Vase Life Evaluation of Three Greek Tulip Species Compared with a Commercial Cultivar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation Conditions and Sampling
2.2. Sample Preparation
2.3. Measurements
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weiss, D. Introduction of New Cut Flowers: Domestication of New Species and Introduction of New Traits Not Found in Commercial Varieties. In Breeding for Ornamentals: Classical and Molecular Approaches; Vainstein, A., Ed.; Springer: Dordrecht, The Netherlands, 2002. [Google Scholar] [CrossRef]
- Hentig, W. The development of ”new ornamental plants” in Europe. Acta Hortic. 1995, 397, 9–30. [Google Scholar] [CrossRef]
- Krigas, N.; Tsoktouridis, G.; Anestis, I.; Khabbach, A.; Libiad, M.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; Lamchouri, F.; Tsiripidis, I.; Tsiafouli, M.A.; et al. Exploring the potential of neglected local endemic plants of three Mediterranean regions in the ornamental sector: Value chain feasibility and readiness timescale for their sustainable exploitation. Sustainability 2021, 13, 2539. [Google Scholar] [CrossRef]
- Christenhusz, M.J.M.; Govaerts, R.; David, J.C.; Hall, T.; Borland, K.; Roberts, P.S.; Tuomisto, A.; Buerki, S.; Chase, M.W.; Fay, M.F. Tiptoe through the tulips: Cultural history, molecular phylogenetics and classification of Tulipa (Liliaceae). Bot. J. Linn. Soc. 2013, 172, 280–328. [Google Scholar] [CrossRef]
- Stefanaki, A.; Walter, T.; Andel, T. Tracing the introduction history of the tulip that went wild (Tulipa sylvestris) in sixteenth-century Europe. Sci. Rep. 2022, 12, 9786. [Google Scholar] [CrossRef]
- Beruto, M. Introduction of new ornamental plants and production technologies: Case studies. Acta Hortic. 2013, 1000, 23–34. [Google Scholar] [CrossRef]
- Dragovic, M.J.O. Selection and domestication of endemic species from Macaronesia with ornamental value. Acta Hortic. 2015, 1097, 193–198. [Google Scholar] [CrossRef]
- Armitage, A.M. New ornamental crop introduction: A model of cooperation between industry and academia. Acta Hortic. 2003, 624, 25–27. [Google Scholar] [CrossRef]
- Sedgley, M. Banksia: New proteaceous cut flower crop. Hortic. Rev. 1998, 22, 1–26. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Lim, J.H. Do eco-friendly floral preservative solutions prolong vase life better than chemical solutions? Horticulturae 2021, 7, 415. [Google Scholar] [CrossRef]
- Oene, S.; Mattiuz, C.; Brito, T.; Pan, R. Post-harvest preservation of roses cv. Ipanema. Commun. Plant Sci. 2019, 9, 70–80. [Google Scholar] [CrossRef]
- Çelikel, F.G.; Karaçalý, Y. Effect of preharvest factors on flower quality and longevity of cut carnations (Dianthus caryophyllus L.). Acta Hortic. 1995, 405, 156–163. [Google Scholar] [CrossRef]
- Kim, H.H.; Ohkawa, K.; Nitta, E. Effect of bulb weight on the growth and flowering of Leucocoryne coquimbensis F. Phill. Acta Hortic. 1998, 454, 341–346. [Google Scholar] [CrossRef]
- Kapczyńska, A. Effect of bulb size on growth, flowering and bulb formation in lachenalia cultivars. Hortic. Sci. 2014, 41, 89–94. [Google Scholar] [CrossRef]
- Almeida, D.; Barbosa, J.; Grossi, J.; Finger, F.; Heidemann, J. Influence of vernalization and bulb size on the production of lily cut flowers and lily bulbs. Semin. Cienc. Agrar. 2017, 38, 2399. [Google Scholar] [CrossRef]
- Kader, A.A. Postharvest Technology of Horticultural Crops, 3rd ed.; Agriculture and Natural Resources, Publication 3311; University of California: Davis, CA, USA, 2007; p. 535. [Google Scholar]
- Macnish, A.J.; Jiang, C.; Reid, M.S. Treatment with thidiazuron improves opening and vase life of iris flowers. Postharvest Biol. Technol. 2010, 56, 77–84. [Google Scholar] [CrossRef]
