Plant Physiological Assessments on Promising New HLB-Tolerant Citrus Rootstocks after Inoculation with the Phytopathogenic Ascomycete Rosellinia necatrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Fungal Isolate
2.3. Plant Inoculation
2.4. Evaluation of Aerial Plant Symptoms
2.5. Leaf Chlorophyll Content Assessment
2.6. Biomass of Fresh Weight
2.7. Evaluation of Leaf Area
2.8. Statistical Analysis
3. Results
3.1. Plant Symptom Response
3.2. Chlorophyll Content in the Different Citrus Rootstocks
3.3. Effect of R. necatrix on the Reduction of Biomass Fresh Weight
3.4. Response of Leaf Area in Different Citrus Rootstocks
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- ten Hoopen, G.M.; Krauss, U. Biology and control of Rosellinia bunodes, Rosellinia necatrix and Rosellinia pepo: A review. Crop Prot. 2006, 25, 89–107. [Google Scholar] [CrossRef]
- Fungal Databases, U.S. National Fungus Collection, United States Department of Agriculture. 2022. Available online: https://nt.ars-grin.gov/fungaldatabases/ (accessed on 25 August 2022).
- Sivanesan, A.; Holliday, P. Rosellinia necatrix. CMI Descriptions of Pathogenic Fungi and Bacteria; Commonwealth Mycological Institute, Kew: Surrey, UK, 1972; ISBN 0009-9716. [Google Scholar]
- Sztejnberg, A.; Madar, Z. Host range of Dematophora necatrix, the cause of white root rot disease in fruit trees. Plant Dis. 1980, 64, 662–664. [Google Scholar] [CrossRef]
- Arakawa, M.; Nakamura, H.; Uetake, Y.; Matsumoto, N. Presence and distribution of double-stranded RNA elements in the white root rot fungus Rosellinia necatrix. Mycoscience 2002, 43, 21–26. [Google Scholar] [CrossRef]
- Martínez-Ferri, E.; Moreno-Ortega, G.; van den Berg, N.; Pliego, C. Mild water stress-induced priming enhance tolerance to Rosellinia necatrix in susceptible avocado rootstocks. BMC Plant Biol. 2019, 19, 458. [Google Scholar] [CrossRef] [Green Version]
- Sztejnberg, A.; Freeman, S.; Chet, I.; Katan, J. Control of Rosellinia necatrix in soil and in apple orchard by solarization and Trichoderma harzianum. Plant Dis. 1987, 71, 365–369. [Google Scholar] [CrossRef]
- López-Herrera, C.J.; Pérez-Jiménez, R.M.; Zea-Bonilla, T.; Basallote-Ureba, M.J.; Melero-Vara, J.M. Soil solarization in established avocado trees for control of Dematophora necatrix. Plant Dis. 1998, 82, 1088–1092. [Google Scholar] [CrossRef] [Green Version]
- López-Herrera, C.J.; Pérez-Jiménez, R.M.; Basallote-Ureba, M.J.; Zea-Bonilla, T.; Melero-Vara, J.M. Loss of viability of Dematophora necatrix in solarized soils. Eur. J. Plant Pathol. 1999, 105, 571–576. [Google Scholar] [CrossRef]
- Ruano-Rosa, D.; López-Herrera, C.J. Evaluation of Trichoderma spp. as biocontrol agents against avocado white root rot. Biol. Control 2009, 51, 66–71. [Google Scholar] [CrossRef]
- Ruano-Rosa, D.; Del Moral-Navarrete, L.; Lopez-Herrera, C.J. Selection of Trichoderma spp. isolates antagonistic to Rosellinia necatrix. Span. J. Agric. Res. 2010, 8, 1084–1097. [Google Scholar] [CrossRef]
- Arjona-Girona, I.; López-Herrera, C.J. Study of a new biocontrol fungal agent for avocado white root rot. Biol. Control 2018, 117, 6–12. [Google Scholar] [CrossRef]
- Arjona-López, J.M.; López-Herrera, C.J. Entoleuca sp. infected by mycoviruses as potential biocontrol agents of avocado white root rot. Eur. J. Plant Pathol. 2021, 159, 409–420. [Google Scholar] [CrossRef]
- Ruano-Rosa, D.; Lopez-Herrera, C.J. Biocontrol de la podredumbre blanca del aguacate con aislados no-patogénicos de Rosellinia necatrix. In Proceedings of the XIII Congreso de la Sociedad Española de Fitopatología, Murcia, Spain, 18–22 September 2006; Montesinos, E., Ed.; Sociedad Española de Fitopatología: Murcia, Spain, 2006; p. 377. [Google Scholar]
