A Novel Approach for Organic Strawberry Cultivation: Vermicompost-Based Fertilization and Microbial Complementary Nutrition
Abstract
:1. Introduction
2. Material and Methods
2.1. Trial Area, Plant Material, and Treatments
- T1 (control with no fertilizer);
- T2 (Ekosolfarm);
- T3 (Ekosolfarm + RhizoFill);
- T4 (Ekosolfarm + Subtima);
- T5 (Ekosolfarm + Fontera microzone);
- T6 (Ekosolfarm + Endo Roots Soluble—ERS);
- T7 (Ekosolfarm + Bontera).
2.2. Soil Analyses, Cultural Practices, and Measurements of Plant Parameters
2.3. Determination of Leaf Minerals by Atomic Absorption Spectrophotometry
2.4. Determination of Leaf Phosphorus
2.5. Determination of Leaf Total Nitrogen
2.6. Statistical Analyses
3. Results and Discussion
3.1. Plant Growth Parameters
3.2. Total Yield and Average Fruit Weight per Plant
3.3. Fruit pH, Total Soluble Solids (TSSs), Titrable Acid, and the Ratio of TSSs/Acid
3.4. Plant Nutrient Analyses in Leaves
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumra, R.; Saravanan, R.S.; Bakshi, P.; Kumar, A.; Singh, M.; Kumar, V. Influence of plant growth regulators on Strawberry: A review. Int. J. Chem. Stud. 2018, 6, 1236–1239. [Google Scholar]
- Morais, M.C.; Mucha, Â.; Ferreira, H.; Gonçalves, B.; Bacelar, E.; Marques, G. Comparative study of plant growth-promoting bacteria on the physiology, growth and fruit quality of strawberry. J. Sci. Food Agric. 2019, 99, 5341–5349. [Google Scholar] [CrossRef]
- Almli, L.V.; Asioli, D.; Rocha, C. Organic consumer ghoices for nutrient labels on dried strawberries among different health attitude segments in Norway, Romania and Turkey. Nutrients 2019, 11, 2951. [Google Scholar] [CrossRef]
- Turemis, N.; Ağaoğlu, Y.S. Berry Fruits, Chapter II (Strawberry). In Education Publications 1; Ağaoğlu, S., Gerçekcioglu, R., Eds.; Tomurcuk Bag Ltd. Sti.: Ankara, Turkey, 2013; pp. 55–100. [Google Scholar]
- Food and Agriculture Organization (FAO). FAOSTAT (Statistics). 2023. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 3 January 2023).
- Kumar, N.; Ram, R.B.; Mishra, P.K. Response of vermicompost and Azotobacter on growth and yield of ‘Sweet Charlie’ strawberry. Int. J. Agri. Sci. Res. 2015, 5, 13–20. [Google Scholar]
- Srivastav, A.; Singh, B.K.; Pandey, R.; Singh, K.; Singh, V. Effect of organic manures and bio-fertilizers on vegetative growth and yield of strawberry cv. chandler. J. Pharmacogn. Phytochem. 2018, 7, 2841–2844. [Google Scholar]
- Soni, S.; Kanawjia, A.; Chaurasiya, R.; Chauhan, P.S.; Kumar, R.; Dubey, S. Effect of organic manure and biofertilizers on growth, yield and quality of strawberry (Fragaria × ananassa Duch) cv. Sweet Charlie. J. Pharmacogn. Phytochem. 2018, 2, 128–132. [Google Scholar]
- Negi, Y.K.; Sajwan, P.; Uniyal, S.; Mishra, A.C. Enhancement in yield and nutritive qualities of strawberry fruits by the application of organic manures and biofertilizers. Sci. Hortic. 2021, 283, 110038. [Google Scholar] [CrossRef]
- Gruda, N. Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Crit. Rev. Plant Sci. 2005, 24, 227–247. [Google Scholar] [CrossRef]
- Gruda, N. Do soilless culture systems have an influence on product quality of vegetables? J. Appl. Bot. Food Qual. 2009, 82, 141–147. Available online: https://ojs.openagrar.de/index.php/JABFQ/article/view/2093 (accessed on 6 May 2009).
