A Comprehensive Analysis of Radiosensitization Properties of Metallic Nanoparticles in Brachytherapy of Gastric Adenocarcinoma by I-125 Seed: A Simulation Study by MCNPX and MCNP6 Codes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monte Carlo Code
2.2. Geometry of the Simulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mansouri, E.; Mesbahi, A.; Yazdani, P. Analysis of physical dose enhancement in nano-scale for nanoparticle-based radiation therapy: A Cluster and endothelial cell model. Nanomed. J. 2021, 8, 30–41. [Google Scholar]
- Yousefi, V.; Tarhriz, V.; Eyvazi, S.; Dilmaghani, A. Synthesis and application of magnetic@layered double hydroxide as an anti-inflammatory drugs nanocarrier. J. Nanobiotechnology 2020, 18, 155. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, E.; Mesbahi, A.; Malekzadeh, R.; Mansouri, A. Shielding characteristics of nanocomposites for protection against X- and gamma rays in medical applications: Effect of particle size, photon energy and nano-particle concentration. Radiat. Environ. Biophys. 2020, 59, 583–600. [Google Scholar] [CrossRef] [PubMed]
- Parivar, Y.; Mansouri, E.; Eyvazi, S.; Yousefi, V.; Kahroba, H.; Hejazi, M.S.; Mesbahi, A.; Tarhriz, V.; Abolghasemi, M.M. Layered double hydroxide nanoparticles as an appealing nanoparticle in gene/plasmid and drug delivery system in C2C12 myoblast cells. Artif. Cells Nanomed. Biotechnol. 2019, 47, 436–442. [Google Scholar]
- Moradi, F.; Saraee, K.R.E.; Sani, S.A.; Bradley, D. Metallic nanoparticle radiosensitization: The role of Monte Carlo simulations towards progress. Radiat. Phys. Chem. 2021, 180, 109294. [Google Scholar] [CrossRef]
- Cho, S.; Jeong, J.H.; Kim, C.H.; Yoon, M. Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy. J. Korean Phys. Soc. 2010, 56, 1754. [Google Scholar]
- Bahreyni Toossi, M.T.; Ghorbani, M.; Mehrpouyan, M.; Akbari, F.; Sobhkhiz Sabet, L.; Soleimani Meigooni, A. A Monte Carlo study on tissue dose enhancement in brachytherapy: A comparison between gadolinium and gold nanoparticles. Australas. Phys. Eng. Sci. Med. 2012, 35, 177–185. [Google Scholar] [CrossRef]
- Ju, Z.; Wang, Z.; Wang, L.; Li, J.; Wu, Z.; Li, X.; Wang, F.; Wang, R. Experimental study on radiation damage of (125) I seeds implanted in canine gastric wall tissue. J. Cancer Res. Ther. 2020, 16, 203–208. [Google Scholar] [PubMed]
- Wang, J.; Sui, A.; Jia, Y.; Xu, B.; Wei, L.; Chen, J.; Shen, W. Treatment of unresectable advanced gastric cancer using lodine-125 brachytherapy. Chin. J. Clin. Oncol. 2006, 3, 212–215. [Google Scholar] [CrossRef]
- Ma, Z.-H.; Yang, Y.; Zou, L.; Luo, K.-Y. 125I seed irradiation induces up-regulation of the genes associated with apoptosis and cell cycle arrest and inhibits growth of gastric cancer xenografts. J. Exp. Clin. Cancer Res. 2012, 31, 61. [Google Scholar] [CrossRef]
- Zhang, W.F.; Jin, W.D.; Li, B.; Wang, M.C.; Li, X.G.; Mao, W.Y.; Luo, K.Y. Effect of brachytherapy on NF-κB and VEGF in gastric carcinoma xenografts. Oncol. Rep. 2014, 32, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Roeske, J.C.; Nuñez, L.; Hoggarth, M.; Labay, E.; Weichselbaum, R.R. Characterization of the theorectical radiation dose enhancement from nanoparticles. Technol. Cancer Res. Treat. 2007, 6, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Lechtman, E.; Mashouf, S.; Chattopadhyay, N.; Keller, B.M.; Lai, P.; Cai, Z.; Reilly, R.M.; Pignol, J.P. A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness. Phys. Med. Biol. 2013, 58, 3075–3087. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.H. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study. Phys. Med. Biol. 2005, 50, N163. [Google Scholar] [CrossRef]
- Zygmanski, P.; Sajo, E. Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays. Br. J. Radiol. 2016, 89, 20150200. [Google Scholar] [CrossRef]
- Chow, J. Recent progress in Monte Carlo simulation on gold nanoparticle radiosensitization. AIMS Biophys. 2018, 5, 231–244. [Google Scholar] [CrossRef]
- Cho, S.H.; Jones, B.L.; Krishnan, S. The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources. Phys. Med. Biol. 2009, 54, 4889. [Google Scholar] [CrossRef]
- Asadi, S.; Vaez-Zadeh, M.; Masoudi, S.F.; Rahmani, F.; Knaup, C.; Meigooni, A.S. Gold nanoparticle-based brachytherapy enhancement in choroidal melanoma using a full Monte Carlo model of the human eye. J. Appl. Clin. Med. Phys. 2015, 16, 344–357. [Google Scholar] [CrossRef]