- Pal, J.; Sharma, S.K.; Devi, S.; Sharma, R.; Raj, H.; Karn, M.; Verma, S.; Vedukola, P.R.; Sharma, A. Screening, identification, and colonization of fungal root endophytes against Dematophora necatrix: A ubiquitous pathogen of fruit trees. Egypt. J. Biol. Pest Control 2020, 30, 112. [Google Scholar] [CrossRef]
- Cazorla, F.M.; Duckett, S.B.; Bergström, E.T.; Noreen, S.; Odijk, R.; Lugtenberg, B.J.J.; Thomas-Oates, J.E.; Bloemberg, G. V Biocontrol of avocado Dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol. Plant-Microbe Interact. 2006, 19, 418–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pliego, C.; Ramos, C.; de Vicente, A.; Cazorla, F.M. Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant Soil 2011, 340, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Tienda, S.; Vida, C.; Lagendijk, E.; de Weert, S.; Linares, I.; González-Fernández, J.; Guirado, E.; de Vicente, A.; Cazorla, F.M. Soil application of a formulated biocontrol rhizobacterium, Pseudomonas chlororaphis PCL1606, induces soil suppressiveness by impacting specific microbial communities. Front. Microbiol. 2020, 11, 1874. [Google Scholar] [CrossRef]
- Kanematsu, S.; Arakawa, M.; Oikawa, Y.; Onoue, M.; Osaki, H.; Nakamura, H.; Ikeda, K.; Kuga-Uetake, Y.; Nitta, H.; Sasaki, A.; et al. A Reovirus causes hypovirulence of Rosellinia necatrix. Phytopathology 2004, 94, 561–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiba, S.; Salaipeth, L.; Lin, Y.-H.; Sasaki, A.; Kanematsu, S.; Suzuki, N. A novel bipartite double-stranded RNA mycovirus from the white root rot fungus Rosellinia necatrix: Molecular and biological characterization, taxonomic considerations, and potential for biological control. J. Virol. 2009, 83, 12801–12812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arjona-López, J.M.; Telengech, P.; Suzuki, N.; López-Herrera, C.J. A moderate level of hypovirulence conferred by a hypovirus in the avocado white root rot fungus, Rosellinia necatrix. Fungal Biol. 2021, 125, 69–76. [Google Scholar] [CrossRef]
- Ruano-Rosa, D.; Arjona-Girona, I.; López-Herrera, C.J. Integrated control of avocado white root rot combining low concentrations of fluazinam and Trichoderma spp. Crop Prot. 2017, 112, 363–370. [Google Scholar] [CrossRef]
- Arjona-López, J.M.; Tienda, S.; Arjona-Girona, I.; Cazorla, F.M.; López-Herrera, C.J. Combination of low concentrations of fluazinam and antagonistic rhizobacteria to control avocado white root rot. Biol. Control 2019, 136, 103996. [Google Scholar] [CrossRef]
- Arjona-López, J.M.; López-Herrera, C.J. Control of avocado white root rot using non-pathogenic Rosellinia necatrix isolates combined with low concentration of fluazinam. BioControl 2020, 65, 247–255. [Google Scholar] [CrossRef]
- Behdad, E. The influence of several new systemic fungicides on Rosellinia necatrix (Hart.) Berl. Iran. J. Pant Pathol. 1976, 12, 40–41. [Google Scholar]
- Kanadani, G.; Date, H.; Nasu, H. Effect of fluazinam soil-drench on white root rot of grapevine. Jpn. J. Phytopathol. 1998, 64, 139–141. [Google Scholar] [CrossRef] [Green Version]
- Nitta, H.; Hatamoto, M.; Kurihisa, H. Control of white root rot on Japanese pear using dazomet micro-granules. Bull. Hiroshima Pref. Agr. Res. Cent. 2002, 72, 25–34. [Google Scholar]
- López-Herrera, C.J.; Zea-Bonilla, T. Effects of benomyl, carbendazim, fluazinam and thiophanate methyl on white root rot of avocado. Crop Prot. 2007, 26, 1186–1192. [Google Scholar] [CrossRef]
- Arjona-López, J.M.; Capote, N.; Melero-Vara, J.M.; López-Herrera, C.J. Control of avocado white root rot by chemical treatments with fluazinam in avocado orchards. Crop Prot. 2020, 131, 105100. [Google Scholar] [CrossRef]
- EU Pesticide Database. 2023. Available online: https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en (accessed on 8 March 2023).