- Gruda, N.; Savvas, D.; Youssuf, R.; Colla, G. Impacts of genetic material and current technologies on product quality of selected greenhouse vegetables–A review. Eur. J. Hortic. Sci. 2018, 83, 319–328. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Aldiyab, A.; Elgudayem, F.; İkiz, B.; Gruda, N.S. Effect of biofertilizers on leaf yield, nitrate amount, mineral content and antioxidants of basil (Ocimum basilicum L.) in a floating culture. Sci. Rep. 2022, 12, 20917. [Google Scholar] [CrossRef] [PubMed]
- Dasgan, H.Y.; Yilmaz, M.; Dere, S.; Ikiz, B.; Gruda, N.S. Bio-Fertilizers Reduced the Need for Mineral Fertilizers in Soilless-Grown Capia Pepper. Horticulturae 2023, 9, 188. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Kacmaz, S.; Arpaci, B.B.; İkiz, B.; Gruda, N.S. Biofertilizers Improve the Leaf Quality of Hydroponically Grown Baby Spinach (Spinacia oleracea L.). Agronomy 2023, 13, 575. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Abul-Soud, M.; Emam, M.; El-Rahman, N. The Potential Use of Vermicompost in Soilless Culture for Producing Strawberry. Int. J. Plant Soil Sci. 2015, 8, 1–15. [Google Scholar] [CrossRef]
- Singh, S.; Sinha, R.K. Vermicomposting of organic wastes by earthworms: Making wealth from waste by converting ‘garbage into gold’ for farmers (Chapter 7). In Advanced Organic Waste Management; Hussain, C., Hait, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 93–120. ISBN 9780323857925. [Google Scholar] [CrossRef]
- Joshi, R.; Singh, J.; Vig, A.P. Vermicompost as an effective organic fertilizer and biocontrol agent: Effect on growth, yield and quality of plants. Rev. Environ. Sci. Biotechnol. 2015, 14, 137–159. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, J.; Zhao, R.; Dai, H.; Zhang, Z. Application of vermicompost improves strawberry growth and quality through increased photosynthesis rate, free radical scavenging and soil enzymatic activity. Sci. Hortic. 2018, 233, 132–140. [Google Scholar] [CrossRef]
- Čabilovski, R.; Manojlović, M.S.; Popović, B.M.; Radojčin, M.T.; Magazin, N.; Petković, K.; Kovačević, D.; Lakićević, M.D. Vermicompost and Vermicompost Leachate Application in Strawberry Production: Impact on Yield and Fruit Quality. Horticulturae 2023, 9, 337. [Google Scholar] [CrossRef]
- Sayğı, H. Effects of Organic Fertilizer Application on Strawberry (Fragaria vesca L.) Cultivation. Agronomy 2022, 12, 1233. [Google Scholar] [CrossRef]
- Baum, C.; El-Tohamy, W.A.; Gruda, N. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Sci. Hortic. 2015, 187, 131–141. [Google Scholar] [CrossRef]
- El-Tohamy, W.A.; El-Abagy, H.M.; El-Greadly, N.H.M.; Gruda, N. Hormonal changes, growth and yield of tomato plants in response to chemical and bio-fertilization application in sandy soils. J. Appl. Bot. Food Qual. 2009, 82, 179–182. [Google Scholar]
- Imriz, G.; Ozdemir, F.; Topal, I.; Ercan, B.; Tas, M.N.; Yakısır, E.; Okur, O. Rhizobacteria (PGPRs) promoting plant growth in plant production and their mechanisms of action. Electron. J. Microbiol. 2014, 12, 1–19. [Google Scholar]
- Nadeem, S.M.; Ahmad, M.; Zahir, Z.A.; Javaid, A.; Ashraf, M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 2014, 32, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Rabar, R.; Negi, S. Towards a better greener future—An alternative strategy using biofertilizers. I: Plant growth promoting bacteria. Plant Gene 2017, 12, 43–49. [Google Scholar] [CrossRef]
