Advancements and Applications of Raman Spectroscopy in Rapid Quality and Safety Detection of Fruits and Vegetables
Abstract
:1. Introduction
2. Overview of Raman Spectroscopy
3. Types of Raman Spectroscopy Techniques
3.1. Confocal Micro Raman Spectroscopy
3.2. Fourier Transform Raman Spectroscopy
3.3. Surface-Enhanced Raman Spectroscopy
3.4. Resonance Raman Spectroscopy
3.5. Spatial Offset Raman Spectroscopy (SORS)
4. Application of Raman Spectroscopy in Testing Fruit and Vegetable Quality and Safety
4.1. Application of Confocal Micro Raman Spectroscopy for Testing Fruit and Vegetable Quality and Safety
4.1.1. Quality Inspection Aspect
4.1.2. Security Detection Aspects
4.2. Fourier Transform Raman Spectroscopy for Testing the Quality and Safety of Fruits and Vegetables
4.2.1. Quality Inspection Aspect
4.2.2. Security Detection Aspects
4.3. Surface-Enhanced Raman Spectroscopy for the Assessment of the Quality and Safety of Fruits and Vegetables
4.3.1. Quality Inspection Aspect
4.3.2. Security Detection Aspects
4.4. Resonance Raman Spectroscopy Can Be Applied to Testing the Quality and Safety of Fruits and Vegetables
4.4.1. Quality Inspection Aspect
4.4.2. Security Detection Aspects
4.5. The Utilization of Spatially Offset Raman Spectroscopy for Testing the Quality and Safety of Fruits and Vegetables
4.5.1. Quality Inspection Aspect
4.5.2. Security Detection Aspects
5. Comparison of Raman Spectroscopy with Other Intelligent Non-Destructive Techniques
5.1. Near-Infrared Spectroscopy
5.2. RGB Vision Detection Technology
5.3. Electronic Nose Detection Technology
5.4. Acoustic Signature Detection Technology
5.5. Dielectric Properties Testing Technology
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, H.; Yu, Z.; Zhu, M.; Chen, H.; Chen, W. The Development of The Functional Factor in Fruits and Vegetables and Health Food. Food Nutr. China 2005, 5, 20–23. [Google Scholar]
- AAPE. Research Report on the Circulation of Agricultural Products and the Construction of the “First Kilometer”; Academy of Agricultural Planning and Engineering: Beijing, China, 2021. [Google Scholar]
- Dashen, Z.; Jing, C.; Xin, Z.; Jilan, L.; Zhicheng, L.; Xiaodong, Z.; Weimin, G.; Ye, S. Research Status and Application Suggestions on Fruit and Vegetable Cold Chain Traceability System. J. Agric. Big Data 2022, 4, 49–54. [Google Scholar]
- Zheng, W. Discussion on pesticide residues in vegetables. Sci. Technol. Vis. 2013, 25, 315. [Google Scholar]
- Chiu, Y.; Sandoval-Insausti, H.; Ley, S.H.; Bhupathiraju, S.N.; Hauser, R.; Rimm, E.B.; Manson, J.E.; Sun, Q.; Chavarro, J.E. Association between intake of fruits and vegetables by pesticide residue status and coronary heart disease risk. Environ. Int. 2019, 132, 105113. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, X.; Peng, C.; Wang, X.; Liu, J. Discussion on the problem of pesticide residues in fruits and vegetables. Hubei Agric. Sci. 2019, 58, 393–397. [Google Scholar]
- Xu, S.; Lu, H.; Qiu, G.; Wang, C.; Liang, X. Research Progress and Application Status of Fruit Quality Nondestructive Detection Technology. Guangdong Agric. Sci. 2020, 47, 229–236. [Google Scholar]
- Weng, S.; Zhu, W.; Zhang, X.; Yuan, H.; Zheng, L.; Zhao, J.; Huang, L.; Han, P. Recent advances in Raman technology with applications in agriculture, food and biosystems: A review. Artif. Intell. Agric. 2019, 3, 1–10. [Google Scholar] [CrossRef]
- Raman, C.V.; Krishnan, S.K. A New Type of Secondary Radiation. Nature 1928, 121, 502–503. [Google Scholar] [CrossRef]
- Bai, L.; Zhang, L.; Zhao, G. Development and Application of Raman Technology. Fujian Anal. Test. 2011, 20, 27–30. [Google Scholar]
- Liu, Y.; Jin, T. Application of Raman Spectroscopy Technique to Agricultural Products Quality and Safety Determination. Spectrosc. Spect. Anal. 2015, 35, 2567–2572. [Google Scholar]
- Xu, Y.; Luo, R.; Guo, M.; Wu, J.; Li, M. The application and development of confocal Raman micro-spectroscopy. Laser J. 2007, 2, 13–14. [Google Scholar]