- Registro de Productos Fitosanitarios, Ministerio de Agricultura, Pesca y Alimentación. 2023. Available online: https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/productos-fitosanitarios/registro-productos/ (accessed on 8 March 2023).
- Farm to Fork Strategy, European Commission. 2023. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 8 March 2023).
- Bowman, K.D.; Joubert, J. Citrus rootstocks. In The Genus Citrus; Talon, M., Caruso, M., Gmitter, F.G., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 105–127. ISBN 9780128121634. [Google Scholar]
- Arjona-López, J.M.; Gmitter, F.G.; Romero-Rodríguez, E.; Grosser, J.W.; Hervalejo, A.; López-Herrera, C.J.; Arenas-Arenas, F.J. Susceptibility of novel promising citrus rootstocks to white root rot. Plants 2022, 11, 3388. [Google Scholar] [CrossRef]
- Lee, S.B.; Ko, K.; Aldwinckle, H.S. Resistance of selected Malus germplasm to Rosellinia necatrix. J. Am. Pomol. Soc. 2000, 54, 219–228. [Google Scholar]
- Choi, B.-H.; Kim, C.-S.; Jeong, Y.-J.; Park, I.-H.; Han, S.-G.; Yoon, T.-M. Resistance evaluation of G, CG, or M series apple rootstocks to soil-borne diseases (Phytophthora root rot, white root rot, and southern blight) and woolly apple aphid. Hortic. Sci. Technol. 2021, 39, 167–174. [Google Scholar] [CrossRef]
- Barceló-Muñoz, A.; Zea-Bonilla, T.; Jurado-Valle, I.; Imbroada-Solano, I.; Vidoy-Mercado, I.; Pliego-Alfaro, F.; López-Herrera, C.J. Programa de selección de portainjertos de aguacate tolerantes a la podredumbre blanca causada por Rosellinia necatrix en el sur de España (1995–2007). In Proceedings of the VI World Avocado Congress (Actas VI Congreso Mundial del Aguacate), Viña del Mar, Chile, 12–16 November 2007; pp. 1–8. [Google Scholar]
- Pérez Jiménez, R.M.; Zea Bonilla, T.; Imbroda Solano, I.; Pliego-Alfaro, F.; López Herrera, C.J.; Barceló-Muñoz, A. Selección de portainjertos de aguacate tolerantes a la podredumbre blanca causada por Rosellinia necatrix. In Proceedings of the V World Avocado Congress (Actas V Congreso Mundial del Aguacate), Granada-Málaga, Spain, 19–24 October 2003; pp. 537–541. [Google Scholar]
- Mansoori, B.; Dorostkar, M. Reactions of some grape cultivars to Dematophora necatrix. Vitis 2008, 47, 231–233. [Google Scholar]
- Sztejnberg, A.; Jabareen, H. Dematophora root rot disease in persimmon and studies on resistance of rootstocks to the disease. Alon Hanotea 1985, 39, 757–762. [Google Scholar]
- Sztejnberg, A.; Jabareen, H. Studies of resistance of persimmon rootstocks to Dematophora root rot. Phytoparasitica 1986, 14, 240. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization (FAO) of the United Nations. 2023. Available online: http://www.fao.org/faostat/es/#home (accessed on 26 January 2023).
- MAPA. Ministerio de Agricultura, Pesca y Alimentación. 2023. Available online: https://www.mapa.gob.es (accessed on 8 March 2023).