- Emmanuel, C.O.; Babalola, O.O. Productivitiy and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant promoting bacteria. Microbiol. Res. 2020, 239, 126569. [Google Scholar] [CrossRef]
- Jones, J.B. Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press: Boca Raton, FL, USA, 2001; 384p. [Google Scholar]
- Ciylez, S.; Esitken, A. The Effect of Mycorrhiza and PGPR application on strawberry of growth. Selcuk. J. Agric. Food Sci. 2018, 32, 361–365. [Google Scholar] [CrossRef]
- Balci, G. The Effects of Different Organic Waste on Yield and Quality of Organically Grown Strawberry. Ph.D. Thesis, Ondokuz Mayıs University, Samsun, Turkey, 2012; 132p. [Google Scholar]
- Burgut, A.; Saygı, H.; Turemis, N.F.; Buyukyel, S.; Aktas, B.; Ekinci, K. The effects of different compost applications on organic strawberry seedling production. Acta Hortic. 2020, 1286, 33–38. [Google Scholar] [CrossRef]
- Ipek, M.; Pirlak, L.; Esitken, A.; Figen Dönmez, M.; Turan, M.; Sahin, F. Plant growth-promoting rhizobacteria (PGPR) increase yield, growth and nutrition of strawberry under high-calcareous soil conditions. J. Plant Nutr. 2014, 37, 990–1001. [Google Scholar] [CrossRef]
- Khalil, N.H.; Agah, R.J. Effect of chemical, organic and bio fertilization on growth and yield of strawberry plant. Int. J. Adv. Chem. Eng. Biol. Sci. 2017, 4, 5. [Google Scholar]
- Seema, K.; Mehta, K.; Singh, N. Studies on the effect of plant growth promoting rhizobacteria (PGPR) on growth, physiological parameters, yield and fruit quality of strawberry cv. Chandler. J. Pharmacogn. Phytochem. 2018, 7, 383–387. [Google Scholar]
- Kumar, P.; Sharma, N.; Sharma, S.; Gupta, R. Rizosphere stochiometry, fruit yield, quality attibutes and growth response to PGPR transplant amendments in strawberry (Fragaria × ananassa Duch.) growing on solarized soils. Sci. Hortic. 2020, 265, 109215. [Google Scholar] [CrossRef]
- Jain, N.; Mani, A.; Kumari, S.; Kasera, S.; Bahadur, V. Influence of INM on yield, quality, shelf life and economics of cultivation of strawberry (Fragaria × ananassa Duch.) cv. Sweet Charlie. J. Pharm. Phytochem. 2017, 6, 1178–1181. [Google Scholar]
- Sener, S.; Duran, C.N. Effects of some microbial plant growth and development regulators on vegetatıve development and fruit quality of strawberry under greenhouse conditions. Euroasia J. Math. Eng. Nat. Med. Sci. 2020, 8, 31–38. [Google Scholar]
- Singh, D.; Kumar, S.; Verma, R.; Maurya, R.; Shukla, A. Effect of organic manure and bio-fertilizers on quality parameters of strawberry (Fragaria × ananassa Duch.) cv. Chandler. J. Pharma. Phyto. 2018, 7, 1227–1228. [Google Scholar]
- Anuradha; Goyal, R.K.; Sindhu, S.; Godara, A.K. Effect of PGPR on strawberry cultivation under greenhouse conditions. Indian J. Hort. 2019, 76, 400–404. [Google Scholar] [CrossRef]
- Kumar, S.; Kundu, M.; Das, A.; Rakshit, R.; Siddiqui, M.W.; Rani, R. Substitution of mineral fertilizers with biofertilizer: An alternate to improve the growth, yield and functional biochemical properties of strawberry (Fragaria × ananassa Duch.) cv. Camarosa. J. Plant Nutr. 2019, 42, 1818–1837. [Google Scholar] [CrossRef]
- Jones, J.R.; Wolf, B.; Mills, H.A. Plant Analysis Handbook; Micro Macro Publishing, Inc.: Athens, GA, USA, 1991; p. 213. ISBN 13: 9781878148001. [Google Scholar]
- Tomic, J.M.; Milivojevic, J.M.; Pesakovic, M.I. The response to bacterial inoculation is cultivar-related in strawberries. Turk. J. Agric. For. 2015, 39, 332–341. [Google Scholar] [CrossRef]