- Gao, W. Application of Micro Confocal Raman Spectroscopy in the Determination of Complex Unknown Components. Mod. Food 2022, 28, 157–162. [Google Scholar]
- Zhou, K.; Xiaorong, W.; Cai, L.; Zhao, T. Design and Application of the Laser Micro-Raman Spectrometer. Process. Autom. Instrum. 2014, 35, 51–54. [Google Scholar]
- Kizil, R.; Irudayaraj, J. Spectroscopic Technique: Fourier Transform Raman (FT-Raman) Spectroscopy. In Modern Techniques for food Authentication; Academic Press: Cambridge, MA, USA, 2018; pp. 193–217. [Google Scholar]
- Chase, D.B. Fourier Transform Raman Spectroscopy. J. Am. Chem. Soc. 1986, 108, 7485–7488. [Google Scholar] [CrossRef] [PubMed]
- Jeanmaire, D.L.; Van Duyne, R.P. Part I Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Surf. Raman Spectroelectrochem. 1977, 84, 1–20. [Google Scholar]
- Fleischmann, M.; Hendra, P.J.; Mcquillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Lingyi, Z.; Ruiqin, Y.; Weiping, C. Application of Surface-Enhanced Raman Spectroscopy in the Detection of Classical Opioids. Laser Optoelectron. Prog. 2022, 59, 27–36. [Google Scholar]
- Robert, B. Resonance Raman spectroscopy. Photosynth. Res. 2009, 101, 147–155. [Google Scholar] [CrossRef]
- Xu, B.; Kim, S.; Jiang, L.; Liang, P. A Review of Applications of Resonance Raman Spectroscopy. Spectrosc. Spect. Anal. 2019, 39, 2119–2127. [Google Scholar]
- Yangyu, L.; Jianguang, M.; Dacheng, L.; Fangxiao, C.; Quiet, W.I.; Jun, W. Research on Spatial Offset Raman Spectroscopy and Data Processing Method. Spectrosc. Spect. Anal. 2020, 40, 71–74. [Google Scholar]
- Qiushi, L.; Xiaohua, Z.; Baozhen, Z.; Yuchen, L. Signal Detection and Enhancement Technology in Spatially Offset Raman Spectroscopy. At. Energy Sci. Technol. 2019, 53, 214–219. [Google Scholar]
- Matousek, P.; Morris, M.D.; Everall, N.; Clark, I.P.; Towrie, M.; Draper, E.; Goodship, A.; Parker, A.W. Numerical simulations of subsurface probing in diffusely scattering media usingspatially offset Raman spectroscopy. Appl. Spectrosc. 2005, 59, 1485–1492. [Google Scholar] [CrossRef]
- Azmi, M.H.I.M.; Hashim, F.H.; Huddin, A.B.; Sajab, M.S. Correlation Study between the Organic Compounds and Ripening Stages of Oil Palm Fruitlets Based on the Raman Spectra. Sensors 2022, 22, 7091. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Peng, J.; Xie, C.; Bao, Y.; He, Y. Fruit Quality Evaluation Using Spectroscopy Technology: A Review. Sensors 2015, 15, 11889–11927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farber, C.; Sanchez, L.; Rizevsky, S.; Ermolenkov, A.; McCutchen, B.; Cason, J.; Simpson, C.; Burow, M.; Kurouski, D. Raman Spectroscopy Enables Non-Invasive Identification of Peanut Genotypes and Value-Added Traits. Sci. Rep. 2020, 10, 7730. [Google Scholar] [CrossRef] [PubMed]
- Udensi, J.; Loughman, J.; Loskutova, E.; Byrne, H.J. Raman Spectroscopy of Carotenoid Compounds for Clinical Applications—A Review. Molecules 2022, 27, 9017. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cai, C.; Cui, X.; Zhang, L. Rapid Detection of Anthocyanin in Mulberry Based on Raman Spectroscopy. Spectrosc. Spect. Anal. 2021, 41, 3771–3775. [Google Scholar]
- Jiao, T.; Su, H.; Huang, J.; Zonghang, L.; Huang, X.; Yao, Z. Rapid Analysis of Fructose in HFCS by Raman Spectroscopy Combined with Angle Conversion. China Condiment 2021, 46, 33–36. [Google Scholar]
- Jiang, C.; Mengjia, S.; Zheng, P.; Hu, H.; Yao, H. Progress in Application of Raman Spectroscopy in Food Safety Detection. Jiangsu Condiment Subsid. Food 2022, 3, 7–9. [Google Scholar]
- Qian, X.; Xiao, Y.; Xu, C.; Zhang, P. Study Surface of Fruits by Micro-Raman Spectroscopy. Chin. J. Light Scatt. 2001, 1, 59–61. [Google Scholar]
- Pudney, P.D.A.; Gambelli, L.; Gidley, M.J. Confocal Raman Microspectroscopic Study of the Molecular Status of Carotenoids in Tomato Fruits and Foods. Appl. Spectrosc. 2011, 65, 127–134. [Google Scholar] [CrossRef]