- Melgarejo Nárdiz, P.; García-Jiménez, J.; Jordá Gutiérrez, M.C.; López González, M.M.; Andrés Yebes, M.F.; Duran-Vila, N. Patógenos de Plantas Descritos en España, 2nd ed.; Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2010. [Google Scholar]
- González-Domínguez, E.; Pérez-Sierra, A.; Álvarez, L.A.; León, M.; Abad-Campos, P.; Armengol, J.; García-Jiménez, J. Agentes fúngicos presentes en plantaciones de nísperos (Eriobotrya japonica Lindl.) con síntomas de decaimiento en la provincia de Alicante. Boletín Sanid. Veg. Plagas 2009, 35, 453–467. [Google Scholar]
- López-Herrera, C.J. Podredumbres radiculares del aguacate en la Costa del Sol. Años 1987–1988. In Estudios Fitopatología; Moral, J., Ed.; SEFDGIEA: Badajoz, Spain, 1989; pp. 172–176. [Google Scholar]
- Arjona-Girona, I.; López-Herrera, C.J. First report of Rosellinia necatrix causing white root rot in mango trees in Spain. Plant Dis. 2018, 102, 2639. [Google Scholar] [CrossRef]
- Armengol, J.; Vicent, A.; León, M.; Berbegal, M.; Abad-Campos, P.; Garcí-a-Jiménez, J. Analysis of population structure of Rosellinia necatrix on Cyperus esculentus by mycelial compatibility and inter-simple sequence repeats (ISSR). Plant Pathol. 2010, 59, 179–185. [Google Scholar] [CrossRef]
- Bové, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Jagoueix, S.; Bove, J.M.; Garnier, M. The phloem-limited bacterium of greening disease of citrus is a member of the α subdivision of the Proteobacteria. Int. J. Syst. Evol. Microbiol. 1994, 44, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Texeira, D.C.; Ayres, J.; Kitajima, E.W.; Danet, L.; Jagoueix-Eveillard, S.; Saillard, C.; Bové, J.M. First report of a Huanglongbing-like disease of citrus in São Paulo State, Brazil and association of a new Liberibacter species, “Candidatus Liberibacter americanus”, with the disease. Plant Dis. 2005, 89, 107. [Google Scholar] [CrossRef]
- McClean, A.P.D.; Oberholzer, P.C.J. Citrus psylla, a vector of the greening disease of sweet orange. S. Afr. J. Agric. Sci. 1965, 8, 297–298. [Google Scholar]
- Capoor, S.P.; Rao, D.G.; Viswanath, S.M. Diaphorina citri Kuway., a vector of the greening disease of citrus in India. Indian J. Agric. Sci. 1967, 37, 572–579. [Google Scholar]
- Yamamoto, P.T.; Felippe, M.R.; Garbim, L.F.; Coelho, J.H.C.; Ximenes, N.L.; Martins, E.C.; Leite, A.P.R.; Sousa, M.C.; Abrahão, D.P.; Braz, J.D. Diaphorina citri (Kuwayama) (Hemiptera: Psyllidae): Vector of the bacterium Candidatus Liberibacter americanus. In Proceedings of the Huanglongbing-Greening International Workshop, Ribeirão Prêto, Brazil, 16–20 July 2006; Pietersen, G., Le Roux, H.F., Eds.; Citrus Research International: Ribeiro Preto, Brazil, 2006; p. 96. [Google Scholar]
- Ajene, I.J.; Khamis, F.; Mohammed, S.; Rasowo, B.; Ombura, F.L.; Pietersen, G.; van Asch, B.; Ekesi, S. First report of field population of Trioza erytreae carrying the Huanglongbing-associated pathogen, Candidatus Liberibacter asiaticus, in Ethiopia. Plant Dis. 2019, 103, 1766. [Google Scholar] [CrossRef]
- EPPO Global Database. 2023. Available online: https://gd.eppo.int/ (accessed on 8 March 2023).
- Siverio, F.; Marco-Noales, E.; Bertolini, E.; Teresani, G.R.; Peñalver, J.; Mansilla, P.; Aguín, O.; Pérez-Otero, R.; Abelleira, A.; Guerra-García, J.A.; et al. Survey of huanglongbing associated with “Candidatus Liberibacter” species in Spain: Analyses of citrus plants and Trioza erytreae. Phytopathol. Mediterr. 2017, 56, 98–110. [Google Scholar] [CrossRef]
- Pérez-Otero, R.; Mansilla, J.P.; Del Estal, P. Detección de la psila africana de los cítricos, Trioza erytreae (Del Guercio, 1918) (Hemiptera: Psylloidea: Triozidae), en la Península Ibérica. Arq. Entomolóxicos 2015, 13, 119–122. [Google Scholar]
- Arenas-Arenas, F.J.; Duran-Vila, N.; Quinto, J.; Hervalejo, Á. Is the presence of Trioza erytreae, vector of huanglongbing disease, endangering the Mediterranean citrus industry? Survey of its population density and geographical spread over the last years. J. Plant Pathol. 2018, 100, 567–574. [Google Scholar] [CrossRef]
- Arenas-Arenas, F.J.; Duran-Vila, N.; Quinto, J.; Hervalejo, Á. Geographic spread and inter-annual evolution of populations of Trioza erytreae in the Iberian Peninsula. J. Plant Pathol. 2019, 101, 1151–1157. [Google Scholar] [CrossRef]
- Florida Citrus Rootstock Selection Guide, 4th ed. 2023. Available online: https://crec.ifas.ufl.edu/extension/citrus_rootstock/tables.html (accessed on 20 March 2023).