- Figueroa, I.; Colinas, M.T.; Mejia, J.; Ramirez, F. Postharvest physiological changes in roses of different vase life. Int. J. Agric. Nat. Resour. 2005, 32, 167–176. Available online: https://www.rcia.uc.cl/index.php/ijanr/article/view/1301 (accessed on 25 June 2023). [CrossRef]
- Aros, A.; Silva, C.; Char, C.; Prat, L.; Escalona, V. Role of flower preservative solutions during postharvest of Hydrangea macrophylla cv. Bela. Cien. Inv. Agr. 2016, 43, 418–428. [Google Scholar] [CrossRef]
- Macnish, A.J.; Leonard, R.T.; Nell, T.A. Treatment with chlorine dioxide extends the vase life of selected cut flowers. Postharvest Biol. Technol. 2008, 50, 197–207. [Google Scholar] [CrossRef]
- Khan, W.; Prithviraj, B.; Smith, D.L. Photosynthetic responses of corn and soybean to foliar application of salicylates. J. Plant Physiol. 2003, 160, 485–492. [Google Scholar] [CrossRef]
- Iwaya-Inoue, M.; Takata, M. Trehalose plus chloramphenicol prolong the vase life of tulip flowers. HortScience 2001, 36, 946–950. [Google Scholar] [CrossRef]
- Sarbu, I.; Pacurar, C. Experimental and numerical research to assess indoor environment quality and schoolwork performance in university classrooms. Build Environ. 2015, 93, 141–154. [Google Scholar] [CrossRef]
- De Masi, F.R.; Ruggiero, S.; Vanoli, P.G. Hygro-thermal performance of an opaque ventilated façade with recycled materials during wintertime. Energy Build. 2021, 245, 110994. [Google Scholar] [CrossRef]
- Hofmann, M.; Geyer, C.; Kornad, O. Dependencies of the indoor climate on the course of the seasons and derivation of regressions from long-term measurements. Indoor Air 2022, 32, e13058. [Google Scholar] [CrossRef]
- Derbyshire, G. Cultivation Aspects of Hydroponic Cut Tulip (Tulipa gesneriana) Production in South Africa. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2013. Available online: https://scholar.sun.ac.za/server/api/core/bitstreams/88c6dea3-2078-4160-8b70-4cd73d3f4f62/content (accessed on 25 June 2023).
- Bashir, M.; Khan, M.A.; Muhammad, Q.; Basra, S.M.A. Evaluation of commercial tulip accessions for flowering potential in climatic conditions of Faisalabad. Int. J. Agric. Biol. 2018, 20, 25–32. [Google Scholar]
- Ichimura, K.; Kishimoto, M.; Norishikori, R.; Kawabata, Y.; Yamada, K. Soluble carbohydrates and variation in vase life of cut rose cultivars ‘Delilah’ and ‘Sonia’. J. Hortic. Sci. Biotechnol. 2005, 80, 280–286. [Google Scholar] [CrossRef]
- Krause, M.R.; Santos, M.; Moreira, K.F.; Tolentino, M.M.; Mapeli, A.M. Extension of the vase life of Lilium pumilum cut flowers by pulsing solution containing sucrose, citric acid and silver thiosulfate. Ornamental. Hortic. 2021, 27, 344–350. [Google Scholar] [CrossRef]
- Sun, J.; Guo, H.; Tao, J. Effects of harvest stage, storage, and preservation technology on postharvest ornamental value of cut Peony (Paeonia lactiflora) flowers. Agronomy 2022, 12, 230. [Google Scholar] [CrossRef]
- Salunkhe, D.K.; Bhat, N.R.; Desai, B.B. Postharvest of Flowers and Ornamental Plants; Springer: Berlin, Germany, 1990. [Google Scholar]
- Krigas, N.; Lykas, C.; Ipsilantis, I.; Matsi, T.; Weststrand, S.; Havström, M.; Tsoktouridis, G. Greek tulips: Worldwide electronic trade over the internet, global ex situ conservation and current sustainable exploitation challenges. Plants 2021, 10, 580. [Google Scholar] [CrossRef]
- Halevy, A.H.; Mayak, S. Senescence and postharvest physiology of cut flowers, part 1. Hortic. Rev. 1997, 1, 204–236. [Google Scholar] [CrossRef]
- Fanourakis, D.; Pieruschka, R.; Savvides, A.; Macnish, A.J.; Sarlikioti, V.; Woltering, E.J. Sources of vase life variation in cut roses: A review. Postharvest Biol. Technol. 2013, 78, 1–15. [Google Scholar] [CrossRef]