- Trebolazabala, J.; Maguregui, M.; Morillas, H.; de Diego, A.; Madariaga, J.M. Use of portable devices and confocal Raman spectrometers at different wavelength to obtain the spectral information of the main organic components in tomato (Solanum lycopersicum) fruits. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 105, 391–399. [Google Scholar] [CrossRef]
- Chylińska, M.; Szymańska-Chargot, M.; Deryło, K.; Tchórzewska, D.; Zdunek, A. Changing of biochemical parameters and cell wall polysaccharides distribution during physiological development of tomato fruit. Plant Physiol. Biochem. 2017, 219, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Sharmaa, S.; Tripath, A.; Baran, C.; Awasthi, A.; Tiwari, A.; Sharma, S.; Jaiswal, A.; Uttam, K.N. Monitoring Pigment Dynamics Involved in the Ripening of Sweet Cherries Non-Destructively Using Confocal Micro Raman Spectroscopy. Anal. Lett. 2022, 56, 1826–1842. [Google Scholar] [CrossRef]
- Nekvapil, F.; Brezestean, I.; Barchewitz, D.; Glamuzina, B.; Chiş, V.; Pinzaru, S.C. Citrus fruits freshness assessment using Raman spectroscopy. Food Chem. 2018, 242, 560–567. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, S.; Zhang, S.; Tan, Z. Detection of Early Tiny Bruises in Apples using Confocal Raman Spectroscopy. Spectrosc. Spect. Anal. 2018, 38, 430–435. [Google Scholar]
- Pan, T.; Pu, H.; Sun, D. Insights into the changes in chemical compositions of the cell wall of pear fruit infected by Alternaria alternata with confocal Raman microspectroscopy. Postharvest Biol. Technol. 2017, 132, 119–129. [Google Scholar] [CrossRef]
- Hu, X. A preliminary study on the detection of polysaccharide content in different parts of Dendrobium dendrobium by confocal microscopic Raman spectroscopy. Seed Sci. Technol. 2017, 35, 78–82. [Google Scholar]
- Li, D.; Zhu, Z.; Sun, D. Visualization and quantification of content and hydrogen bonding state of water in apple and potato cells by confocal Raman microscopy: A comparison study. Food Chem. 2022, 385, 132679. [Google Scholar] [CrossRef]
- Guo, Z.; Guo, C.; Wang, M.; Song, Y.; Chen, Q.; Zou, X. Characterization of the Infection Process of Spoilage Fungi in Apples by Raman Chemical Imaging. China Food Saf. Mag. 2022, 43, 319–328. [Google Scholar]
- Cai, J.; Zou, C.; Yin, L.; Jiang, S.; El-Seedi, H.R.; Guo, Z. Characterization and recognition of citrus fruit spoilage fungi using Raman scattering spectroscopic imaging. Vib. Spectrosc. 2023, 124, 103474. [Google Scholar] [CrossRef]
- Kang, W. Detection of Pesticide Residues in Fruits Based on Raman Spectroscopy. China Food Saf. Mag. 2021, 2021, 66–68. [Google Scholar]
- Sun, Y.; Li, Y.; Peng, Y.; Dhakal, S.; Liu, Q.; Ou, Y. Rapid detection of apple pesticide residue based on Raman spectroscopy. In Proceedings of the Chongqing Summit Forum on Promoting Food Safety—2011 Academic Annual Conference of Agricultural Products Processing and Storage Engineering Branch of Chinese Society of Agricultural Engineering and National Academic Forum for Doctoral Students in Food Science and Engineering, Chongqing, China, 25 September 2011; p. 5. [Google Scholar]
- Muik, B.; Lendl, B.; Molina-Díaz, A.; Ortega-Calderón, D.; Ayora-Cañada, M.J. Discrimination of Olives According to Fruit Quality Using Fourier Transform Raman Spectroscopy and Pattern Recognition Techniques. J. Agric. Food Chem. 2004, 52, 6055–6060. [Google Scholar] [CrossRef]
- Rubayiza, A.B.; Meurens, M. Chemical Discrimination of Arabica and Robusta Coffees by Fourier Transform Raman Spectroscopy. J. Agric. Food Chem. 2005, 53, 4654–4659. [Google Scholar] [CrossRef] [PubMed]
- Pierna, J.A.F.; Abbas, O.; Dardenne, P.; Baeten, V. Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics. Biotechnol. Agron. Société Environ. 2011, 15, 75–84. [Google Scholar]
- Yu, J.; Sun, X.; Wang, J. Fourier transform Raman spectroscopy identifies common edible vegetable oils. Spectrosc. Spect. Anal. 2012, 32, 2. [Google Scholar]
