Integrative Effect of UV-B and Some Organic Amendments on Growth, Phenolic and Flavonoid Compounds, and Antioxidant Activity of Basil (Ocimum basilicum L.) Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Organic Treatments Characteristics
2.3. Potting Soil Mixture Application and UV-B Treatment
2.4. Determination of Biometric Parameters
2.5. Extraction and Determination of Total Phenolics, Flavonoids, and Antioxidant Activity
2.6. Statistical Analysis
3. Results
3.1. Biometric Parameters
3.2. Phenols, Flavonoid, and Antioxidant Activity in Vegetative Shoot Apices
3.3. Phenols, Flavonoid, and Antioxidant Activity in Fully Developed Leaves
3.4. Canonical Discriminant Analysis (CDA) on Vegetative Shoot Apices and Fully Developed Leaves
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santin, M.; Ranieri, A.; Castagna, A. Anything New under the Sun? An Update on Modulation of Bioactive Compounds by Different Wavelengths in Agricultural Plants. Plants 2021, 10, 1485. [Google Scholar] [CrossRef] [PubMed]
- Loconsole, D.; Santamaria, P. UV Lighting in Horticulture: A Sustainable Tool for Improving Production Quality and Food Safety. Horticulturae 2021, 7, 9. [Google Scholar] [CrossRef]
- Puccinelli, M.; Maggini, R.; Angelini, L.G.; Santin, M.; Landi, M.; Tavarini, S.; Castagna, A.; Incrocci, L. Can Light Spectrum Composition Increase Growth and Nutritional Quality of Linum Usitatissimum L. Sprouts and Microgreens? Horticulturae 2022, 8, 98. [Google Scholar] [CrossRef]
- Neugart, S.; Schreiner, M. UVB and UVA as Eustressors in Horticultural and Agricultural Crops. Sci. Hortic. 2018, 234, 370–381. [Google Scholar] [CrossRef]
- Schreiner, M.; Huyskens-Keil, S. Phytochemicals in Fruit and Vegetables: Health Promotion and Postharvest Elicitors. CRC Crit. Rev. Plant Sci. 2006, 25, 267–278. [Google Scholar] [CrossRef]
- Schreiner, M.; Martínez-Abaigar, J.; Glaab, J.; Jansen, M. UV-B Induced Secondary Plant Metabolites. Opt. Photonik 2014, 9, 34–37. [Google Scholar] [CrossRef]
- Hideg, É.; Strid, Å. The effects of UV-B on the biochemistry and metabolism of plants. In UV-B Radiation and Plant Life: Molecular Biology to Ecology; CABI: Wallingford, UK, 2017; pp. 90–110. [Google Scholar]
- Santin, M.; Calogera Sciampagna, M.; Mannucci, A.; Puccinelli, M.; Angelini, L.G.; Tavarini, S.; Accorsi, M.; Incrocci, L.; Ranieri, A.; Castagna, A. Supplemental UV-B Exposure Influences the Biomass and the Content of Bioactive Compounds in Linum Usitatissimum L. Sprouts and Microgreens. Horticulturae 2022, 8, 213. [Google Scholar] [CrossRef]
- Meyer, P.; Van de Poel, B.; De Coninck, B. UV-B light and its application potential to reduce disease and pest incidence in crops. Hortic. Res. 2021, 8, 194. [Google Scholar] [CrossRef]
- Dou, H.; Niu, G.; Gu, M. Pre-harvest UV-B radiation and photosynthetic photon flux density interactively affect plant photosynthesis, growth, and secondary metabolites accumulation in basil (Ocimum basilicum) plants. Agronomy 2019, 9, 434. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, D.; Pandey-Rai, S.; Agrawal, S.B. Untangling the UV-B radiation-induced transcriptional network regulating plant morphogenesis and secondary metabolite production. Environ. Exp. Bot. 2021, 192, 104655. [Google Scholar] [CrossRef]
