Hydrolate and EO Application to Reduce Decay of Carica papaya during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetal Material
2.2. Extraction of the Essential Oils and Hydrolates of O. vulgare subsp. viridulum
2.3. Essential Oil and Hydrolate Composition
2.4. Coating Formulations and Experimental Design
- EC1: A. arborescens 25 mL + essential oil of O. vulgare subsp. viridulum 1 mL was added to 200 mL of distilled water.
- EC2: Hydrolate of O. vulgare subsp. viridulum 2 mL was added to 200 mL of distilled water.
- Spraying, using an N2-fed airbrush and 0.8 mm nozzles, achieving a film thickness on the fruit of about 3 mm;
- Brushing, using a food brush in top-down direction, thus covering the entire epicarp of the fruit and achieving a film thickness on the fruit of about 3 mm.
2.5. Daily Pathological Surveys
- No infection (N.I.), healthy fruit, level 0;
- Slight infection (S.I.), 1–4 lesions (spots), level 1;
- Moderate infection (M.I.), 5–10 lesions, level 2;
- High infection (H.I.), more than 10 lesions (fruit covered with spots), level 3.
2.6. Morphological Identification of External Fungal Contaminants
2.7. Decay Index
2.8. Physicochemical Analyses
2.9. Sensorial Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Quantitative and Qualitative Analyses of O. vulgare subsp. viridulum Essential Oil
3.2. Daily Pathological Survey and Decay Severity Index
3.3. Morphological Identification of External Fungal Agents
3.4. Physicochemical Analyses
3.5. Sensorial Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gustafson, A.; Christian, J.W.; Lewis, S.; Moore, K.; Jilcott, S. Food Venue Choice, Consumer Food Environment, but Not Food Venue Availability within Daily Travel Patterns Are Associated with Dietary Intake among Adults, Lexington Kentucky 2011. Nutr. J. 2013, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Pessu, P.; Agoda, S.; Isong, I.; Ikotun, I. The Concepts and Problems of Post-harvest Food Losses in Perishable Crops. Afr. J. Food Sci. 2011, 5, 603–613. [Google Scholar]
- Prasad, K.; Paul, J.R. Post-harvest Losses of Papaya and Practice for Management. Food Sci. Rep. 2021, 2, 7. [Google Scholar]
- Farina, V.; Passafiume, R.; Tinebra, I.; Scuderi, D.; Saletta, F.; Gugliuzza, G.; Gallotta, A.; Sortino, G. Post-harvest Application of Aloe vera Gel-Based Edible Coating to Improve the Quality and Storage Stability of Fresh-Cut Papaya. J. Food Qual. 2020, 2020, 8303140. [Google Scholar] [CrossRef]
- Adiletta, G.; Di Matteo, M.; Albanese, D.; Farina, V.; Cinquanta, L.; Corona, O.; Magri, A.; Petriccione, M. Changes in physico-chemical traits and enzymes oxidative system during cold storage of ‘formosa’ papaya fresh cut fruit grown in the Mediterranean area (Sicily). Ital. J. Food Sci. 2020, 32, 3483–3492. [Google Scholar] [CrossRef]
- Migliore, G.; Farina, V.; Tinervia, S.; Matranga, G.; Schifani, G. Consumer Interest towards Tropical Fruit: Factors Affecting Avocado Fruit Consumption in Italy. Agric. Food Econ. 2017, 5, 24. [Google Scholar] [CrossRef]