- Stawoska, I.; Wesełucha-Birczyńska, A.; Skoczowski, A.; Dziurka, M.; Waga, J. FT-Raman Spectroscopy as a Tool to Study the Secondary Structures of Wheat Gliadin Proteins. Molecules 2021, 26, 5388. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Irudayaraj, J. Rapid determination of vitamin C by NIR, MIR and FT-Raman techniques. J. Pharm. Pharmacol. 2002, 54, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Batsoulis, A.N.; Siatis, N.G.; Kimbaris, A.C.; Alissandrakis, E.K.; Pappas, C.S.; Tarantilis, P.A.; Harizanis, P.C.; Polissiou, M.G. FT-Raman Spectroscopic Simultaneous Determination of Fructose and Glucose in Honey. J. Agric. Food Chem. 2005, 53, 207–210. [Google Scholar] [CrossRef]
- Baranska, M.; Schütze, W.; Schulz, H. Determination of Lycopene and β-Carotene Content in Tomato Fruits and Related Products: Comparison of FT-Raman, ATR-IR, and NIR Spectroscopy. Anal. Chem. 2006, 78, 8456–8461. [Google Scholar] [CrossRef]
- Nawrocka, A.; Szymańska-Chargot, M.; Miś, A.; Wilczewska, A.Z.; Markiewicz, K.H. Dietary Fiber-Induced Changes in the Structure and Thermal Properties of Gluten Proteins Studied by Fourier Transform-Raman Spectroscopy and Thermogravimetry. J. Agric. Food Chem. 2016, 64, 2094–2104. [Google Scholar] [CrossRef]
- Zhou, X.; Fang, Y.; Zhang, P. Raman Spectra of Pesticides on the Surface of Fruits. Chin. J. Light Scatt. 2004, 1, 11–14. [Google Scholar]
- Gopal, J.; Abdelhamid, H.N.; Huang, J.; Wu, H. Nondestructive detection of the freshness of fruits and vegetables using gold and silver nanoparticle mediated graphene enhanced Raman spectroscopy. Sens. Actuators B Chem. 2016, 224, 413–424. [Google Scholar] [CrossRef]
- Wang, X.; Wu, R.; Ling, J.; Liu, M.; Zhang, L.; Lin, L.; Chen, J. Study on the Rapid Detection of Triazophos Residues in Flesh of Navel Orange by Using Surface-Enhanced Raman Scattering. Spectrosc. Spect. Anal. 2016, 36, 736–742. [Google Scholar]
- Wang, H.; Liu, Y.; Zhang, Y. Surface enhanced Raman scattering detection of mixing pesticide residual on orange peel. Trans. Chin. Soc. Agric. Eng. 2017, 33, 291–296. [Google Scholar]
- Chen, W.; Julia; Han, Y.; Liu, D. Application of surface-enhanced Raman spectroscopy to the detection of fenitrothion pesticide residues in watermelon. Food Sci. Technol. 2018, 43, 320–325. [Google Scholar]
- Yang, Y.; Zhang, D.; Li, L.; Minzhen, S. A Study of Dimethoate Pesticide Residues in Rapeseed Oil by Surface-enhanced Raman Spectroscopy. Acta Laser Biol. Sin. 2019, 28, 188–193. [Google Scholar]
- Liu, L.; Bian, Z.; Dong, Z.; Chu, F.; Wang, Y.; Li, J.; Zhang, L. Detection of Residual Organic Pesticides in Yam by Surface Enhanced Raman Spectroscopy. Laser Optoelectron. Prog. 2022, 59, 355–362. [Google Scholar]
- Liu, Y.; Zhang, Y.; Wang, H. Quantitative Detection of Mixing Pesticide Residues on Navel Orange Based on Surface-Enhanced Raman Spectroscopy. Spectrosc. Spect. Anal. 2018, 38, 123–127. [Google Scholar]
- Yang, Q.; Lin, H.; Ma, J.; Chen, N.; Zhao, C.; Guo, D.; Niu, B.; Zhao, Z.; Deng, X.; Chen, Q. An Improved POD Model for Fast Semi-Quantitative Analysis of Carbendazim in Fruit by Surface Enhanced Raman Spectroscopy. Molecules 2022, 27, 4230. [Google Scholar] [CrossRef]
- Chen, N.; Gu, S.; Ren, S.; Zhao, C.; Deng, X.; Zhao, Z. Rapid screening of carbendazim residues in fruits and vegetables using surface enhanced Raman spectroscopy based on the model of probability of detection. Chin. J. Food Hyg. 2022, 34, 700–706. [Google Scholar]
- Badgujar, P.M.; Wang, Y.; Cheng, C. A light-mediated study of carotenoids in carrots (Daucus carota) using resonance Raman spectroscopy. J. Raman Spectrosc. 2021, 52, 2609–2620. [Google Scholar] [CrossRef]
- Gonzálvez, A.G.; Martínez, N.; Telle, H.; Ureña, Á.G. Monitoring LED-induced carotenoid increase in grapes by Transmission Resonance Raman spectroscopy. Chem. Phys. Lett. 2013, 559, 26–29. [Google Scholar] [CrossRef]
- Bhosale, P.; Ermakov, I.V.; Ermakova, M.R.; Gellermann, W.; Bernstein, P.S. Resonance Raman Quantification of Nutritionally Important Carotenoids in Fruits, Vegetables, and Their Juices in Comparison to High-Pressure Liquid Chromatography Analysis. J. Agric. Food Chem. 2004, 52, 3281–3285. [Google Scholar] [CrossRef]
