Physiological and Molecular Responses of Apocynum venetum L. (Apocynaceae) on Salt Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Growth Index Measurement
2.3. Physiological Index Measurement
2.3.1. Chlorophyll and Carotenoid Contents Determination
2.3.2. Soluble Protein Content Determination
2.3.3. SOD and CAT Activity Determination
2.4. RNA Sequencing and Transcript Annotation
2.5. Screening of DEGs and qPCR Verification
2.6. Statistical Analysis
3. Results
3.1. Effects of Different NaCl Concentrations on A. venetum Growth
3.2. Physiological Changes in A. venetum under Salt Stress
3.3. Analysis of Gene Expression in A. venetum Roots under Salt Stress
3.3.1. Transcriptome Sequencing Quality and Correlation Analysis between Samples
3.3.2. Screening and Annotation of DEGs
3.3.3. Gene Expression Patterns Determined through STEM Analysis
3.3.4. Functional Genes Involved in MAPK Signaling and Phytohormone Signaling Pathways
3.3.5. Functional Genes Involved in Carbohydrate Metabolism
3.3.6. Functional Genes Involved in Glyoxylate and Dicarboxylate Metabolism
3.3.7. Validation through Fluorescence qRT-PCR Analysis
4. Discussion
4.1. Vegetable Growth Was Inhibited under Salt Stress
4.2. Phytohormone Signaling Transduction under Salt Stress
4.3. Protection of the Cell Membrane Lipid System by Antioxidant Enzymes under Salt Stress
4.4. Changes in the Content of the Osmoregulatory Substances under Salt Stress
4.5. Cell Wall Organization under Salt Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deinlein, U.; Stephan, A.B.; Horie, T.; Luo, W.; Xu, G.; Schroeder, J.I. Plant salt-tolerance mechanisms. Trends Plant Sci. 2014, 19, 1878–4372. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002, 53, 247–273. [Google Scholar] [CrossRef] [PubMed]
- Katuwal, K.B.; Xiao, B.; Jespersen, D. Physiological responses and tolerance mechanisms of seashore paspalum and centipedegrass exposed to osmotic and iso-osmotic salt stresses. J. Plant Physiol. 2020, 248, 153154. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Li, K.; Cai, Z. Spatially resolved metabolomics and lipidomics reveal salinity and drought-tolerant mechanisms of cottonseeds. J. Agric. Food Chem. 2021, 69, 1520–5118. [Google Scholar] [CrossRef]
- Khan, H.A.; Siddique, K.H.M.; Colmer, T.D. Salt sensitivity in chickpea is determined by sodium toxicity. Planta 2016, 244, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Lodeyro, A.F.; Carrillo, N. Salt stress in higher plants: Mechanisms of toxicity and defensive responses. In Stress Responses in Plants: Mechanisms of Toxicity and Tolerance; Tripathi, B.N., Müller, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–33. [Google Scholar]
- Belkheiri, O.; Mulas, M. The effects of salt stress on growth, water relations and ion accumulation in two halophyte Atriplex species. Environ. Exp. Bot. 2013, 86, 17–28. [Google Scholar] [CrossRef]
- Lekklar, C.; Chadchawan, S.; Boon-Long, P.; Pfeiffer, W.; Chaidee, A. Salt stress in rice: Multivariate analysis separates four components of beneficial silicon action. Protoplasma 2019, 256, 1615–6102. [Google Scholar] [CrossRef]
- Xu, G.Y.; Rocha, P.S.C.F.; Wang, M.L.; Xu, M.L.; Cui, Y.C.; Li, L.Y.; Zhu, Y.X.; Xia, X. A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 2011, 234, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Zhang, H.; Wang, T.; Chen, S.; Dai, S. Proteomics-based investigation of salt-responsive mechanisms in plant roots. J. Proteom. 2013, 82, 230–253. [Google Scholar] [CrossRef]
- Liu, J. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. USA 2000, 97, 3730–3734. [Google Scholar] [CrossRef]
- Wang, F.Z.; Jing, W.; Zhang, W.H. The mitogen-activated protein kinase cascade MKK1-MPK4 mediates salt signaling in rice. Plant Sci. 2014, 227, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.R.; Salinas, J.; Collinge, D.B. 14-3-3 proteins and the response to abiotic and biotic stress. Plant Mol. Biol. 2002, 50, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Chitteti, B.R.; Peng, Z. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J. Proteome Res. 2007, 6, 1718–1727. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, L.H.; Zhao, J.F.; Song, Y.; Guo, Z.Y. Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol. 2009, 149, 916–928. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-J.; Yang, M.-F.; Chen, H.; Qu, L.-Q.; Chen, F.; Shen, S.-H. Abscisic acid pretreatment enhances salt tolerance of rice seedlings: Proteomic evidence. Biochim. Biophys. Acta Proteins Proteom. 2010, 1804, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, M.; Ren, T.; Li, K.; Zhang, C. Comparative transcriptome analysis reveals the molecular mechanism of salt tolerance in Apocynum venetum. Plant Physiol. Biochem. 2021, 167, 816–830. [Google Scholar] [CrossRef]