- Sortino, G.; Caviglia, V.; Liguori, G.; De Pasquale, C.; Gianguzzi, G.; Farina, V. Quality Changes of Tropical and Subtropical Fresh-Cut Fruit Mix in Modified Atmosphere Packaging. Chem. Eng. 2017, 58, 397–402. [Google Scholar]
- Tinebra, I.; Sortino, G.; Inglese, P.; Fretto, S.; Farina, V. Effect of Different Modified Atmosphere Packaging on the Quality of Mulberry Fruit (Morus alba L. Cv Kokuso 21). Int. J. Food Sci. 2021, 2021, 8844502. [Google Scholar] [CrossRef]
- Sivakumar, D.; Tuna Gunes, N.; Romanazzi, G. A Comprehensive Review on the Impact of Edible Coatings, Essential Oils, and Their Nano Formulations on Post-harvest Decay Anthracnose of Avocados, Mangoes, and Papayas. Front. Microbiol. 2021, 12, 711092. [Google Scholar] [CrossRef]
- Alvarez, A.; Nishijima, W. Post-harvest Diseases of Papaya. Plant Dis. 1987, 71, 681–686. [Google Scholar] [CrossRef]
- Baños-Guevara, P.E.; Zavaleta Mejía, E.; Colinas-León, M.; Luna-Romero, I.; Gutiérrez-Alonso, J. Control Biológico de Colletotrichum gloeosporioides [(Penz.) Penz. y Sacc.] En Papaya Maradol Roja (Carica papaya L.) y Fisiología Postcosecha de Frutos Infectados. Rev. Mex. Fitopatol. 2004, 22, 198–205. [Google Scholar]
- Ventura, J.A.; Costa, H.; Tatagiba, J.d.S. Papaya Diseases and Integrated Control. In Diseases of Fruit and Vegetables: Volume II; Springer: Berlin/Heidelberg, Germany, 2004; pp. 201–268. [Google Scholar]
- Yon, R.M. Papaya: Fruit Development, Post-Harvest Physiology, Handling and Marketing in ASEAN; ASEAN Food Handling Bureau: Kuala Lumpur, Malaysia, 1994; ISBN 967-9932-22-2. [Google Scholar]
- Zakaria, L. Diversity of Colletotrichum Species Associated with Anthracnose Disease in Tropical Fruit Crops—A Review. Agriculture 2021, 11, 297. [Google Scholar] [CrossRef]
- Echerenwa, M.C.; Umechuruba, C. Post-Harvest Fungal Diseases of Pawpaw (Carica papaya L.) Fruit and Seeds in Nigeria. Glob. J. Pure Appl. Sci. 2004, 10, 69–73. [Google Scholar] [CrossRef]
- Kumaran, K. Unit-2 Papaya (Carica papaya Linn.); Indira Gandhi National Open University: New Delhi, India, 2021. [Google Scholar]
- Vivas, M.; Silveira, S.F.d.; Terra, C.E.P.d.S.; Pereira, M.G. Testers for Combining Ability and Selection of Papaya Hybrids Resistant to Fungal Diseases. Crop. Breed. Appl. Biotechnol. 2011, 11, 36–42. [Google Scholar] [CrossRef]
- Vawdrey, L.; Grice, K.; Westerhuis, D. Field and Laboratory Evaluations of Fungicides for the Control of Brown Spot (Corynespora cassiicola) and Black Spot (Asperisporium caricae) of Papaya in Far North Queensland, Australia. Australas. Plant Pathol. 2008, 37, 552–558. [Google Scholar] [CrossRef]
- Chau, K.; Alvarez, A.M. Role of Mycosphaerella ascospores in Stem-End Rot of Papaya Fruit. Phytopathology 1979, 69, 500–503. [Google Scholar] [CrossRef]
- Abarca, M.L.; Accensi, F.; Cano, J.; Cabañes, F.J. Taxonomy and Significance of Black Aspergilli. Antonie Van Leeuwenhoek 2004, 86, 33–49. [Google Scholar] [CrossRef]
- Abbas, H.K.; Shier, W.; Horn, B.; Weaver, M. Cultural Methods for Aflatoxin Detection. J. Toxicol. Toxin Rev. 2004, 23, 295–315. [Google Scholar] [CrossRef]