- Stewart, C.; Konstantinov, K.; McKinnon, S.; Guatelli, S.; Lerch, M.; Rosenfeld, A.; Tehei, M.; Corde, S. First proof of bismuth oxide nanoparticles as efficient radiosensitisers on highly radioresistant cancer cells. Phys. Med. 2016, 32, 1444–1452. [Google Scholar] [CrossRef]
- Jain, S.; Coulter, J.A.; Hounsell, A.R.; Butterworth, K.T.; McMahon, S.J.; Hyland, W.B.; Muir, M.F.; Dickson, G.R.; Prise, K.M.; Currell, F.J.; et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 531–539. [Google Scholar] [CrossRef]
- Kong, T.; Zeng, J.; Wang, X.; Yang, X.; Yang, J.; McQuarrie, S.; McEwan, A.; Roa, W.; Chen, J.; Xing, J.Z. Enhancement of Radiation Cytotoxicity in Breast-Cancer Cells by Localized Attachment of Gold Nanoparticles. Small 2008, 4, 1537–1543. [Google Scholar] [CrossRef] [PubMed]
- Zabihzadeh, M.; Arefian, S. Tumor dose enhancement by nanoparticles during high dose rate 192Ir brachytherapy. J. Cancer Res. Ther. 2015, 11, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xing, J.Z.; Chen, J.; Ko, L.; Amanie, J.; Gulavita, S.; Pervez, N.; Yee, D.; Moore, R.; Roa, W. Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clin. Investig. Med. 2008, 31, E160–E167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robatjazi, M.; Baghani, H.R.; Rostami, A.; Pashazadeh, A. Monte Carlo-based calculation of nano-scale dose enhancement factor and relative biological effectiveness in using different nanoparticles as a radiosensitizer. Int. J. Radiat. Biol. 2021, 97, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.L.; Krishnan, S.; Cho, S.H. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Med. Phys. 2010, 37, 3809. [Google Scholar] [CrossRef]
- Seniwal, B.; Mendes, B.M.; Malano, F.; Pérez, P.; Valente, M.; Fonseca, T.C. Monte Carlo assessment of low energy electron range in liquid water and dosimetry effects. Phys. Med. 2020, 80, 363–372. [Google Scholar]
- Maggiorella, L.; Barouch, G.; Devaux, C.; Pottier, A.; Deutsch, E.; Bourhis, J.; Borghi, E.; Levy, L. Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol. 2012, 8, 1167–1181. [Google Scholar] [CrossRef]
- Jangjoo, A.G.; Ghiasi, H.; Mesbahi, A. A Monte Carlo study on the radio-sensitization effect of gold nanoparticles in brachytherapy of prostate by Pd seeds. Pol. J. Med. Phys. Eng. 2019, 25, 87–92. [Google Scholar] [CrossRef]
- Benlakhdar, F.; Dib, A.; Belbachir, A. Effect of nanomaterials on the absorbed dose during an X-ray exposure. Radioprotection 2016, 51, 279–285. [Google Scholar] [CrossRef]
- Koger, B.; Kirkby, C. Dosimetric effects of polyethylene glycol surface coatings on gold nanoparticle radiosensitization. Phys. Med. Biol. 2017, 62, 8455–8469. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, T.; Zhao, X.; Reynoso, F.J. Modeling Gold Nanoparticle Radiosensitization using a Clustering Algorithm to Quantify DNA Double-Strand Breaks with Mixed-Physics Monte Carlo Simulation. Med. Phys. 2019, 46, 5314–5325. [Google Scholar] [CrossRef] [PubMed]
Half Life | Photon Spectra | Source Model | |
---|---|---|---|
Energy (MeV) | Relative Intensity | ||
59.4 days | 0.0221 0.0252 0.0274 0.0314 0.0355 | 0.25 0.07 1.00 0.25 0.06 | I-125 Saxena |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansouri, E.; Mesbahi, A.; Hejazi, M.S.; Tarhriz, V.; Hamishehkar, H.; Seyednejad, F. A Comprehensive Analysis of Radiosensitization Properties of Metallic Nanoparticles in Brachytherapy of Gastric Adenocarcinoma by I-125 Seed: A Simulation Study by MCNPX and MCNP6 Codes. Magnetochemistry 2022, 8, 97. https://doi.org/10.3390/magnetochemistry8090097
Mansouri E, Mesbahi A, Hejazi MS, Tarhriz V, Hamishehkar H, Seyednejad F. A Comprehensive Analysis of Radiosensitization Properties of Metallic Nanoparticles in Brachytherapy of Gastric Adenocarcinoma by I-125 Seed: A Simulation Study by MCNPX and MCNP6 Codes. Magnetochemistry. 2022; 8(9):97. https://doi.org/10.3390/magnetochemistry8090097
Chicago/Turabian StyleMansouri, Elham, Asghar Mesbahi, Mohammad Saeid Hejazi, Vahideh Tarhriz, Hamed Hamishehkar, and Farshad Seyednejad. 2022. "A Comprehensive Analysis of Radiosensitization Properties of Metallic Nanoparticles in Brachytherapy of Gastric Adenocarcinoma by I-125 Seed: A Simulation Study by MCNPX and MCNP6 Codes" Magnetochemistry 8, no. 9: 97. https://doi.org/10.3390/magnetochemistry8090097
APA StyleMansouri, E., Mesbahi, A., Hejazi, M. S., Tarhriz, V., Hamishehkar, H., & Seyednejad, F. (2022). A Comprehensive Analysis of Radiosensitization Properties of Metallic Nanoparticles in Brachytherapy of Gastric Adenocarcinoma by I-125 Seed: A Simulation Study by MCNPX and MCNP6 Codes. Magnetochemistry, 8(9), 97. https://doi.org/10.3390/magnetochemistry8090097