- Oficina Española de Variedades Vegetales, Registro de Variedades, Ministerio de Agricultura, Pesca y Alimentación. 2023. Available online: https://www.mapa.gob.es/es/agricultura/temas/medios-de-produccion/semillas-y-plantas-de-vivero/registro-de-variedades/ (accessed on 29 August 2022).
- Savage, E.M.; Gardner, F.E. The Troyer and Carrizo citranges. Calif. Citrogr. 1965, 50, 112–116. [Google Scholar]
- Aparicio-Durán, L.; Arjona-López, J.M.; Hervalejo, A.; Calero-Velázquez, R.; Arenas-Arenas, F.J. Preliminary findings of new Citrus rootstocks potentially tolerant to foot rot caused by Phytophthora. Horticulturae 2021, 7, 389. [Google Scholar] [CrossRef]
- Project 18-029C. Evaluation of Citrus Rootstocks Response to HLB in Large-Scale Existing Field Trials. 2022. Available online: https://slideplayer.com/slide/17630075/ (accessed on 7 October 2022).
- Grosser, B.J.; Gmitter, F.; Bowman, K. New Rootstocks in the Citrus Breeding Pipeline. Available online: https://citrusindustry.net/2020/07/15/new-rootstocks-in-the-citrus-breeding-pipeline/ (accessed on 7 February 2023).
- Grosser, J.W.; Ollitrault, P.; Olivares-Fuster, O. Invited review: Somatic hybridization in citrus: An effective tool to facilitate variety improvement. Vitr. Cell. Dev. Biol. Plant 2000, 36, 434–449. [Google Scholar] [CrossRef]
- Grosser, J.W. Citrus Rootstock Named “UFR-4”. Publication Number: US 2015/0195974 P1. United States Plant Patent Aplication Publication; Florida Foundation Seed Producers, Inc.: Marianna, FL, USA, 9 July 2015; pp. 1–6. [Google Scholar]
- Grosser, J.W.; Omar, A.A.; Gmitter, J.A.; Syvertsen, J.P. Salinity tolerance of ‘Valencia’ orange trees on allotetraploid rootstocks. In Proceedings of the Florida State Horticultural Society, Delray Beach, FL, USA, 3–5 June 2012; Volume 125, pp. 50–55. [Google Scholar]
- Grosser, J.W.; Chandler, J.L.; Ling, P.; Barthe, G.A. New somatic hybrid rootstock candidates for tree-size control and high juice quality. In Proceedings of the Florida State Horticultural Society, St. Petersburg, FL, USA, 5–7 June 2011; Volume 124, pp. 131–135. [Google Scholar]
- Arjona-López, J.M.; Capote, N.; López-Herrera, C.J. Improved real-time PCR protocol for the accurate detection and quantification of Rosellinia necatrix in avocado orchards. Plant Soil 2019, 443, 605–612. [Google Scholar] [CrossRef]
- Campbell, C.L.; Madden, L. V Temporal analysis of epidemics I: Descriptions and comparisons of disease progress curve. In Introduction to Plant Disease Epidemiology; Campbell, C.L., Madden, L.V., Eds.; Wiley: New York, NY, USA, 1990; pp. 161–202. [Google Scholar]
- Simko, I.; Piepho, H.-P. The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology 2012, 102, 381–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, J.M. Distortion of fungal hyphæ in the presence of certain inhibitors. Nature 1947, 159, 850. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; ISBN 3-900051-07-0. Available online: http://www.r-project.org/ (accessed on 29 June 2022).