- Dhanani, T.; Dou, T.; Biradar, K.; Jifon, J.; Kurouski, D.; Patil, B.S. Raman Spectroscopy Detects Changes in Carotenoids on the Surface of Watermelon Fruits During Maturation. Front. Plant Sci. 2022, 13, 832522. [Google Scholar] [CrossRef]
- Braeuer, A.S.; Schuster, J.J.; Gebrekidan, M.T.; Bahr, L.; Michelino, F.; Zambon, A.; Spilimbergo, S. In Situ Raman Analysis of CO2—Assisted Drying of Fruit-Slices. Foods 2017, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, B.; Saito, Y.; Verma, P. High-sensitivity pesticide detection using particle-enhanced resonant Raman scattering. Appl. Phys. 2016, 9, 32401. [Google Scholar] [CrossRef]
- Morey, R.; Ermolenkov, A.; Payne, W.Z.; Scheuring, D.C.; Koym, J.W.; Vales, M.I.; Kurouski, D. Non-invasive identification of potato varieties and prediction of the origin of tuber cultivation using spatially offset Raman spectroscopy. Anal. Bioanal. Chem. 2020, 412, 4585–4594. [Google Scholar] [CrossRef]
- Qin, J.; Chao, K.; Kim, M.S. Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy. Postharvest Biol. Tec. 2012, 71, 21–31. [Google Scholar] [CrossRef]
- Farber, C.; Lee, S.; Pant, S.; Scheuring, D.; Vales, I.; Mandadi, K.; Kurouski, D. Potential of Spatially Offset Raman Spectroscopy for Detection of Zebra Chip and Potato Virus Y Diseases of Potatoes (Solanum tuberosum). ACS Agric. Sci. Technol. 2021, 1, 211–221. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, M.; Hao, Y. Application of Spectral Diagnoses Technology in Determination of Agricultural Products Quality. J. East China Jiaotong Univ. 2018, 35, 1–7. [Google Scholar]
- Fu, X.; Ying, Y. Application of NIR and Raman Spectroscopy for Quality and Safety Inspection of Fruits and Vegetables:A Review. Trans. Chin. Soc. Agric. Mach. 2013, 44, 148–164. [Google Scholar]
- Xiao, H.; Feng, L.; Song, D.; Tu, K.; Peng, J.; Pan, L. Grading and Sorting of Grape Berries Using Visible-Near Infrared Spectroscopy on the Basis of Multiple Inner Quality Parameters. Sensors 2019, 19, 2600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, B.; You, W.; Huang, C.; Xiao, T.; Tian, S.; Luo, L.; Xiong, N. An Intelligent Near-Infrared Diffuse Reflectance Spectroscopy Scheme for the Non-Destructive Testing of the Sugar Content in Cherry Tomato Fruit. Electronics 2022, 11, 3504. [Google Scholar] [CrossRef]
- Mishra, P.; Woltering, E.; Harchioui, N.E. Improved prediction of ‘Kent’ mango firmness during ripening by near-infrared spectroscopy supported by interval partial least square regression. Infrared Phys. Technol. 2020, 110, 103459. [Google Scholar] [CrossRef]
- Minas, I.S.; Blanco-Cipollone, F.; Sterle, D. Accurate non-destructive prediction of peach fruit internal quality and physiological maturity with a single scan using near infrared spectroscopy. Food Chem. 2021, 335, 127626. [Google Scholar] [CrossRef]
- Brito, A.A.D.; Campos, F.; Nascimento, A.D.R.; Corrêa, G.D.C.; Silva, F.A.D.; Teixeira, G.H.D.A.; Cunha Júnior, L.C. Determination of soluble solid content in market tomatoes using near-infrared spectroscopy. Food Control 2021, 126, 108068. [Google Scholar] [CrossRef]
- Blakey, R.J. Evaluation of avocado fruit maturity with a portable near-infrared spectrometer. Postharvest Biol. Technol. 2016, 121, 101–105. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, X.; Yu, X.; Li, Y.; Han, S. Research progress of nondestructive testing techniques for fruit and vegetable quality. J. Zhejiang Univ. 2020, 46, 27–37. [Google Scholar] [CrossRef]
- Pourdarbani, R.; Ghassemzadeh, H.R.; Seyedarabi, H.; Nahandi, F.Z.; Vahed, M.M. Study on an automatic sorting system for Date fruits. J. Saudi Soc. Agric. Sci. 2015, 14, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Shao, Y.; Chen, K.; Deng, Y.; Xue, C. Research on Multi-class Fruits Recognition Based on Machine Vision and SVM. IFAC-PapersOnLine 2018, 51, 817–821. [Google Scholar] [CrossRef]
- Cavallo, D.P.; Cefola, M.; Pace, B.; Logrieco, A.F.; Attolico, G. Non-destructive and contactless quality evaluation of table grapes by a computer vision system. Comput. Electron. Agric. 2019, 156, 558–564. [Google Scholar] [CrossRef]