- Yin, R.; Ulm, R. How Plants Cope with UV-B: From Perception to Response. Curr. Opin. Plant Biol. 2017, 37, 42–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, A.; Singh, D.; Lingwan, M.; Yadukrishnan, P.; Masakapalli, S.K.; Datta, S. Light Signaling and UV-B-Mediated Plant Growth Regulation. J. Integr. Plant Biol. 2020, 62, 1270–1292. [Google Scholar] [CrossRef]
- Singh, P.; Singh, A.; Choudhary, K.K. Revisiting the role of phenylpropanoids in plant defense against UV-B stress. Plant Stress 2023, 7, 100143. [Google Scholar] [CrossRef]
- Dotto, M.; Casati, P. Developmental Reprogramming by UV-B Radiation in Plants. Plant Sci. 2017, 264, 96–101. [Google Scholar] [CrossRef]
- Heijde, M.; Ulm, R. UV-B Photoreceptor-Mediated Signalling in Plants. Trends Plant Sci. 2012, 17, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, G.I. Photomorphogenic Responses to Ultraviolet-B Light. Plant Cell Environ. 2017, 40, 2544–2557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, F.; Lin, L.; Zhang, Q.; Lu, M.; Skvortsova, M.Y.; Podolec, R.; Yin, R. Mechanisms of UV-B light-induced photoreceptor UVR8 nuclear localization dynamics. New Phytol. 2022, 236, 1824–1837. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Feng, Y. The Effects of Biochar Addition on Soil Physicochemical Properties: A Review. Catena 2021, 202, 105284. [Google Scholar] [CrossRef]
- Kapoor, A.; Sharma, R.; Kumar, A.; Sepehya, S. Biochar as a Means to Improve Soil Fertility and Crop Productivity: A Review. J. Plant Nutr. 2022, 45, 2380–2388. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, B.; Chen, Z.; Zhu, L.; Schnoor, J.L. Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environ. Sci. Technol. 2018, 52, 5027–5047. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop per-formance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Singh, H.; Northup, B.K.; Rice, C.W.; Prasad, P.V. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar 2022, 4, 8. [Google Scholar] [CrossRef]
- Grewal, A.; Abbey, L.; Gunupuru, L.R. Production, Prospects and Potential Application of Pyroligneous Acid in Agriculture. J. Anal. Appl. Pyrolysis 2018, 135, 152–159. [Google Scholar] [CrossRef]
- Ferrarin, M.; Becagli, M.; Guglielminetti, L.; Cardelli, R. Wood Distillate, a Review over Past Application and Future Perspective on Soil and Plant Research. Agrochimica 2021, 65, 17–24. [Google Scholar] [CrossRef]
- Batista Souza, J.G.; Ré-Poppi, N.; Luiz Raposo, J., Jr. Characterization of Pyroligneous Acid Used in Agriculture by Gas Chroma-tography-Mass Spectrometry. J. Braz. Chem. Soc. 2012, 23, 610–617. [Google Scholar]
- Simma, B.; Polthanee, A.; Goggi, A.S.; Siri, B.; Promkhambut, A.; Caragea, P.C. Wood Vinegar Seed Priming Improves Yield and Suppresses Weeds in Dryland Direct-Seeding Rice under Rainfed Production. Agron. Sustain. Dev. 2017, 37, 56. [Google Scholar] [CrossRef] [Green Version]
- Hideki Togoro, A.; Aparecida dos Santos da Silva, J.; Osvaldo Cazetta, J. Chemical Changes in an Oxisol Treated with Pyro-ligneous Acid. Ciência E Agrotecnologia 2014, 38, 113–121. [Google Scholar] [CrossRef]