- Oliveri, C.; Torta, L.; Catara, V. A Polyphasic Approach to the Identification of Ochratoxin A-Producing Black Aspergillus Isolates from Vineyards in Sicily. Int. J. Food Microbiol. 2008, 127, 147–154. [Google Scholar] [CrossRef]
- Couey, H.; Alvarez, A.; Nelson, M. Comparison of Hot-Water Spray and Immersion Treatments for Control of Post-harvest Decay of Papaya. Plant Dis. 1984, 68, 436–437. [Google Scholar] [CrossRef]
- Couey, H. Control of Post-harvest Decay of Papaya. HortScience 1979, 14, 719–721. [Google Scholar] [CrossRef]
- da Silva Pereira, A.V.; Martins, R.B.; Michereff, S.J.; Da Silva, M.B.; Câmara, M.P.S. Sensitivity of Lasiodiplodia theobromae from Brazilian Papaya Orchards to MBC and DMI Fungicides. Eur. J. Plant Pathol. 2012, 132, 489–498. [Google Scholar] [CrossRef]
- Dembele, A.; Traore, S.K.; Kone, M.; Coulibaly, D.T. Export Papaya Post-Harvest Protection by Fungicides and the Problems of the Maximal Limit of Residues. Afr. J. Biotechnol. 2005, 4, 109–112. [Google Scholar]
- Wisniewski, M.; Droby, S.; Norelli, J.; Liu, J.; Schena, L. Alternative Management Technologies for Post-harvest Disease Control: The Journey from Simplicity to Complexity. Post-Harvest Biol. Technol. 2016, 122, 3–10. [Google Scholar] [CrossRef]
- Bosquez-Molina, E.; Ronquillo-de Jesús, E.; Bautista-Baños, S.; Verde-Calvo, J.; Morales-López, J. Inhibitory Effect of Essential Oils against Colletotrichum gloeosporioides and Rhizopus stolonifer in Stored Papaya Fruit and Their Possible Application in Coatings. Post-Harvest Biol. Technol. 2010, 57, 132–137. [Google Scholar] [CrossRef]
- Du Plooy, W.; Regnier, T.; Combrinck, S. Essential Oil Amended Coatings as Alternatives to Synthetic Fungicides in Citrus Post-harvest Management. Post-Harvest Biol. Technol. 2009, 53, 117–122. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Soares, N.d.F.F.; Botti, L.C.M.; Melo, N.R.d.; Pereira, O.L.; Silva, W.A.d. Assessment of the Efficiency of Essential Oils in the Preservation of Post-harvest Papaya in an Antimicrobial Packaging System. Braz. J. Food Technol. 2012, 15, 333–342. [Google Scholar] [CrossRef]
- Aćimović, M.G.; Tešević, V.V.; Smiljanić, K.T.; Cvetković, M.T.; Stanković, J.M.; Kiprovski, B.M.; Sikora, V.S. Hydrolates: By-Products of Essential Oil Distillation: Chemical Composition, Biological Activity and Potential Uses. Adv. Technol. 2020, 9, 54–70. [Google Scholar] [CrossRef]
- D’Amato, S.; Serio, A.; López, C.C.; Paparella, A. Hydrosols: Biological Activity and Potential as Antimicrobials for Food Applications. Food Control 2018, 86, 126–137. [Google Scholar] [CrossRef]
- Pellegrini, M.; Rossi, C.; Palmieri, S.; Maggio, F.; Chaves-López, C.; Lo Sterzo, C.; Paparella, A.; De Medici, D.; Ricci, A.; Serio, A. Salmonella Enterica Control in Stick Carrots through Incorporation of Coriander Seeds Essential Oil in Sustainable Washing Treatments. Front. Sustain. Food Syst. 2020, 4, 14. [Google Scholar] [CrossRef]
- Perito, M.A.; Chiodo, E.; Serio, A.; Paparella, A.; Fantini, A. Factors Influencing Consumers’ Attitude towards Biopreservatives. Sustainability 2020, 12, 10338. [Google Scholar] [CrossRef]