- Sahniwal, S.S.; Abbey, L. Cut flower vase life—Influential factors, metabolism and organic formulation. Hortic. Int. J. 2019, 3, 275–281. [Google Scholar] [CrossRef]
- De Hertogh, A.A.; Le Nard, M. The Physiology of Flower Bulbs. A Comprehensive Treatise on the Physiology and Utilization of Ornamental Flowering Bulbous and Tuberous Plants; Elsevier: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Lukaszewska, A.J. Distribution of sugars in tulip flower parts as affected by ethrel and GA3 in the holding solution. Acta Hortic. 1995, 405, 351–355. [Google Scholar] [CrossRef]
- Dole, J.M.; Wilkins, H.F. Floriculture: Principles and Species, 2nd ed.; Pearson Prentice-Hall: New Jersey, NJ, USA, 2004. [Google Scholar]
- Asrar, A.W.A. Effects of some preservative solutions on vase life and keeping quality of snapdragon (Antirrhinum majus L.) cut flowers. J. Saudi Soc. Agric. Sci. 2012, 11, 29–35. [Google Scholar] [CrossRef]
- Ichimura, K.; Yumoto, H.S. Extension of the vase life of cut roses by treatment with sucrose before and during simulated transport. Bull. Natl. Inst. Flor. Sci. 2007, 7, 17–27. Available online: https://www.naro.go.jp/publicity_report/publication/archive/files/naro-se/NIFS07-03.pdf (accessed on 6 March 2023).
- Elhindi, K.M. Evaluation of several holding solutions for prolonging vase-life and keeping quality of cut sweet pea flowers (Lathyrus odoratus L.). Saudi J. Biol. Sci. 2012, 19, 195–202. [Google Scholar] [CrossRef]
- Jowkar, Μ.Μ.; Kafi, Μ.; Khalighi, A.; Hasanzadeh, Ν. Reconsideration in using citric acid as vase solution preservative for cut rose flowers. Curr. Res. J. Biol. 2012, 4, 427–436. Available online: https://maxwellsci.com/print/crjbs/v4-427-436.pdf (accessed on 13 April 2023).
- Ahmad, I.; Dole, J.M. Homemade floral preservatives affect postharvest performance of selected specialty cut flowers. HortTechnology 2014, 24, 384–393. [Google Scholar] [CrossRef]
- Han, S.S. Sugar and Acidity in Preservative Solutions for Field-Grown Cut Flowers. UMass Extension Greenhouse Crops and Floriculture Program. 2023. Available online: https://ag.umass.edu/greenhouse-floriculture/fact-sheets/sugar-acidity-in-preservative-solutions-for-field-grown-cut#links (accessed on 10 May 2023).
- Halevy, A.H. Treatments to improve water balance of cut flowers. Acta Hortic. 1976, 64, 223–230. [Google Scholar] [CrossRef]
- Van Doorn, W.G.; De Witte, Y.; Perik, R.R.J. Effect of antimicrobial compounds on the number of bacteria in stems of cut rose flowers. J. Appl. Bacteriol. 1990, 68, 117–122. [Google Scholar] [CrossRef]
- Bleeksma, H.C.; Van Doorn, W.G. Embolism in rose stems as a result of vascular occlusion by bacteria. Postharvest Biol. Technol. 2003, 29, 334–340. [Google Scholar] [CrossRef]
- He, S.; Joyce, D.C.; Irving, D.E.; Faragher, J.D. Stem end blockage in cut Grevillea ‘Crimson Yul-lo’ inflorescences. Postharvest Biol. Technol. 2006, 41, 78–84. [Google Scholar] [CrossRef]
- Liu, J.; He, S.; Zhang, Z.; Cao, J.; Lv, P.; He, S.; Cheng, G.; Joyce, D.C. Nano-silver pulse treatments inhibit stem-end bacteria on cut gerbera cv. Ruikou flowers. Postharvest Biol. Technol. 2009, 54, 59–62. [Google Scholar] [CrossRef]
- In, B.C.; Chang, M.K.; Son, K.C. Effect of vase water temperature and preservative on water relation and flower opening characteristics in cut roses. Korean J. Hort. Sci. Technol. 2009, 27, 116–122. Available online: https://www.researchgate.net/profile/Byung-Chun-In/publication/264065593_Effect_of_Vase_Water_Temperature_and_Preservative_on_Water_Relation_and_Flower_Opening_Characteristics_in_Cut_Roses/links/54929fe60cf2302e1d073771/Effect-of-Vase-Water-Temperature-and-Preservative-on-Water-Relation-and-Flower-Opening-Characteristics-in-Cut-Roses.pdf (accessed on 12 June 2023).