- Ma, B.; Li, C.; Duan, J.; Tao, S.; Yang, Q.; Gao, H.; Wu, M. Design and Experiment of Defect Detection Device for Red Date Based on Machine Vision. J. Agric. Mech. Res. 2021, 43, 135–140. [Google Scholar]
- Xu, S.; Lu, H.; Lu, E.; Zhou, Z.; Wang, Y. Research on progress of bionic electronic nose for food shelf-life recognition. J. Chin. Agric. Mech. 2016, 37, 154–160. [Google Scholar]
- Li, M.; Gao, Z.; Zhu, Y.; Su, Z.; Chen, L.; Zheng, S.; Zhang, Z.; Hu, M. Non-destructive Test on Predicting Sugar Content and Acidity of Mango by Electronic Nose Technology. Chin. J. Trop. Crops 2016, 37, 1553–1557. [Google Scholar]
- Pu, H.; Wang, D.; Wang, H.; Li, Z. Detection of Rot and Ripeness of Mango with zNoseTM Electronic Nose. Mod. Food Sci. Technol. 2017, 33, 304–310. [Google Scholar]
- Ren, Y.; Ramaswamy, H.S.; Li, Y.; Yuan, C.; Ren, X. Classification of impact injury of apples using electronic nose coupled with multivariate statistical analyses. J. Food Process. Eng. 2018, 41, 12698. [Google Scholar] [CrossRef]
- Yin, Y.; Chu, T.; Zhang, H. Research progress of non-destructive testing technology for fruit quality. Guang Xi Agric. Mech. 2021, 46, 31–33. [Google Scholar]
- Magwaza, L.S.; Tesfay, S.Z. A Review of Destructive and Non-destructive Methods for Determining Avocado Fruit Maturity. Food Bioprocess Technol. 2015, 8, 1995–2011. [Google Scholar] [CrossRef]
- Khandpur, P.; Gogate, P.R. Effect of novel ultrasound based processing on the nutrition quality of different fruit and vegetable juices. Ultrason. Sonochem. 2015, 27, 125–136. [Google Scholar] [CrossRef]
- Mao, J.; Yu, Y.; Rao, X.; Wang, J. Firmness prediction and modeling by optimizing acoustic device for watermelons. J. Food Eng. 2016, 168, 1–6. [Google Scholar] [CrossRef]
- Mostafidia, M.; Sanjabib, M.R.; Shirkhana, F.; Zahedia, M.T. A Review of Recent Trends in the Development of the Microbial Safety of Fruits and Vegetables. Trends. Food Sci. Technol. 2020, 103, 321–332. [Google Scholar] [CrossRef]
- Guo, W. Review of dielectric properties of fruits and vegetables. Trans. Chin. Soc. Agric. Eng. 2007, 23, 284–289. [Google Scholar]
- Dou, W.; Chai, C.; Lu, X. Research Progress of Non-destructive Detection Technique in Fruit Quality Evaluation. Sci. Technol. Food Ind. 2020, 41, 354–359. [Google Scholar]
- Liu, W.; Liao, Y.; Cui, W.; Su, X.; Cai, K. The Applicated Analysis of Nondestructive Determination in Fruit Based on Dielectric Properties. Food Res. Dev. 2011, 32, 90–93. [Google Scholar]
- Yuan, Z.; Liao, Y.; Weng, S.; Wang, G. The Relationship Between Dielectric Properties and Internal Quality of Mango. J. Agric. Mech. Res. 2011, 33, 111–114. [Google Scholar]
- Guo, X.; Zhang, Z.; Zhang, H.; Zhou, S.; Li, H. Jujube quality recognition based on dielectric properties. Food Sci. Technol. 2014, 39, 289–294. [Google Scholar]
- Li, Z.; Zhang, H.; Ma, X.; Wang, H.; Shen, J. Relationships between Ling-Wu long jujube maturity and dielectrie properties. Food Sci. Technol. 2015, 40, 286–290. [Google Scholar]
- Li, B.; Li, C.; Ren, S.; Ma, B. Study on the Application of Dielectric Properties in the Non-destructive Testing of the Quality of the Agricultural Products. Farm Prod. Process. 2020, 2, 85–88. [Google Scholar]
Category | Principle/ Conditions | Advantages | Disadvantages |
---|---|---|---|
Confocal Micro Raman Spectroscopy (CRS) | Microscopy combined with Raman spectroscopy | Precise imaging, high detection sensitivity, high spatial resolution, three-dimensional reconstruction, qualitative and quantitative analysis | Disturbed by fluorescence |
Fourier Transform Raman Spectroscopy (FT-Raman) | 1064 nm wavelength as laser source | Fast scanning spectra, reduced fluorescence interference | Temperature drift and specimen movement have a significant effect on the spectrum |
Surface Enhanced Raman Spectroscopy (SERS) | Must be adsorbed (or close to) on metal surfaces, using gold, silver, etc., as a substrate, or using nanoparticles as a medium | Fast detection and high sensitivity | Quantitative and stability are difficult to control |