- Saǧdıç, O.; Özcan, M. Antibacterial Activity of Turkish Spice Hydrosols. Food Control 2003, 14, 141–143. [Google Scholar] [CrossRef]
- Farina, V.; Tinebra, I.; Perrone, A.; Sortino, G.; Palazzolo, E.; Mannino, G.; Gentile, C. Physicochemical, Nutraceutical and Sensory Traits of Six Papaya (Carica papaya L.) Cultivars Grown in Greenhouse Conditions in the Mediterranean Climate. Agronomy 2020, 10, 501. [Google Scholar] [CrossRef]
- Passafiume, R.; Gugliuzza, G.; Gaglio, R.; Busetta, G.; Tinebra, I.; Sortino, G.; Farina, V. Aloe-Based Edible Coating to Maintain Quality of Fresh-Cut Italian Pears (Pyrus communis L.) during Cold Storage. Horticulturae 2021, 7, 581. [Google Scholar] [CrossRef]
- Erdemli, M.E.; Akgül, H.; Ege, B.; Aksungur, Z.; Gozukara, H.; Selamoglu, Z. The Effects of Grapeseed Extract and Low Level Laser Therapy Administration on the Liver in Experimentally Fractured Mandible. J. Turgut Ozal Med Cent. 2017, 24, 127–133. [Google Scholar] [CrossRef]
- Selamoglu, Z.; Dusgun, C.; Akgul, H.; Gulhan, M.F. In-Vitro Antioxidant Activities of the Ethanolic Extracts of Some Contained-Allantoin Plants. Iran. J. Pharm. Res. IJPR 2017, 16, 92. [Google Scholar]
- Novak, J.; Lukas, B.; Franz, C. Temperature Influences Thymol and Carvacrol Differentially in Origanum Spp. (Lamiaceae). J. Essent. Oil Res. 2010, 22, 412–415. [Google Scholar] [CrossRef]
- Prakash, B.; Singh, P.; Kedia, A.; Dubey, N. Assessment of Some Essential Oils as Food Preservatives Based on Antifungal, Antiaflatoxin, Antioxidant Activities and in Vivo Efficacy in Food System. Food Res. Int. 2012, 49, 201–208. [Google Scholar] [CrossRef]
- Sivakumar, D.; Romanazzi, G. Use of Essential Oils to Improve Post-harvest Quality and Control Post-harvest Decay of Tropical, Subtropical, and Temperate Fruit. In Post-Harvest Pathology of Fresh Horticultural Produce; CRC Press: Boca Raton, FL, USA, 2019; pp. 659–676. [Google Scholar]
- Cindi, M.D.; Soundy, P.; Romanazzi, G.; Sivakumar, D. Different Defense Responses and Brown Rot Control in Two Prunus persica Cultivars to Essential Oil Vapours after Storage. Post-Harvest Biol. Technol. 2016, 119, 9–17. [Google Scholar] [CrossRef]
- Landi, L.; Peralta-Ruiz, Y.; Chaves-López, C.; Romanazzi, G. Chitosan Coating Enriched with Ruta graveolens L. Essential Oil Reduces Postharvest Anthracnose of Papaya (Carica papaya L.) and Modulates Defense-Related Gene Expression. Front. Plant Sci. 2021, 12, 765806. [Google Scholar] [CrossRef]
- Reichling, J.; Schnitzler, P.; Suschke, U.; Saller, R. Essential Oils of Aromatic Plants with Antibacterial, Antifungal, Antiviral, and Cytotoxic Properties–an Overview. Complement. Med. Res. 2009, 16, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Servili, A.; Feliziani, E.; Romanazzi, G. Exposure to Volatiles of Essential Oils Alone or under Hypobaric Treatment to Control Post-harvest Gray Mold of Table Grapes. Post-Harvest Biol. Technol. 2017, 133, 36–40. [Google Scholar] [CrossRef]