- Chen, C.; Wang, C.; Chen, F.; Cai, Z.; Yuan, J.; Hua, Y.; Shi, J.; Liu, Z.; Zou, L.; Liu, X. Transcriptomic profiling reveals key genes of halophyte apocyni veneti folium (Apocynum venetum L.) and regulatory mechanism of salt tolerance. J. Plant Growth Regul. 2023, 1–20. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Su, H.; Sun, P.; Zhang, Z.; Li, M.; Xing, H. Physiological and transcriptional responses of Apocynum venetum to salt stress at the seed germination stage. Int. J. Mol. Sci. 2023, 24, 3623. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, X.; Zhou, J.; Shang, R.; Wang, Y.; Jing, P. Comparative Study on Several Determination Methods of Chlorophyll Content in Plants. IOP Conf. Ser. Mater. Sci. Eng. 2020, 730, 012066. [Google Scholar] [CrossRef]
- Wintermans, J.F.G.M.; Mots, A. Spectrophotometric characteristics of chlorophylls a and b and their phaeophytins in ethanol. Biochim. Biophys. Acta (BBA)-Biophys. Incl. Photosynth. 1965, 109, 448–453. [Google Scholar] [CrossRef]
- Qu, C.X.; Shen, S.D.; Wang, X.F.; Cui, Y.H.; Song, W.P. Method research of measuring soluble protein contents of plant rough extraction using Coomassie Brilliant Blue. J. Suzhou Univ. 2006, 22, 82–85. [Google Scholar]
- Beers, R.F.; Sizer, I.W.A. A spectrophotometric method for measuring the breakdown of ydrogen peroxide by catalase. J. Biol. Chem. 1952, 195, 133–140. [Google Scholar] [CrossRef]
- Flohé, L.; Tting, F. [10] Superoxide dismutase assays. Methods Enzymol. 1984, 105, 93–104. [Google Scholar] [PubMed]
- Nelson, D.; Kiesow, L. Enthalpy of decomposition of hydrogen peroxide by catalase at 25C (with Molar Extinction Coefficients of H2O2 Solutions in the UV). Anal. Biochem. 1972, 49, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Cold Spring Harb. Lab. 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.; Haas, B.J.; Yassour, M. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Lin, Y.; Zu, Y.; Efferth, T.; Li, D.; Tang, Z. Ethylene increases accumulation of compatible solutes and decreases oxidative stress to improve plant tolerance to water stress in Arabidopsis. J. Plant Biol. 2015, 58, 193–201. [Google Scholar] [CrossRef]
- Gupta, D.K.; Palma, J.M.; Corpas, F.J. ROS–RNS–Phytohormones network in root response strategy. In Reactive Oxygen Species and Oxidative Damage in Plants under Stress; Springer: Cham, Switzerland, 2015; Volume 13, pp. 321–339. [Google Scholar] [CrossRef]
- Starck, Z.; Kozińska, M. Effect of phytohormones on absorption and distribution of ions in salt-stressed bean plants. Acta Soc. Bot. Pol. 1980, 49, 111–125. [Google Scholar] [CrossRef]
- Talmadge, K.W.; Keegstra, K.; Bauer, W.D.; Albersheim, P. The Structure of Plant Cell Walls: I. The macromolecular com-ponents of the walls of suspension-cultured sycamore cells with a detailed analysis of the pectic polysaccharides 1. Plant Physiol. 1973, 51, 158–173. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.Y.; Wang, C.K.; Zhao, Y.W.; Sun, C.H.; Hu, D.G. Mechanisms and regulation of organic acid accumulation in plant vacuoles. Hortic. Res. 2021, 8, 227. [Google Scholar] [CrossRef]
- Tang, X.; Mu, X.; Shao, H.; Wang, H.; Brestic, M. Global plant-responding mechanisms to salt stress: Physiological and molecular levels and implications in biotechnology. Crit. Rev. Biotechnol. 2015, 35, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Shao, H.; Shao, C.; Chen, P.; Zhao, S.; Brestic, M.; Chen, X. Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol. Plant. 2013, 35, 2867–2878. [Google Scholar] [CrossRef]
- Sabir, P.; Basra, S.; Hussain, M.; Jamil, A. Relationship of photosynthetic pigments and water relations with salt tolerance of proso millet (Panicum Miliaceum L.) accessions. Pak. J. Bot. 2009, 41, 2957–2964. [Google Scholar]