- Beer, K.; Singh, A.K. Effect of vermicompost and biofertilizers on strawberry: Chlorophyll and nutrients concentration in leaves. Ann. Plant Soil Res. 2015, 17, 211–214. [Google Scholar]
Soil Properties | Value |
---|---|
Texture | loamy |
pH | 7.9 |
Saltiness (%) | 0.05 |
Lime (%) | 37.13 |
Organic matter (%) | 0.51 |
P2O5 (g m−2) | 2.97 |
K2O (g m−2) | 37.77 |
Ca (%) | 0.7033 |
Mg (%) | 0.0358 |
Na (%) | 0.0056 |
Fe (mg kg−1) | 1.99 |
Cu (mg kg−1) | 1.16 |
Mn (mg kg−1) | 0.94 |
Zn (mg kg−1) | 0.28 |
Treatments | The Longest Root (cm) | The Thickest Root (mm) | Root Dry Matter (%) | Shoot Dry Matter (%) | Stem Diameter (mm) |
---|---|---|---|---|---|
T1 | 22.06 c | 0.89 e | 33.29 c | 20.97 d | 11.71 c |
T2 | 24.84 b | 0.94 d | 40.56 b | 27.75 c | 13.04 b |
T3 | 25.73 ab | 1.04 c | 42.98 ab | 31.54 bc | 13.03 b |
T4 | 24.52 b | 1.06 c | 40.03 b | 32.12 b | 13.20 ab |
T5 | 26.28 ab | 1.12 b | 45.75 a | 35.62 b | 13.27 ab |
T6 | 25.08 b | 1.11 b | 43.30 ab | 35.79 b | 13.45 ab |
T7 | 27.49 a | 1.22 a | 45.81 a | 44.35 a | 14.06 a |
LSD0.05 | 1.88 | 0.03 | 3.98 | 4.36 | 0.94 |
Treatments | pH | TSSs (%) | TA (%) | TSSs/TA |
---|---|---|---|---|
T1 | 3.83 e | 9.48 e | 0.67 a | 14.27 e |
T2 | 3.87 d | 9.82 d | 0.61 b | 16.17 d |
T3 | 3.92 b | 10.62 a | 0.62 b | 17.24 bc |
T4 | 3.90 bc | 10.07 cd | 0.61 b | 16.54 cd |
T5 | 3.91 b | 10.23 bc | 0.57 c | 18.07 ab |
T6 | 3.89 cd | 10.06 cd | 0.60 b | 16.86 cd |
T7 | 3.95 a | 10.42 ab | 0.56 c | 18.74 a |
LSD0.05 | 0.02 | 0.29 | 0.03 | 0.91 |
Treatments | N | P | K | Ca | Mg |
---|---|---|---|---|---|
T1 | 2.63 e | 0.14 d | 0.91 c | 1.61 c | 0.19 c |
T2 | 3.00 d | 0.33 c | 1.33 b | 1.98 b | 0.25 b |
T3 | 3.24 cd | 0.68 a | 1.37 ab | 2.07 b | 0.25 b |
T4 | 3.19 cd | 0.34 c | 1.34 b | 2.03 b | 0.25 b |
T5 | 3.68 b | 0.43 b | 1.38 ab | 2.37 a | 0.26 b |
T6 | 3.30 c | 0.48 b | 1.41 ab | 2.04 b | 0.25 b |
T7 | 3.97 a | 0.70 a | 1.46 a | 2.47 a | 0.30 a |
LSD0.05 | 0.25 | 0.07 | 0.11 | 0.23 | 0.02 |
Treatments | Fe | Zn | Mn | Cu |
---|---|---|---|---|
T1 | 52.00 e | 27.00 d | 34.50 c | 3.00 d |
T2 | 73.30 d | 32.75 c | 52.50 b | 4.00 c |
T3 | 110.00 a | 51.56 a | 58.00 ab | 5.67 a |
T4 | 85.00 bc | 42.67 b | 61.75 a | 5.00 b |
T5 | 92.67 b | 42.33 b | 57.25 ab | 5.00 b |
T6 | 84.00 c | 40.56 b | 58.25 ab | 4.00 c |
T7 | 84.11 c | 50.67 a | 63.00 a | 4.00 c |
LSD0.05 | 8.28 | 5.11 | 8.86 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilic, N.; Dasgan, H.Y.; Gruda, N.S. A Novel Approach for Organic Strawberry Cultivation: Vermicompost-Based Fertilization and Microbial Complementary Nutrition. Horticulturae 2023, 9, 642. https://doi.org/10.3390/horticulturae9060642
Kilic N, Dasgan HY, Gruda NS. A Novel Approach for Organic Strawberry Cultivation: Vermicompost-Based Fertilization and Microbial Complementary Nutrition. Horticulturae. 2023; 9(6):642. https://doi.org/10.3390/horticulturae9060642
Chicago/Turabian StyleKilic, Neslihan, Hayriye Yildiz Dasgan, and Nazim S. Gruda. 2023. "A Novel Approach for Organic Strawberry Cultivation: Vermicompost-Based Fertilization and Microbial Complementary Nutrition" Horticulturae 9, no. 6: 642. https://doi.org/10.3390/horticulturae9060642
APA StyleKilic, N., Dasgan, H. Y., & Gruda, N. S. (2023). A Novel Approach for Organic Strawberry Cultivation: Vermicompost-Based Fertilization and Microbial Complementary Nutrition. Horticulturae, 9(6), 642. https://doi.org/10.3390/horticulturae9060642