- Cardelli, R.; Becagli, M.; Marchini, F.; Saviozzi, A. Soil Biochemical Activities after the Application of Pyroligneous Acid to Soil. Soil Res. 2020, 58, 461–467. [Google Scholar] [CrossRef]
- Zhang, F.; Shao, J.; Yang, H.; Guo, D.; Chen, Z.; Zhang, S.; Chen, H. Effects of Biomass Pyrolysis Derived Wood Vinegar on Microbial Activity and Communities of Activated Sludge. Bioresour. Technol. 2019, 279, 252–261. [Google Scholar] [CrossRef]
- Becagli, M.; Santin, M.; Cardelli, R. Co-Application of Wood Distillate and Biochar Improves Soil Quality and Plant Growth in Basil (Ocimum basilicum)#. J. Plant Nutr. Soil Sci. 2022, 185, 120–131. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, H.; Meng, J.; Yang, Q.; Zhang, X.; Kang, Z.; Zhou, G. Effect of the combined action of wood vinegar and sodium naphthaleneacetate on photosynthetic characteristics and yield of peanuts. Agric. Res. Arid. Areas 2017, 1, 185–191. [Google Scholar]
- Petruccelli, R.; Bonetti, A.; Traversi, M.L.; Faraloni, C.; Valagussa, M.; Pozzi, A. Influence of Biochar Application on Nutritional Quality of Tomato (Lycopersicon esculentum). Crop Pasture Sci. 2015, 66, 747–755. [Google Scholar] [CrossRef]
- Saha, A.; Basak, B.B.; Gajbhiye, N.A.; Kalariya, K.A.; Manivel, P. Sustainable Fertilization through Co-Application of Biochar and Chemical Fertilizers Improves Yield, Quality of Andrographis Paniculata and Soil Health. Ind. Crops Prod. 2019, 140, 111607. [Google Scholar] [CrossRef]
- Jabborova, D.; Ma, H.; Bellingrath-Kimura, S.D.; Wirth, S. Impacts of Biochar on Basil (Ocimum basilicum) Growth, Root Morphological Traits, Plant Biochemical and Physiological Properties and Soil Enzymatic Activities. Sci. Hortic. 2021, 290, 110518. [Google Scholar] [CrossRef]
- Hiyasmin Rose, L.; Benzon, S.C.L. Potential of Wood Vinegar in Enhancing Fruit Yield and Antioxidant Capacity in Tomato. Korean J. Plant Resour. 2016, 29, 704–711. [Google Scholar]
- Zhang, Y.; Wang, X.; Liu, B.; Liu, Q.; Zheng, H.; You, X.; Sun, K.; Luo, X.; Li, F. Comparative Study of Individual and Co-Application of Biochar and Wood Vinegar on Blueberry Fruit Yield and Nutritional Quality. Chemosphere 2020, 246, 125699. [Google Scholar] [CrossRef] [PubMed]
- Ugbogu, O.C.; Emmanuel, O.; Agi, G.O.; Ibe, C.; Ekweogu, C.N.; Ude, V.C.; Uche, M.E.; Nnanna, R.O.; Ugbogu, E.A. A Review on the Traditional Uses, Phytochemistry, and Pharmacological Activities of Clove Basil (Ocimum gratissimum L.). Heliyon 2021, 7, e08404. [Google Scholar] [CrossRef]
- Perna, S.; Alawadhi, H.; Riva, A.; Allegrini, P.; Petrangolini, G.; Gasparri, C.; Alalwan, T.A.; Rondanelli, M. In Vitro and In Vivo Anticancer Activity of Basil (Ocimum spp.): Current Insights and Future Prospects. Cancers 2022, 14, 2375. [Google Scholar] [CrossRef]
- Osei Akoto, C.; Acheampong, A.; Boakye, Y.D.; Naazo, A.A.; Adomah, D.H. Anti-Inflammatory, Antioxidant, and Anthel-mintic Activities of Ocimum basilicum (Sweet Basil) Fruits. J. Chem. 2020, 2020, 2153534. [Google Scholar] [CrossRef]