- Woltering, E.J.; Paillart, M.J.M. Effect of cold storage on stomatal functionality, water relations and flower performance in cut roses. Postharvest Biol. Technol. 2018, 136, 66–73. [Google Scholar] [CrossRef]
- Ahmadi-Majd, M.; Rezaei Nejad, A.; Mousavi-Fard, S.; Fanourakis, D. Deionized water as vase solution prolongs flower bud opening and vase life in cut carnation and rose through sustaining an improved water balance. Eur. J. Hortic. Sci. 2021, 86, 682–693. [Google Scholar] [CrossRef]
- Torre, S.; Fjeld, T. Water loss and postharvest characteristics of cut roses grown at high or moderate relative air humidity. Sci. Hortic. 2001, 89, 217–226. [Google Scholar] [CrossRef]
- Florack, D.E.A.; Stiekema, W.J.; Bosch, D. Toxicity of peptides to bacteria present in the vase water of cut roses. Postharvest Biol. Technol. 1996, 8, 285–291. [Google Scholar] [CrossRef]
- Khan, F.U.; Khan, F.A.; Hayat, N.; Bhat, S.A. Influence of certain chemicals on vase life of cut tulip. Indian J. Plant Physiol. 2007, 12, 127–132. [Google Scholar]
- Rahimian-Boogar, A.; Salehi, H.; Mir, N. Influence of citric acid and hydrogen peroxide on postharvest quality of tuberose (Polianthes tuberosa L. ‘Pearl’) cut flowers. J. Hortic. Res. 2016, 24, 13–19. [Google Scholar] [CrossRef]
- Zamani, S.; Hadavi, E.; Kazemi, M.; Hekmati, J. Effect of some chemical treatments on keeping quality and vase life of chrysanthemum cut flowers. World Appl. Sci. J. 2011, 12, 1962–1966. [Google Scholar]
- Ullah, M.; Bashir, M.; Gul, H.; Shahzad, A.; Shahzad, M. Use of citric acid and iron sulfate in promoting post-harvest longevity of cut tulips (Tulipa gesneriana L. cv. Marylin) in vase solutions. Contemp. Agric. 2022, 71, 57–64. [Google Scholar] [CrossRef]
Cultivation Location | With Preservative | Total | |||
---|---|---|---|---|---|
CRH | AUS | CLC | IDF | ||
Epanomi | 58 | 16 | 32 | 51 | 157 |
Thermi | 42 | 29 | 46 | 58 | 175 |
Without Preservative | |||||
Epanomi | 51 | 24 | 17 | 64 | 156 |
Thermi | 39 | 33 | 39 | 59 | 170 |
Total | 190 | 102 | 134 | 232 | 658 |
Cultivation Location | Studied Tulip Species | Vase Life (Days) | |
---|---|---|---|
Without Preservative | With Preservative | ||
Epanomi (Northern Greece) | Tulipa australis (AUS) | 4.5 ± 1.0 a | 5.0 ± 0.1 a |
Tulipa clusiana ‘Chrysantha’ (CLC) | 4.4 ± 1.0 a | 4.9 ± 0.5 a | |
Tulipa cretica ‘Hilde’ (CRH) | 6.4 ± 1.4 a | 6.5 ± 1.4 a | |
Tulip hybrid Île-de-France (IDF) | 4.6 ± 2.0 a | 4.1 ± 1.6 a | |
Thermi (Northern Greece) | Tulipa australis (AUS) | 5.6 ± 3.0 a | 4.9 ± 3.0 a |
Tulipa clusiana ‘Chrysantha’ (CLC) | 3.2 ± 1.5 a | 3.0 ± 0.1 a | |
Tulipa cretica ‘Hilde’ (CRH) | 4.5 ± 0.5 a | 4.7 ± 0.5 a | |
Tulip hybrid Île-de-France (IDF) | 3.8 ± 1.5 a | 3.7 ± 1.5 a |
Cultivation Location | Tulip Species | Preservation | Water Uptake (mL) | |
---|---|---|---|---|
During Vase Life | Per Day | |||
Epanomi | AUS | No | 27 de | 6.3 ce |
Yes | 22.6 defg | 4.5 ced | ||
CLC | No | 12.3 defg | 2.7 ced | |