- Napoli, E.; Giovino, A.; Carrubba, A.; How Yuen Siong, V.; Rinoldo, C.; Nina, O.; Ruberto, G. Variations of Essential Oil Constituents in Oregano (Origanum vulgare Subsp. viridulum (= O. Heracleoticum) over Cultivation Cycles. Plants 2020, 9, 1174. [Google Scholar] [CrossRef] [PubMed]
- Sivropoulou, A.; Papanikolaou, E.; Nikolaou, C.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antimicrobial and Cytotoxic Activities of Origanum Essential Oils. J. Agric. Food Chem. 1996, 44, 1202–1205. [Google Scholar] [CrossRef]
- Skoula, M.; Harborne, J. Oregano: The Genera Origanum and Lippia; Taxonomy and Chemistry of Origanum. Medicinal and Aromatic Plants Industrial Profiles; Kintzios, S.E., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 67–108. [Google Scholar]
- Crocoll, C.; Asbach, J.; Novak, J.; Gershenzon, J.; Degenhardt, J. Terpene Synthases of Oregano (Origanum vulgare L.) and Their Roles in the Pathway and Regulation of Terpene Biosynthesis. Plant Mol. Biol. 2010, 73, 587–603. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.K.; Singh, P.; Prakash, B.; Kedia, A.; Dubey, N.K.; Chanotiya, C. Assessing Essential Oil Components as Plant-Based Preservatives against Fungi That Deteriorate Herbal Raw Materials. Int. Biodeterior. Biodegrad. 2013, 80, 16–21. [Google Scholar] [CrossRef]
- Chorianopoulos, N.; Giaouris, E.; Skandamis, P.; Haroutounian, S.; Nychas, G. Disinfectant Test against Monoculture and Mixed-culture Biofilms Composed of Technological, Spoilage and Pathogenic Bacteria: Bactericidal Effect of Essential Oil and Hydrosol of Satureja thymbra and Comparison with Standard Acid–Base Sanitizers. J. Appl. Microbiol. 2008, 104, 1586–1596. [Google Scholar] [CrossRef]
- Garneau, F.-X.; Collin, G.; Gagnon, H. Chemical Composition and Stability of the Hydrosols Obtained during Essential Oil Production. I. The Case of Melissa officinalis L. and Asarum canadense L. Am. J. Essent. Oils Nat. Prod. 2014, 2, 54–62. [Google Scholar]
- Romanazzi, G.; Moumni, M. Chitosan and Other Edible Coatings to Extend Shelf Life, Manage Post-harvest Decay, and Reduce Loss and Waste of Fresh Fruit and Vegetables. Curr. Opin. Biotechnol. 2022, 78, 102834. [Google Scholar] [CrossRef]
- Passafiume, R.; Gaglio, R.; Sortino, G.; Farina, V. Effect of Three Different Aloe vera Gel-Based Edible Coatings on the Quality of Fresh-Cut “Hayward” Kiwifruit. Foods 2020, 9, 939. [Google Scholar] [CrossRef]
- Caputo, L.; Amato, G.; de Bartolomeis, P.; De Martino, L.; Manna, F.; Nazzaro, F.; De Feo, V.; Barba, A.A. Impact of Drying Methods on the Yield and Chemistry of Origanum vulgare L. Essential Oil. Sci. Rep. 2022, 12, 3845. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.; Melo, E.; Raduuml, L. Influence of Drying Process on the Quality of Medicinal Plants: A Review. J. Med. Plants Res. 2011, 5, 7076–7084. [Google Scholar] [CrossRef]
- Thamkaew, G.; Sjöholm, I.; Galindo, F.G. A Review of Drying Methods for Improving the Quality of Dried Herbs. Crit. Rev. Food Sci. Nutr. 2021, 61, 1763–1786. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Dwivedi, A.K. A Review on Techniques Available for the Extraction of Essential Oils from Various Plants. Int. Res. J. Eng. Technol. 2018, 5, 5–8. [Google Scholar]