- Takeuchi, H.; Takahashi-Muto, C.; Nagase, M.; Kassai, M.; Tanaka-Yachi, R.; Kiyose, C. Anti-Inflammatory Effects of Extracts of Sweet Basil (Ocimum basilicum L.) on a Co-Culture of 3t3-L1 Adipocytes and Raw264.7 Macrophages. J. Oleo Sci. 2020, 69, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The Antimicrobial Efficacy of Plant Essential Oil Combinations and Interactions with Food Ingredients. Int. J. Food Microbiol. 2008, 124, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.I.; Anwar, F.; Hussain Sherazi, S.T.; Przybylski, R. Chemical Composition, Antioxidant and Antimicrobial Activities of Basil (Ocimum basilicum) Essential Oils Depends on Seasonal Variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Skrypnik, L.; Novikova, A.; Tokupova, E. Improvement of Phenolic Compounds, Essential Oil Content and Antioxidant Properties of Sweet Basil (Ocimum basilicum L.) Depending on Type and Concentration of Selenium Application. Plants 2019, 8, 458. [Google Scholar] [CrossRef] [Green Version]
- Bantis, F.; Ouzounis, T.; Radoglou, K. Artificial LED Lighting Enhances Growth Characteristics and Total Phenolic Content of Ocimum basilicum, but Variably Affects Transplant Success. Sci. Hortic. 2016, 198, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.B.; Kirby, J.; Naxakis, G.; Pearson, S. Substantial UV-B-Mediated Induction of Essential Oils in Sweet Basil (Ocimum basilicum L.). Phytochemistry 1999, 51, 507–510. [Google Scholar] [CrossRef]
- Chang, X.; Alderson, P.G.; Wright, C.J. Enhanced UV-B Radiation Alters Basil (Ocimum basilicum L.) Growth and Stimulates the Synthesis of Volatile Oils. J. Hortic. For. 2009, 1, 27–31. [Google Scholar]
- Mosadegh, H.; Trivellini, A.; Ferrante, A.; Lucchesini, M.; Vernieri, P.; Mensuali, A. Applications of UV-B Lighting to Enhance Phenolic Accumulation of Sweet Basil. Sci. Hortic. 2018, 229, 107–116. [Google Scholar] [CrossRef]
- Sakalauskaite, J.; Viskelis, P.; Dambrauskiene, E.; Sakalauskiene, S.; Samuoliene, G.; Brazaityte, A.; Duchovskis, P.; Ur-bonavičiene, D. The Effects of Different UV-B Radiation Intensities on Morphological and Biochemical Characteristics in Ocimum basilicum L. J. Sci. Food Agric. 2013, 93, 1266–1271. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.; Patel, A.; Patra, D.D. Biochar Ameliorates Crop Productivity, Soil Fertility, Essential Oil Yield and Aroma Profiling in Basil (Ocimum basilicum L.). Ecol. Eng. 2016, 90, 361–366. [Google Scholar] [CrossRef]
- Scagel, C.F.; Lee, J. Salinity Sensitivity and Mycorrhizal Responsiveness of Polyphenolics in ‘Siam Queen’ Basil Grown in Soilless Substrate. Sci. Hortic. 2020, 269, 109394. [Google Scholar] [CrossRef]
- Mannucci, A.; Mariotti, L.; Castagna, A.; Santin, M.; Trivellini, A.; Reyes, T.H.; Mensuali-Sodi, A.; Ranieri, A.; Quartacci, M.F. Hormone Profile Changes Occur in Roots and Leaves of Micro-Tom Tomato Plants When Exposing the Aerial Part to Low Doses of UV-B Radiation. Plant Physiol. Biochem. 2020, 148, 291–301. [Google Scholar] [CrossRef] [PubMed]
- ARPAV—Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto. L’interpretazione delle Analisi del Terreno—Strumento per la Sostenibilità Ambientale; Arpav: Padova, Italy, 2007; ISBN 88-7504-115-6. [Google Scholar]