- Mitsuya, S.; Takeoka, Y.; Miyake, H. Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. J. Plant Physiol. 2000, 157, 661–667. [Google Scholar] [CrossRef]
- Khavari-Nejad, R.A.; Mostofi, Y. Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica 1998, 35, 151–154. [Google Scholar] [CrossRef]
- Shu, S.; Yuan, L.Y.; Guo, S.R.; Sun, J.; Liu, C.J. Effects of exogenous spermidine on photosynthesis, xanthophyll cycle and endogenous polyamines in cucumber seedlings exposed to salinity. Afr. J. Biotechnol. 2014, 11, 6064–6074. [Google Scholar] [CrossRef]
- Neocleous, D.; Vasilakakis, M. Effects of NaCl stress on red raspberry (Rubus idaeus L. ‘Autumn Bliss’). Sci. Hortic. 2007, 112, 282–289. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, T.; Zhang, W.; Li, X. SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis. New Phytol. 2011, 189, 1469–8137. [Google Scholar] [CrossRef] [PubMed]
- Zolla, G.; Heimer, Y.M.; Barak, S. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots. J. Exp. Bot. 2010, 61, 1460–2431. [Google Scholar] [CrossRef]
- Zhu, J.K. Abiotic Stress Signaling and Responses in Plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Raghvendra, S.; Annapurna, S.; Ragunathan, D.; Mukesh, J. Over-expression of a rice Tau class glutathione S-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PLoS ONE 2014, 9, e9290. [Google Scholar] [CrossRef]
- Lin, P.C.; Hwang, S.G.; Endo, A.; Okamoto, M.; Koshiba, T.; Cheng, W.H. Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant Physiol. 2006, 143, 745–758. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Yan, X.L.; Zhang, X.; Xue, X.; Zhou, E.; Melcher, K.; Gao, P.; Wang, F.; Zeng, L.; Zhao, Y.; et al. An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Res. 2013, 23, 1043–1054. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Dietrich, D.; Ng, C.; Chan, P.; Bhalerao, R.; Bennett, M.; Dinneny, J. Endodermal ABA Signaling Promotes Lateral Root Quiescence during Salt Stress in Arabidopsis Seedlings. Plant Cell 2013, 25, 324–341. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, J.; Zhen, W.; Sun, T.; Hu, X. Abscisic acid alleviates harmful effect of saline–alkaline stress on tomato seedlings. Plant Physiol. Biochem. 2022, 175, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Fedina, I.; Tsonev, T.; Guleva, E.I. ABA as a modulator of the response of Pisum sativum to salt stress. J. Plant Physiol. 1994, 143, 245–249. [Google Scholar] [CrossRef]
- Ding, F.; Binglei, Z.; Li, F.; Li, Y.R.; Li, J.-H.; Lu, Y.T. General control non-repressible 20 functions in the salt stress response of Arabidopsis seedling by modulating ABA accumulation. Environ. Exp. Bot. 2022, 198, 104856. [Google Scholar] [CrossRef]
- Wang, Y.; Li, K.; Li, X. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J. Plant Physiol. 2009, 166, 1637–1645. [Google Scholar] [CrossRef]
- Li, H.; Cong, Y.; Wang, H.-W.; Chang, Y.-H.; Sheng, B.-L.; Lin, J.; Wang, Z.-H. Effects of cadmium stress on oxygen enzyme system and genome DNA polymorphism in the root tips of strawberry plants. Acta Hortic. Sin. 2010, 37, 721–730. [Google Scholar]
- Wang, J.; Zhong, X.; Zhu, K.; Lv, J.; Lv, X.; Li, F.; Shi, Z. Reactive oxygen species, antioxidant enzyme activity, and gene expression patterns in a pair of nearly isogenic lines of nicosulfuron-exposed waxy maize (Zea mays L.). Environ. Sci. Pollut. Res. Int. 2018, 25, 19012–19027. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Srivastava, S.; Tripathi, R.D.; Kumar, R.; Seth, C.S.; Gupta, D.K. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 2006, 65, 1027–1039. [Google Scholar] [CrossRef]
- Bolton, M.D. Primary metabolism and plant defense—Fuel for the fire. Mol. Plant-Microbe Interact. 2009, 22, 487–497. [Google Scholar] [CrossRef]
- Berberich, T.; Harada, M.; Sugawara, K.; Kodama, H.; Iba, K.; Kusano, T. Two maize genes encoding omega-3 fatty acid desaturase and their differential expression to temperature. Plant Mol. Biol. 1998, 36, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.R.; Grace, Q.K.; Hyun, U.K. Current progress towards the metabolic engineering of plant seed oil for hydroxy fatty acids production. Plant Cell Rep. 2015, 34, 603–615. [Google Scholar] [CrossRef]