- Di Vito, M.; Bellardi, M.G.; Mondello, F.; Modesto, M.; Michelozzi, M.; Bugli, F.; Sanguinetti, M.; Sclocchi, M.C.; Sebastiani, M.L.; Biffi, S. Monarda citriodora Hydrolate vs Essential Oil Comparison in Several Anti-Microbial Applications. Ind. Crops Prod. 2019, 128, 206–212. [Google Scholar] [CrossRef]
- Marriott, P.J.; Shellie, R.; Cornwell, C. Gas Chromatographic Technologies for the Analysis of Essential Oils. J. Chromatogr. A 2001, 936, 1–22. [Google Scholar] [CrossRef]
- Saleh, I.; Al-Thani, R. Fungal Food Spoilage of Supermarkets’ Displayed Fruit. Vet. World 2019, 12, 1877. [Google Scholar] [CrossRef]
- Mirabile, G.; Cirlincione, F.; Venturella, G.; Torta, L. Seed Vitality and Fungal Contamination in Abies nebrodensis. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2022, 1–7. [Google Scholar] [CrossRef]
- Torres-Calzada, C.; Tapia-Tussell, R.; Higuera-Ciapara, I.; Perez-Brito, D. Morphological, Pathological and Genetic Diversity of Colletotrichum Species Responsible for Anthracnose in Papaya (Carica papaya L). Eur. J. Plant Pathol. 2013, 135, 67–79. [Google Scholar] [CrossRef]
- Torta, L.; Burruano, S.; Giambra, S.; Conigliaro, G.; Piazza, G.; Mirabile, G.; Pirrotta, M.; Calvo, R.; Bellissimo, G.; Calvo, S. Cultivable Fungal Endophytes in Roots, Rhizomes and Leaves of Posidonia Oceanica (L.) Delile along the Coast of Sicily, Italy. Plants 2022, 11, 1139. [Google Scholar] [CrossRef]
- Barrera Bello, E.; Gil Loaiza, M.; García Pajón, C.M.; Durango Restrepo, D.L.; Gil González, J.H. Empleo de Un Recubrimiento Formulado Con Propóleos Para El Manejo Poscosecha de Frutos de Papaya (Carica papaya L. Cv. Hawaiana). Rev. Fac. Nac. Agron. Medellín 2012, 65, 6497–6506. [Google Scholar]
- Perdones, A.; Sánchez-González, L.; Chiralt, A.; Vargas, M. Effect of Chitosan–Lemon Essential Oil Coatings on Storage-Keeping Quality of Strawberry. Post-Harvest Biol. Technol. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Peralta-Ruiz, Y.; Tovar, C.G.; Sinning-Mangonez, A.; Bermont, D.; Cordero, A.P.; Paparella, A.; Chaves-López, C. Colletotrichum gloesporioides Inhibition Using Chitosan-Ruta Graveolens L Essential Oil Coatings: Studies in Vitro and in Situ on Carica papaya Fruit. Int. J. Food Microbiol. 2020, 326, 108649. [Google Scholar] [CrossRef] [PubMed]
- Gaba, A.B.M.; Hassan, M.A.; Abd EL-Tawab, A.A.; Abdelmonem, M.A.; Morsy, M.K. Protective Impact of Chitosan Film Loaded Oregano and Thyme Essential Oil on the Microbial Profile and Quality Attributes of Beef Meat. Antibiotics 2022, 11, 583. [Google Scholar] [CrossRef]
- Mueller-Riebau, F.; Berger, B.; Yegen, O. Chemical Composition and Fungitoxic Properties to Phytopathogenic Fungi of Essential Oils of Selected Aromatic Plants Growing Wild in Turkey. J. Agric. Food Chem. 1995, 43, 2262–2266. [Google Scholar] [CrossRef]