- Colombo, C.; Miano, T. Metodi di Analisi Chimica del Suolo; Società Italiana della Scienza del Suolo (SISS): Palermo, Italy, 2015. [Google Scholar]
- Tavarini, S.; Castagna, A.; Conte, G.; Foschi, L.; Sanmartin, C.; Incrocci, L.; Ranieri, A.; Serra, A.; Angelini, L.G. Evaluation of Chemical Composition of Two Linseed Varieties as Sources of Health-Beneficial Substances. Molecules 2019, 24, 3729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso Borbalán, Á.M.; Zorro, L.; Guillén, D.A.; García Barroso, C. Study of the Polyphenol Content of Red and White Grape Varieties by Liquid Chromatography-Mass Spectrometry and Its Relationship to Antioxidant Power. J. Chromatogr. A 2003, 1012, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.O.; Chun, O.K.; Kim, Y.J.; Moon, H.Y.; Lee, C.Y. Quantification of Polyphenolics and Their Antioxidant Capacity in Fresh Plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef]
- Pellegrini, N.; Yang, M.; Rice-Evans, C. Screening of dietary carotenoid fruit extracts for antioxidant activities applying 2, 2′-azinobit (3-ethylenebenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Methods Enzymol. 1999, 299, 379–386. [Google Scholar]
- Bruun, E.W.; Petersen, C.T.; Hansen, E.; Holm, J.K.; Hauggaard-Nielsen, H. Biochar Amendment to Coarse Sandy Subsoil Improves Root Growth and Increases Water Retention. Soil Use Manag. 2014, 30, 109–118. [Google Scholar] [CrossRef]
- Borchard, N.; Siemens, J.; Ladd, B.; Möller, A.; Amelung, W. Application of Biochars to Sandy and Silty Soil Failed to Increase Maize Yield under Common Agricultural Practice. Soil Tillage Res. 2014, 144, 184–194. [Google Scholar] [CrossRef]
- Fedeli, R.; Vannini, A.; Guarnieri, M.; Monaci, F.; Loppi, S. Bio-Based Solutions for Agriculture: Foliar Application of Wood Distillate Alone and in Combination with Other Plant-Derived Corroborants Results in Different Effects on Lettuce (Lactuca sativa L.). Biology 2022, 11, 404. [Google Scholar] [CrossRef]
- Giannini, V.; Moro, G.; Marche, M.G.; Hamze, R.; Ruiu, L. Exploring the bioactivity of a novel pine wood distillate (PWD) for plant growth and protection. J. Plant Dis. Prot. 2023, 130, 725–734. [Google Scholar] [CrossRef]
- Carril, P.; Bianchi, E.; Cicchi, C.; Coppi, A.; Dainelli, M.; Gonnelli, C.; Colzi, I. Effects of Wood Distillate (Pyroligneous Acid) on the Yield Parameters and Mineral Composition of Three Leguminous Crops. Environments 2023, 10, 126. [Google Scholar] [CrossRef]
- Rawat, J.; Saxena, J.; Sanwal, P. Biochar: A sustainable approach for improving plant growth and soil properties. Bi-Ochar-Imp. Amend. Soil Environ. 2019, 1–17. [Google Scholar]
- Chen, J.; Wu, J.H.; Si, H.P.; Lin, K.Y. Effects of adding wood vinegar to nutrient solution on the growth, photosynthesis, and absorption of mineral elements of hydroponic lettuce. J. Plant Nutr. 2016, 39, 456–462. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, J.; He, J.; Sun, K.; Sun, Y. Effect of pyrolysis temperature on the characteristics of wood vinegar derived from Chinese fir waste: A comprehensive study on its growth regulation performance and mechanism. ACS Omega 2019, 4, 19054–19062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bu, X.L.; Xue, J.H.; Wu, Y.B.; Ma, W.B. Effect of Biochar on Seed Germination and Seedling Growth of Robinia pseudoacacia L. In Karst Calcareous Soils. Commun. Soil Sci. Plant Anal. 2020, 51, 352–363. [Google Scholar] [CrossRef]
