry. 2023; 9(2):44. https://doi.org/10.3390/magnetochemistry9020044
Chicago/Turabian StyleSadhukhan, Banasree, Raghuveer Chimata, Biplab Sanyal, and Abhijit Mookerjee. 2023. "Magnetization Dynamics in FexCo1-x in Presence of Chemical Disorder" Magnetochemistry 9, no. 2: 44. https://doi.org/10.3390/magnetochemistry9020044
APA StyleSadhukhan, B., Chimata, R., Sanyal, B., & Mookerjee, A. (2023). Magnetization Dynamics in FexCo1-x in Presence of Chemical Disorder. Magnetochemistry, 9(2), 44. https://doi.org/10.3390/magnetochemistry9020044