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: With Special Reference to the Biological Sciences; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1960. [Google Scholar]
- de Mendiburu, F. Statistical Procedures for Agricultural Research; Package “Agricolae”, Version 1.4-4; Comprehensive R Archive Network, Institute for Statistics and Mathematics: Vienna, Austria, 2013. [Google Scholar]
- Wickham, H. Data Analysis. In ggplot2. Use R! Springer: Cham, Switzerland, 2016; pp. 189–201. [Google Scholar]
- Kunwar, S.; Grosser, J.; Gmitter, F.G.; Castle, W.S.; Albrecht, U. Field performance of ‘Hamlin’ orange trees grown on various rootstocks in Huanglongbing-endemic conditions. HortScience 2021, 56, 244–253. [Google Scholar] [CrossRef]
- Tallón Vila, C.I. Biotechnology Applied to the Genetic Improvement of Citrus Rootstocks. In Development of a Protocol for Micropropagation and Adventitious Regeneration for Use in Generating Salt Toleran Mutant Lines; Universidad de Murcia: Murcia, Spain, 2015. [Google Scholar]
- McCarty, C.D.; Bitter, W.P.; Cole, D.A. Comparisons between Troyer and Carrizo citrange. Citrograph 1974, 59, 294–310. [Google Scholar]
- López-Herrera, C.J.; Pérez-Jiménez, R.M.; Barceló-Muñoz, A.; Zea-Bonilla, T. Evaluación de patrones de aguacate por su tolerancia a la podredumbre blanca. Rev. Chapingo Ser. Hortic. 1999, 5, 267–270. [Google Scholar]
Rootstock | Parentage | Breeder | References |
---|---|---|---|
Diploids | |||
Carrizo citrange | Citrus sinensis ‘Washington’ × Poncirus trifoliata | USDA | [64] |
B11R3T24 | P. trifoliata × C. paradisi ‘Duncan’ | CREC | [65] |
B11R5T25 | P. trifoliata × C. paradisi ‘Duncan’ | CREC | [65] |
N40R1T18 | P. trifoliata ‘Flying Dragon’ × (C. clementina × C. paradisi ‘Duncan’) | CREC | [66] |
N40R2T19 | P. trifoliata ‘Flying Dragon’ × (C. clementina × C. paradisi ‘Duncan’) | CREC | [66] |
N40R3T25 | P. trifoliata ‘Flying Dragon’ × (C. clementina × C. paradisi ‘Duncan’) | CREC | [65] |
Tetraploids | |||
A+Volk × Orange 19-11-8 a | C. volkameriana × (C. reticulata ‘Nova’ + C. maxima ‘Hirado Buntan’ × C. reticulata ‘Cleopatra’+ P. trifoliata) | CREC | [67] |
AMB+CZO b | C. amblycarpa+Citroncirus spp. ‘Carrizo’ | CREC | [68] |
UFR-4 a | C. reticulata ‘Nova’ + C. Maxima ‘Hirado Buntan’ × C. reticulata ‘Cleopatra’ + P. trifoliata | CREC | [69,70] |
WGFT+50-7 b | C. paradisi ‘White’ + P. Trifoliata ‘50-7′ | CREC | [71] |
2247 × 2075-01-2 a | C. reticulata ‘Nova’ + C. Maxima ‘Hirado Buntan’ × C. reticulata ‘Cleopatra’ + Citroncirus spp. ‘Swingle’ | CREC | [65] |
Rootstock | Effect of R. necatrix Inoculation | |
---|---|---|
Inoculated | Control (Non-Inoculated) | |
Carrizo citrange | 506.87 ± 30.56 d | 695.34 ± 15.66 bc |
B11R3T24 | 453.02 ± 27.64 de | 630.90 ± 30.81 c |
B11R5T25 | 628.72 ± 34.27 c | 773.97 ± 18.92 a |
N40R1T18 | 256.96 ± 14.24 ij | 328.68 ± 6.61 gh |
N40R2T19 | 285.84 ± 13.25 hi | 416.25 ± 15.02 ef |
N40R3T25 | 334.26 ± 18.25 gh | 381.12 ± 16.52 fg |
A+VOLK × Orange 19-11-8 | 212.23 ± 26.22 j | 404.08 ± 10.89 ef |
AMB+CZO | 370.47 ± 35.48 fg | 715.05 ± 18.13 ab |