- Biever, J.J.; Brinkman, D.; Gardner, G. UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation. J. Exp. Bot. 2014, 65, 2949–2961. [Google Scholar] [CrossRef] [Green Version]
- Coffey, A.; Prinsen, E.; Jansen, M.A.K.; Conway, J. The UVB Photoreceptor UVR8 Mediates Accumulation of UV-Absorbing Pigments, but Not Changes in Plant Morphology, under Outdoor Conditions. Plant Cell Environ. 2017, 40, 2250–2260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Huang, G.; Wang, L.; Zhou, Q.; Huang, X. Effects of elevated ultraviolet-B radiation on root growth and chemical signaling molecules in plants. Ecotoxicol. Environ. Saf. 2019, 171, 683–690. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Ravishankar, G.A. Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef] [PubMed]
- Csepregi, K.; Kőrösi, L.; Teszlák, P.; Hideg, É. Postharvest UV-A and UV-B treatments may cause a transient decrease in grape berry skin flavonol-glycoside contents and total antioxidant capacities. Phytochem. Lett. 2019, 31, 63–68. [Google Scholar] [CrossRef]
- Czégény, G.; Wu, M.; Dér, A.; Eriksson, L.A.; Strid, Å.; Hideg, É. Hydrogen peroxide contributes to the ultraviolet-B (280–315 nm) induced oxidative stress of plant leaves through multiple pathways. FEBS Lett. 2014, 588, 2255–2261. [Google Scholar] [CrossRef] [Green Version]
- Rajashekar, C.B. Dual Role of Plant Phenolic Compounds as Antioxidants and Prooxidants. Am. J. Plant Sci. 2023, 14, 15–28. [Google Scholar] [CrossRef]
Soil Parameter | Units | S | S_B |
---|---|---|---|
Sand | % | 73.2 | -- |
Silt | % | 16.7 | -- |
Clay | % | 10.1 | -- |
pH | 8.1 ± 0.2 | 8.4 ± 0.1 | |
CaCO3 tot | % | 5.2 ± 0.6 | 5.3 ± 0.3 |
TOC | g kg−1 | 9.8 ± 0.1 | 16.2 ± 0.3 *** |
Total N | g kg−1 | 1.54 ± 0.41 | 1.56 ± 0.43 |
Available P (P avl.) | mg kg−1 | 14.82 ± 0.12 | 14.86 ± 0.18 |
Exchangeable (K exc.) | mg kg−1 | 65.8 ± 0.6 | 76.6 ± 0.5 *** |
Cation Exchange Capacity (CEC) | cmol (+) kg−1 | 13.65 ± 0.29 | 15.36 ± 0.35 ** |
Soil | UV-B | Length (cm) | Weight (g FW) | ||||||
---|---|---|---|---|---|---|---|---|---|
Stem (S) | Roots (R) | S + R | S/R | Aerial Part (AP) | Roots (R) | AP + R | S/R | ||
S | 0-UV-B | 18.6 ± 0.8 | 16.5 ± 0.9 abc | 35.0 ± 1.6 | 1.1 ± 0.0 c | 6.4 ± 0.8 | 5.9 ± 0.5 | 12.3 ± 1.1 | 1.1 ± 0.1 |
1-UV-B | 25.0 ± 3.4 | 16.0 ± 0.3 abcd | 41.0 ± 3.6 | 1.6 ± 02 abc | 9.3 ± 1.3 | 6.3 ± 1.6 | 15.5 ± 0.4 | 1.8 ± 0.6 | |
2-UV-B | 16.7 ± 1.1 | 13.6 ± 0.7 cde | 30.4 ± 1.6 | 1.2 ± 0.1 bc | 4.6 ± 0.4 | 4.4 ± 0.5 | 9.0 ± 0.8 | 1.1 ± 0.1 | |
S_WD | 0-UV-B | 18.9 ± 0.6 | 13.3 ± 1.2 cde | 32.1 ± 1.3 | 1.5 ± 0.1 ab | 4.8 ± 0.4 | 5.3 ± 0.7 | 10.1 ± 0.7 | 1.1 ± 0.2 |
1-UV-B | 25.2 ± 3.2 | 16.0 ± 0.8 abcd | 41.2 ± 3.1 | 1.5 ± 0.2 abc | 10.9 ± 2.3 | 5.6 ± 1.5 | 16.5 ± 3.7 | 2.1 ± 0.3 | |
2-UV-B | 15.2 ± 0.8 | 10.4 ± 0.6 de | 25.6 ± 1.4 | 1.5 ± 0.0 abc | 3.8 ± 0.2 | 3.3 ± 0.3 | 7.2 ± 0.3 | 1.2 ± 0.1 | |
S_B | 0-UV-B | 21.5 ± 0.8 | 15.2 ± 0.7 bc | 36.7 ± 1.3 | 1.4 ± 0.1 abc | 7.8 ± 0.8 | 7.9 ± 1.1 | 15.7 ± 1.5 | 1.1 ± 0.1 |