- Lv, F.; Liang, H.; Yuan, Q.; Li, C. In Vitro Antimicrobial Effects and Mechanism of Action of Selected Plant Essential Oil Combinations against Four Food-Related Microorganisms. Food Res. Int. 2011, 44, 3057–3064. [Google Scholar] [CrossRef]
- Bautista-Baños, S.; Sivakumar, D.; Bello-Pérez, A.; Villanueva-Arce, R.; Hernández-López, M. A Review of the Management Alternatives for Controlling Fungi on Papaya Fruit during the Post-harvest Supply Chain. Crop Prot. 2013, 49, 8–20. [Google Scholar] [CrossRef]
- Paull, R.E.; Nishijima, W.; Reyes, M.; Cavaletto, C. Post-harvest Handling and Losses during Marketing of Papaya (Carica papaya L.). Post-Harvest Biol. Technol. 1997, 11, 165–179. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, S.; Du, S.; Chen, S.; Sun, H. Antifungal Activity of Thymol and Carvacrol against Post-harvest Pathogens Botrytis cinerea. J. Food Sci. Technol. 2019, 56, 2611–2620. [Google Scholar] [CrossRef]
- Lambert, R.; Skandamis, P.N.; Coote, P.J.; Nychas, G. A Study of the Minimum Inhibitory Concentration and Mode of Action of Oregano Essential Oil, Thymol and Carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef]
- Morcia, C.; Malnati, M.; Terzi, V. In Vitro Antifungal Activity of Terpinen-4-Ol, Eugenol, Carvone, 1, 8-Cineole (Eucalyptol) and Thymol against Mycotoxigenic Plant Pathogens. Food Addit. Contam. Part A 2012, 29, 415–422. [Google Scholar]
- Olennikov, D.; Ibragimov, T.; Nazarova, A.; Rokhin, A.; Zilfikarov, I. Chemical Composition of Aloe arborescens and Its Change by Biostimulation. Chem. Nat. Compd. 2009, 45, 478–482. [Google Scholar] [CrossRef]
- Bautista-Baños, S.; Hernández-López, M.; Bosquez-Molina, E.; Wilson, C.L. Effects of Chitosan and Plant Extracts on Growth of Colletotrichum gloeosporioides, Anthracnose Levels and Quality of Papaya Fruit. Crop Prot. 2003, 22, 1087–1092. [Google Scholar] [CrossRef]
- Bensch, K.; Groenewald, J.; Braun, U.; Dijksterhuis, J.; de Jesús Yáñez-Morales, M.; Crous, P.W. Common but Different: The Expanding Realm of Cladosporium. Stud. Mycol. 2015, 82, 23–74. [Google Scholar] [CrossRef]
- Fatima, N.; Batool, H.; Sultana, V.; Ara, J.; Ehteshamul-Haque, S. Prevalence of Post-Harvest Rot of Vegetables and Fruit in Karachi, Pakistan. Pak. J. Bot 2009, 41, 3185–3190. [Google Scholar]
- Amaral, D.D.; Monteiro, A.L.R.; Silva, E.I.D.; Lins, S.R.D.O.; Oliveira, S. Frequency of Quiescent Fungi and Post-Harvest Alternative Management of Stem End Rot in Papaya. Rev. Caatinga 2017, 30, 786–793. [Google Scholar] [CrossRef]
- Silveira, N.; Mariano, R.; Michereff, S.; Maia, L.; Oliveira, S. Hongos Fitopatógenos Asociados a Frutos Comercializados En Recife, Pernambuco (Brasil). Boletín Micológico 2001, 16. [Google Scholar] [CrossRef]
- Pearson, R.; Hall, D.H. Factors Affecting the Occurence and Severity of Blackmold of Ripe Tomato Fruit Caused by Alternaria alternata. Phytopathology 1975, 65, 1352–1359. [Google Scholar]
- Escrivá, L.; Oueslati, S.; Font, G.; Manyes, L. Alternaria Mycotoxins in Food and Feed: An Overview. J. Food Qual. 2017, 2017, 1569748. [Google Scholar] [CrossRef]
- Bautista-Baños, S. Post-Harvest Decay: Control Strategies; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 0-12-411568-3. [Google Scholar]