Resonance Raman Spectroscopy (RRS) | When the incident light energy approaches an electron-excited state energy level | High sensitivity, high selectivity | Higher equipment cost, serious interference by fluorescence, influenced by wave number |
Spatially Offset Raman Spectroscopy (SORS) | Offset a certain distance on the sample surface space | Non-destructive detection of deep biochemical composition information of samples | Optical path systems that require the excitation of light and collection of light offsets |
Classification | Analytes | Raw Material | Measurement Technique | Result | References |
---|---|---|---|---|---|
Quality inspection aspect | physical states | Tomato | CRS | Successfully confirmed | Pudney et al., 2011 [33] |
Quality inspection aspect | maturity | Tomato | CRS | Successfully confirmed | Trebolazabala et al., 2013 [34] |
Quality inspection aspect | maturity | Tomato | CRS | Successfully confirmed | Monika et al., 2017 [35] |
Quality inspection aspect | maturity | Cherry | CRS | Successfully confirmed | Sharma et al., 2022 [36] |
Quality inspection aspect | Freshness | Citrus fruits | CRS | Successfully confirmed | Nekvapil et al., 2018 [37] |
Quality inspection aspect | Distinguish damaged apples | Apple | CRS | classification accuracy: 97.8% | Chen et al., 2018 [38] |
Quality inspection aspect | Distinguish between fresh pear fruits and those infected by Alternaria alternata (A. alternata) | Pears | CRS | Success differentiation | Pan et al., 2017 [39] |
Quality inspection aspect | Analysis of polysaccharide content | Dendrobium | CRS | Successfully confirmed | Hu et al., 2017 [40] |
Quality inspection aspect | Quantitatively determine water content and hydrogen bond status in fruit and vegetable cells. | Apple, Potato | CRS | The water contents in apple or potato cells followed the order: vacuole water > water in cell junction regions > water in the cell wall or intercellular spaces | Li et al., 2022 [41] |
Security detection aspects | Distinguish apples infected with bacteria at different stages | Apple | CRS | classification accuracy: 97.8% | Guo et al., 2022 [42] |
Security detection aspects | Distinguish between fresh and spoiled fruits | Citrus fruit | CRS | classification accuracy ≈ 100% | Cai et al., 2023 [43] |
Security detection aspects | Analysis of trichlorfon pesticide residues on apple surfaces | Apple | CRS | Detection limit: 4800 mg/kg | Kang et al., 2021 [44] |
Classification | Analytes | Raw Material | Measurement Technique | Result | References |
---|---|---|---|---|---|
Quality inspection aspect | Distinguish olives of different qualities | Olive | FT-Raman | Successfully confirmed | Muik et al., 2004 [46] |
Quality inspection aspect | Chemical discrimination of Arabica and Robusta coffees | Coffee | FT-Raman | Successful differentiation | Rubayiza et al., 2005 [47]. |
Quality inspection aspect | Identify the source of honey | Honey | FT-Raman | classification accuracy: 85–90% | Pierna et al., 2011 [48] |
Quality inspection aspect | Distinguish different types of common edible vegetable oils | Edible vegetable oil | FT-Raman | Successful differentiation | Yu et al., 2012 [49] |
Quality inspection aspect | Quantitative Analysis of Prolamin | Wheat | FT-Raman | Alcohol-soluble protein complexes in wheat could interact with other proteins through weak, low-energy hydrogen bonds. | Stawoska et al., 2021 [50] |
Quality inspection aspect | Identification of vitamin C content in foods and medicines. | Foods, Medicines | FT-Raman | R2: 0.95 | Yang et al., 2002 [51] |
Quality inspection aspect | Quantitative determination of fructose and glucose in honey | Honey | FT-Raman | fructose content: 24.0–10.8%; Glucose content: 21.1–32.2% | Batsoulis et al., 2005 [52] |
Quality inspection aspect | Identification of lycopene and β-carotene content | Tomato fruits, Related product | FT-Raman | R2 = 0.91 for lycopene; R2 = 0.89 for β-carotene. | Baranska et al., 2006 [53] |