1-UV-B | 22.5 ± 0.3 | 20.3 ± 1.9 ab | 42.8 ± 1.6 | 1.1 ± 0.1 bc | 9.1 ± 1.4 | 5.7 ± 0.9 | 14.8 ± 2.1 | 1.6 ± 0.2 | |
2-UV-B | 15.9 ± 1.6 | 13.2 ± 1.2 cde | 29.1 ± 2.8 | 1.2 ± 0.0 bc | 5.0 ± 0.4 | 5.7 ± 1.0 | 10.8 ± 1.3 | 1.0 ± 0.1 | |
S_BWD | 0-UV-B | 20.5 ± 1.0 | 14.4 ± 0.7 cd | 34.9 ± 1.5 | 1.4 ± 0.1 abc | 6.0 ± 0.8 | 6.5 ± 0.8 | 12.5 ± 1.3 | 1.1 ± 0.1 |
1-UV-B | 29.0 ± 3.8 | 21.7 ± 1.3 a | 50.7 ± 2.8 | 1.4 ± 0.3 abc | 10.4 ± 1.8 | 6.2 ± 1.5 | 16.6 ± 3.2 | 1.7 ± 0.2 | |
2-UV-B | 17.1 ± 0.8 | 10.0 ± 0.5 e | 27.0 ± 1.1 | 1.7 ± 0.1 a | 3.1 ± 0.5 | 5.1 ± 0.5 | 8.2 ± 0.9 | 0.6 ± 0.1 | |
Mean effect | |||||||||
S | 20.1 ± 2.5 | 15.4 ± 0.9 ab | 35.5 ± 3.1 | 1.3 ± 0.0 ab | 6.8 ± 1.4 | 5.5 ± 0.6 | 12.3 ± 1.9 | 1.3 ± 0.1 | |
S_WD | 19.7 ± 2.9 | 13.3 ± 1.6 b | 33.0 ± 4.5 | 1.5 ± 0.1 a | 6.5 ± 2.2 | 4.7 ± 0.7 | 11.2 ± 2.8 | 1.4 ± 0.1 | |
S_B | 20.0 ± 2.1 | 16.3 ± 2.1 a | 36.4 ± 4.0 | 1.3 ± 0.0 b | 7.2 ± 1.2 | 6.3 ± 0.6 | 13.5 ± 1.4 | 1.2 ± 0.1 | |
S_BWD | 22.2 ± 3.5 | 15.3 ± 3.4 ab | 37.5 ± 6.9 | 1.5 ± 0.1 a | 6.5 ± 2.1 | 5.9 ± 0.4 | 12.5 ± 2.4 | 1.1 ± 0.1 | |
0-UV-B | 19.9 ± 0.4 b | 14.9 ± 0.5 b | 34.1 ± 0.8 b | 1.4 ± 0.0 | 6.1 ± 0.4 b | 6.3 ± 0.4 a | 12.4 ± 0.6 b | 1.1 ± 0.1 b | |
1-UV-B | 25.4 ± 1.5 a | 18.5 ± 0.9 a | 43.9 ± 1.7 a | 1.4 ± 0.1 | 9.9 ± 0.8 a | 5.9 ± 0.6 b | 15.9 ± 1.2 a | 1.8 ± 0.2 a | |
2-UV-B | 16.2 ± 0.5 c | 11.8 ± 0.5 c | 28.0 ± 0.9 c | 1.4 ± 0.0 | 4.1 ± 0.2 c | 4.6 ± 0.3 b | 8.8 ± 0.5 c | 1.0 ± 0.1 b | |
ANOVA | |||||||||
Amendments (A) | 0.1114 | 0.0094 | 0.0591 | 0.0020 | 0.7685 | 0.2285 | 0.3258 | 0.2222 | |
UV-B (B) | <0.0001 | <0.0001 | <0.0001 | 0.7562 | <0.0001 | 0.0143 | <0.0001 | <0.0001 | |
A × B | 0.176 | 0.0185 | 0.1514 | 0.0027 | 0.2486 | 0.9387 | 0.5737 | 0.4920 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santin, M.; Becagli, M.; Sciampagna, M.C.; Mannucci, A.; Ranieri, A.; Castagna, A. Integrative Effect of UV-B and Some Organic Amendments on Growth, Phenolic and Flavonoid Compounds, and Antioxidant Activity of Basil (Ocimum basilicum L.) Plants. Horticulturae 2023, 9, 894. https://doi.org/10.3390/horticulturae9080894
Santin M, Becagli M, Sciampagna MC, Mannucci A, Ranieri A, Castagna A. Integrative Effect of UV-B and Some Organic Amendments on Growth, Phenolic and Flavonoid Compounds, and Antioxidant Activity of Basil (Ocimum basilicum L.) Plants. Horticulturae. 2023; 9(8):894. https://doi.org/10.3390/horticulturae9080894
Chicago/Turabian StyleSantin, Marco, Michelangelo Becagli, Maria Calogera Sciampagna, Alessia Mannucci, Annamaria Ranieri, and Antonella Castagna. 2023. "Integrative Effect of UV-B and Some Organic Amendments on Growth, Phenolic and Flavonoid Compounds, and Antioxidant Activity of Basil (Ocimum basilicum L.) Plants" Horticulturae 9, no. 8: 894. https://doi.org/10.3390/horticulturae9080894
APA StyleSantin, M., Becagli, M., Sciampagna, M. C., Mannucci, A., Ranieri, A., & Castagna, A. (2023). Integrative Effect of UV-B and Some Organic Amendments on Growth, Phenolic and Flavonoid Compounds, and Antioxidant Activity of Basil (Ocimum basilicum L.) Plants. Horticulturae, 9(8), 894. https://doi.org/10.3390/horticulturae9080894