UFR-4 | 261.74 ± 30.57 ij | 495.88 ± 17.29 d |
WGFT+50-7 | 449.41 ± 31.30 de | 716.48 ± 19.72 ab |
2247 × 2075-01-2 | 405.34 ± 35.36 ef | 655.88 ± 18.80 bc |
Rootstock | Plant Section | |
---|---|---|
Above Ground | Roots | |
Carrizo citrange | 24.11 ± 4.58 bcde | 52.78 ± 6.13 abcd |
B11R3T24 | 16.94 ± 6.03 de | 34.99 ± 6.07 cde |
B11R5T25 | 10.61 ± 5.96 ef | 28.94 ± 9.58 e |
N40R1T18 | 21.26 ± 4.10 cde | 38.28 ± 8.05 bcde |
N40R2T19 | 10.72 ± 7.07 ef | 27.17 ± 7.29 e |
N40R3T25 | 0.00 ± 0.00 f | 33.76 ± 6.02 de |
A+VOLK × Orange 19-11-8 | 33.11 ± 8.70 abcd | 59.63 ± 6.08 a |
AMB+CZO | 44.70 ± 8.62 a | 69.10 ± 5.41 a |
UFR-4 | 38.61 ± 8.20 abc | 55.08 ± 10.62 abc |
WGFT+50-7 | 40.45 ± 5.51 ab | 58.81 ± 4.92 ab |
2247 × 2075-01-2 | 18.63 ± 6.82 de | 34.29 ± 10.53 cde |
Rootstock | Effect of R. necatrix inoculation | |
---|---|---|
Inoculated | Control (Non-Inoculated) | |
Carrizo citrange | 403.23 ± 101.98 efgh | 993.88 ± 106.44 ab |
B11R3T24 | 281.75 ± 70.67 fghij | 474.21 ± 52.37 efg |
B11R5T25 | 261.60 ± 83.08 fghij | 1030.81 ± 105.52 ab |
N40R1T18 | 0.00 ± 0.00 j | 64.78 ± 36.80 hij |
N40R2T19 | 31.85 ± 16.53 j | 526.38 ± 106.50 def |
N40R3T25 | 14.60 ± 6.25 j | 56.99 ± 17.41 ij |
A+VOLK × Orange 19-11-8 | 643.41 ± 219.16 cde | 1209.94 ± 121.05 a |
AMB+CZO | 172.22 ± 56.43 ghij | 624.09 ± 69.94 cde |
UFR-4 | 360.10 ± 79.87 efghi | 794.91 ± 139.64 bcd |
WGFT+50-7 | 231.31 ± 78.13 fghij | 873.31 ± 61.34 bc |
2247 × 2075-01-2 | 952.26 ± 244.26 ab | 1245.27 ± 154.22 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arjona-López, J.M.; Gmitter, F.G., Jr.; Romero-Rodríguez, E.; Grosser, J.W.; Cantero-Sánchez, J.L.; López-Herrera, C.J.; Arenas-Arenas, F.J. Plant Physiological Assessments on Promising New HLB-Tolerant Citrus Rootstocks after Inoculation with the Phytopathogenic Ascomycete Rosellinia necatrix. Horticulturae 2023, 9, 744. https://doi.org/10.3390/horticulturae9070744
Arjona-López JM, Gmitter FG Jr., Romero-Rodríguez E, Grosser JW, Cantero-Sánchez JL, López-Herrera CJ, Arenas-Arenas FJ. Plant Physiological Assessments on Promising New HLB-Tolerant Citrus Rootstocks after Inoculation with the Phytopathogenic Ascomycete Rosellinia necatrix. Horticulturae. 2023; 9(7):744. https://doi.org/10.3390/horticulturae9070744
Chicago/Turabian StyleArjona-López, Juan M., Frederick G. Gmitter, Jr., Estefanía Romero-Rodríguez, Jude W. Grosser, José Luís Cantero-Sánchez, Carlos J. López-Herrera, and Francisco J. Arenas-Arenas. 2023. "Plant Physiological Assessments on Promising New HLB-Tolerant Citrus Rootstocks after Inoculation with the Phytopathogenic Ascomycete Rosellinia necatrix" Horticulturae 9, no. 7: 744. https://doi.org/10.3390/horticulturae9070744
APA StyleArjona-López, J. M., Gmitter, F. G., Jr., Romero-Rodríguez, E., Grosser, J. W., Cantero-Sánchez, J. L., López-Herrera, C. J., & Arenas-Arenas, F. J. (2023). Plant Physiological Assessments on Promising New HLB-Tolerant Citrus Rootstocks after Inoculation with the Phytopathogenic Ascomycete Rosellinia necatrix. Horticulturae, 9(7), 744. https://doi.org/10.3390/horticulturae9070744