Yes | 21.5 def | 4.8 ced | ||
CRH | No | 14.0 efg | 2.2 e | |
Yes | 14.0 efg | 2.2 e | ||
IDF | No | 79.7 a | 23.2 a | |
Yes | 66.5 b | 22.0 a | ||
Thermi | AUS | No | 24.3 d | 5.3 c |
Yes | 23.0 de | 5.5 c | ||
CLC | No | 7.4 fg | 2.6 ed | |
Yes | 7.6 g | 2.5 ed | ||
CRH | No | 12.9 efg | 2.7 ed | |
Yes | 14.9 defg | 3.1 ced | ||
IDF | No | 46.2 c | 12.1 b | |
Yes | 44.1 c | 11.6 b |
Cultivation Location | Tulip Species | Preservative | SPAD | Color Parameters | ||||
---|---|---|---|---|---|---|---|---|
L | a | b | c | H | ||||
Epanomi | AUS | No | 34.9 f | 69.3 b | 5.5 e | 88.0 a | 88.2 a | 86.5 b |
Yes | 35 ef | 72.2 b | 4.3 e | 69.7 b | 69.8 b | 86.4 b | ||
CLC | No | 35.3 f | 62.8 c | 9.1 b | 63.8 b | 64.4 b | 81.7 b | |
Yes | 36.8 f | 62.3 c | 8.9 d | 63.5 b | 64.8 b | 80.3 c | ||
CRH | No | 64.1 ce | 80.1 ab | 0.8 g | 12.4 ef | 12.8 g | 83.6 bc | |
Yes | 60.7 ce | 74.3 b | 1.6 g | 13.9 e | 14.3 g | 82.6 bc | ||
IDF | No | 72.5 ab | 33.7 d | 27.4 b | 10.2 f | 29.6 e | 23.5 e | |
Yes | 68.1 abc | 27.6 d | 28.3 b | 8.3b f | 29.8 e | 19.4 ef | ||
Thermi | AUS | No | 36.2 f | 65.3 c | 5.2 e | 85.2 a | 81.2 a | 83.2 bc |
Yes | 36.7 f | 64.7 c | 4.8 e | 67.1 b | 64.5 b | 85.6 b | ||
CLC | No | 37.2 f | 64.8 bc | 16.3 c | 40.5 c | 44.8 c | 65.5 d | |
Yes | 53.5b cdef | 69.3 c | 16.5 c | 56.4 bc | 58.5 bc | 73.7 d | ||
CRH | No | 76.0 a | 77.1 b | 1.0 g | 19.9 d | 20.1 f | 91.2 a | |
Yes | 45.4 cdef | 76.4 b | 0.92 g | 18.7 d | 20.8 f | 90.4 a | ||
IDF | No | 55.8 ef | 30.4 d | 31.8 ab | 15.1 e | 34.0 d | 18.6 f | |
Yes | 28.1 fg | 36.0 d | 33.3 a | 11.4 ef | 35.3 d | 18.8 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lykas, C.; Zografou, M.; Samartza, I.; Sakellariou, M.A.; Papakonstantinou, S.; Valanas, E.; Plastiras, I.; Karapatzak, E.; Krigas, N.; Tsoktouridis, G. Vase Life Evaluation of Three Greek Tulip Species Compared with a Commercial Cultivar. Horticulturae 2023, 9, 928. https://doi.org/10.3390/horticulturae9080928
Lykas C, Zografou M, Samartza I, Sakellariou MA, Papakonstantinou S, Valanas E, Plastiras I, Karapatzak E, Krigas N, Tsoktouridis G. Vase Life Evaluation of Three Greek Tulip Species Compared with a Commercial Cultivar. Horticulturae. 2023; 9(8):928. https://doi.org/10.3390/horticulturae9080928
Chicago/Turabian StyleLykas, Christos, Maria Zografou, Ioulietta Samartza, Michalia A. Sakellariou, Stylianos Papakonstantinou, Eleftherios Valanas, Ioannis Plastiras, Eleftherios Karapatzak, Nikos Krigas, and Georgios Tsoktouridis. 2023. "Vase Life Evaluation of Three Greek Tulip Species Compared with a Commercial Cultivar" Horticulturae 9, no. 8: 928. https://doi.org/10.3390/horticulturae9080928
APA StyleLykas, C., Zografou, M., Samartza, I., Sakellariou, M. A., Papakonstantinou, S., Valanas, E., Plastiras, I., Karapatzak, E., Krigas, N., & Tsoktouridis, G. (2023). Vase Life Evaluation of Three Greek Tulip Species Compared with a Commercial Cultivar. Horticulturae, 9(8), 928. https://doi.org/10.3390/horticulturae9080928