- Dar, A.A.; Choudhury, A.R.; Kancharla, P.K.; Arumugam, N. The FAD2 gene in plants: Occurrence, regulation, and role. Front. Plant Sci. 2017, 8, 1789. [Google Scholar] [CrossRef]
- Miranda, R.D.S.; José, E.G.F.; Juan, T.P. Ammonium improves tolerance to salinity stress in Sorghum bicolor plants. Plant Growth Regul. 2016, 78, 121–131. [Google Scholar] [CrossRef]
- Singh, M.; Singh, V.P.; Prasad, S.M. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Plant Physiol. Biochem. 2016, 109, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Liu, M.; Wang, M.; Shen, Q.; Gao, S. Enhanced salt tolerance under nitrate nutrition is associated with apoplast Na+ content in canola (Brassica. napus L.) and rice (Oryza sativa L.) plants. Plant Cell Physiol. 2016, 57, 2323–2333. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, X.; Qi, M.; Liu, Y.; Kuai, J. Alfalfa seeding root characteristics under complex saline-alkali stress. Chin. J. Eco-Agric. 2013, 21, 340–346. [Google Scholar] [CrossRef]
- Nigam, R.; Srivastava, S.; Srivastava, M. Cadmium interaction with organic acids with reference to its plant availability—Role of root exudates. Indian J. Environ. Prot. 2001, 21, 937–943. [Google Scholar]
- Carvalhais, L.C.; Dennis, P.G.; Fedoseyenko, D.; Hajirezaei, M.-R.; Borriss, R.; Wirén, N.v. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J. Plant Nutr. Soil Sci. 2011, 174, 3–11. [Google Scholar] [CrossRef]
- Fournier, J.M.; Alcántara, E.; de la Guardia, M.D. Organic acid accumulation in roots of two sunflower lines with a different response to iron deficiency. J. Plant Nutr. 1992, 15, 1747–1755. [Google Scholar] [CrossRef]
- Liu, R.W.; Yuan, J.Z.; Li, X.Y.; Cui, Y.N.; Cai, M.M.; He, Z.H.; Ma, Q. Aluminum-activated Malate Transporter 12 is involved in restricting root-to-shoot Cl transport in Arabidopsis under Cl-salt stress. Plant Soil 2022, 478, 461–478. [Google Scholar] [CrossRef]
- Ahmad, P.; Jaleel, C.; Salem, M.; Nabi, G.; Sharma, S. Roles of Enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 2010, 30, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Redillas, M.C.F.R.; Park, S.H.; Lee, J.W.; Kim, Y.S.; Jeong, J.S.; Jung, H.; Bang, S.W.; Hahn, T.R.; Kim, J.K. Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress. Plant Biotechnol. Rep. 2012, 6, 89–96. [Google Scholar] [CrossRef]
- Vaahtera, L.; Schulz, J.; Hamann, T. Cell wall integrity maintenance during plant development and interaction with the environment. Nat. Plant 2019, 5, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Endler, A.; Kesten, C.; Schneider, R.; Zhang, Y.; Ivakov, L.; Froehlich, A.; Funke, N.; Persson, S. A mechanism for sustained cellulose synthesis during salt stress. Cell 2015, 162, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Timothy, E.P.; John, S.B. Calcium pectate chemistry con trols growth rate of Chara corallina. J. Exp. Bot. 2006, 57, 3989–4002. [Google Scholar] [CrossRef]
- Zhu, J.; Lee, B.H.; Dellinger, M.; Cui, X.; Zhang, C.; Wu, S.; Nothnagel, E.A.; Zhu, J.K. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. Plant J. 2010, 63, 128–140. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Wang, J.; Qian, C.; Zhang, C.; Wang, H.; Li, W.; Zhao, H.; Ju, Y. Physiological and Molecular Responses of Apocynum venetum L. (Apocynaceae) on Salt Stress. Horticulturae 2023, 9, 1010. https://doi.org/10.3390/horticulturae9091010
Li L, Wang J, Qian C, Zhang C, Wang H, Li W, Zhao H, Ju Y. Physiological and Molecular Responses of Apocynum venetum L. (Apocynaceae) on Salt Stress. Horticulturae. 2023; 9(9):1010. https://doi.org/10.3390/horticulturae9091010
Chicago/Turabian StyleLi, Lulu, Jingyang Wang, Cheng Qian, Cuiping Zhang, Haixia Wang, Wei Li, Han Zhao, and Yiqian Ju. 2023. "Physiological and Molecular Responses of Apocynum venetum L. (Apocynaceae) on Salt Stress" Horticulturae 9, no. 9: 1010. https://doi.org/10.3390/horticulturae9091010
APA StyleLi, L., Wang, J., Qian, C., Zhang, C., Wang, H., Li, W., Zhao, H., & Ju, Y. (2023). Physiological and Molecular Responses of Apocynum venetum L. (Apocynaceae) on Salt Stress. Horticulturae, 9(9), 1010. https://doi.org/10.3390/horticulturae9091010