Quality inspection aspect | Identification of gluten structure and its thermal properties caused by dietary fibers | Fruits, Vegetables, Grains | FT-Raman | Successfully confirmed | Agnieszka et al., 2016 [54] |
Security detection aspects | Detection of pesticide residues on the surface of fruits | fruit | FT-Raman | Successfully confirmed | Zhou et al., 2004 [55] |
Classification | Analytes | Raw Material | Measurement Technique | Result | References |
---|---|---|---|---|---|
Quality inspection aspect | Freshness | Fruits, Vegetables | SERS | Successfully confirmed | Gopal et al., 2016 [56] |
Security detection aspects | Triazophos residues | Orange | SERS | Successfully confirmed | Wang et al., 2016 [57] |
Security detection aspects | Pesticide residues of killing thion | Watermelon | SERS | Successfully confirmed | Chen et al., 2018 [59] |
Security detection aspects | Fenitrothion pesticide residues | Rapeseed oil | SERS | Successfully confirmed | Yang et al., 2019 [60] |
Security detection aspects | Dimethoate pesticide residues | Yam | SERS | Successfully confirmed | Liu et al., 2022 [61] |
Security detection aspects | Organophosphorus pesticide imifos and Chlorpyrifos residue | Orange | SERS | Successfully confirmed | Liu et al., 2018 [62] |
Security detection aspects | carbendazim pesticides | Fruit | SERS | Successfully confirmed | Yang et al., 2002 [63] |
Security detection aspects | carbendazim pesticides | Fruit, Vegetable | SERS | The detection limit of apples and oranges: 0.5 mg/kg; The detection limit of chili peppers: 1.0 mg/kg. | Chen et al., 2022 [64] |
Classification | Analytes | Raw Material | Measurement Technique | Result | References |
---|---|---|---|---|---|
Quality inspection aspect | Monitoring LED-induced carotenoid increase in grapes | grapes | RRS | Successfully confirmed | Gonzálvez et al., 2013 [66] |
Quality inspection aspect | maturity | Watermelon | RRS | accuracy: ≥85% | Dhanani et al., 2022 [68]. |
Quality inspection aspect | The feasibility of applying in situ Raman spectroscopy for the online monitoring of the supercritical carbon dioxide (SC–CO2) drying of fruits | mango, persimmon | RRS | The feasibility of applying in situ Raman spectroscopy for the online monitoring of the supercritical carbon dioxide (SC–CO2) drying of fruits | Braeuer et al., 2017 [69] |
Security detection aspects | Trace pesticide residues | Orange | RRS | Detection limit: 10−6 mol/L | Ranjan et al., 2016 [70] |
Classification | Analytes | Raw Material | Measurement Technique | Result | References |
---|---|---|---|---|---|
Quality inspection aspect | Distinguish the origin of potatoes | Potato | SORS | Prediction accuracy: 84.3–90.9% | Morey et al., 2020 [71] |
Quality inspection aspect | maturity | Tomato | SORS | Successfully confirmed | Qin et al., 2012 [72] |
Security detection aspects | Detection of Zebra chip disease (ZC), Potato virus Y diseases (PVY) and healthy tubers in potatoes. | Potato | SORS | Prediction accuracy: 95% | Farber et al., 2020 [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Huang, X.; Lu, H. Advancements and Applications of Raman Spectroscopy in Rapid Quality and Safety Detection of Fruits and Vegetables. Horticulturae 2023, 9, 843. https://doi.org/10.3390/horticulturae9070843
Xu S, Huang X, Lu H. Advancements and Applications of Raman Spectroscopy in Rapid Quality and Safety Detection of Fruits and Vegetables. Horticulturae. 2023; 9(7):843. https://doi.org/10.3390/horticulturae9070843
Chicago/Turabian StyleXu, Sai, Xiongmei Huang, and Huazhong Lu. 2023. "Advancements and Applications of Raman Spectroscopy in Rapid Quality and Safety Detection of Fruits and Vegetables" Horticulturae 9, no. 7: 843. https://doi.org/10.3390/horticulturae9070843
APA StyleXu, S., Huang, X., & Lu, H. (2023). Advancements and Applications of Raman Spectroscopy in Rapid Quality and Safety Detection of Fruits and Vegetables. Horticulturae, 9(7), 843. https://doi.org/10.3390/horticulturae9070843