- Salehi, F. Edible Coating of Fruit and Vegetables Using Natural Gums: A Review. Int. J. Fruit Sci. 2020, 20, S570–S589. [Google Scholar] [CrossRef]
- Dhall, R. Advances in Edible Coatings for Fresh Fruit and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450. [Google Scholar] [CrossRef]
- Elmer, P.; Reglinski, T. Biosuppression of Botrytis cinerea in Grapes. Plant Pathol. 2006, 55, 155–177. [Google Scholar] [CrossRef]
- Schweiggert, R.M.; Steingass, C.B.; Mora, E.; Esquivel, P.; Carle, R. Carotenogenesis and Physico-Chemical Characteristics during Maturation of Red Fleshed Papaya Fruit (Carica papaya L.). Food Res. Int. 2011, 44, 1373–1380. [Google Scholar] [CrossRef]
- Talcott, S.T.; Moore, J.P.; Lounds-Singleton, A.J.; Percival, S.S. Ripening Associated Phytochemical Changes in Mangos (Mangifera indica) Following Thermal Quarantine and Low-temperature Storage. J. Food Sci. 2005, 70, C337–C341. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Khaneghah, A.M.; Ghahfarrokhi, M.G.; Eş, I. Basil-Seed Gum Containing Origanum vulgare Subsp. Viride Essential Oil as Edible Coating for Fresh Cut Apricots. Post-Harvest Biol. Technol. 2017, 125, 26–34. [Google Scholar] [CrossRef]
- de Souza, E.L.; Lundgren, G.A.; de Oliveira, K.Á.; Berger, L.R.; Magnani, M. An Analysis of the Published Literature on the Effects of Edible Coatings Formed by Polysaccharides and Essential Oils on Post-harvest Microbial Control and Overall Quality of Fruit. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1947–1967. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of Edible Coating with Essential Oil in Food Preservation. Crit. Rev. Food Sci. Nutr. 2019, 59, 2467–2480. [Google Scholar] [CrossRef]
- Pirozzi, A.; Del Grosso, V.; Ferrari, G.; Donsì, F. Edible Coatings Containing Oregano Essential Oil Nanoemulsion for Improving Post-harvest Quality and Shelf Life of Tomatoes. Foods 2020, 9, 1605. [Google Scholar] [CrossRef]
- Choi, W.S.; Singh, S.; Lee, Y.S. Characterization of Edible Film Containing Essential Oils in Hydroxypropyl Methylcellulose and Its Effect on Quality Attributes of ‘Formosa’ Plum (Prunus salicina L.). LWT 2016, 70, 213–222. [Google Scholar] [CrossRef]
n | Compound | EOs % | Hydr. % | W.D.% |
---|---|---|---|---|
1 | a-pinene | 0.52 | 0.03 | 0.34 |
2 | a-thujene | 1.56 | 0.09 | 1.03 |
3 | β-pinene | 0.17 | 0.01 | 0.25 |
4 | sabinene | 0.28 | 0.06 | 0.00 |
5 | myrcene | 2.09 | 0.16 | 11.51 |
6 | a-phellandrene | 0.42 | 0.03 | 0.00 |
7 | a-terpinene | 3.70 | 0.29 | 0.00 |
8 | limonene | 0.43 | 0.09 | 2.33 |
9 | β-phellandrene | 0.27 | 0.04 | 0.00 |
10 | β-ocimene | 0.35 | 0.01 | 0.00 |
11 | g-terpinene | 15.97 | 1.16 | 0.00 |
12 | p-cymene | 8.20 | 2.18 | 0.46 |
13 | terpinolene | 2.08 | 0.02 | 0.00 |
14 | cis-sabinene hydrate | 0.82 | 0.82 | 0.00 |
15 | linalool | 0.64 | 0.91 | 3.00 |
16 | β-bourbonene | 0.22 | 0.00 | 0.00 |
17 | trans-sabinene hydrate | 0.34 | 0.49 | 0.00 |
18 | methyl thymol ether | 5.19 | 0.59 | 0.00 |
19 | methyl carvacryl ether | 6.15 | 0.85 | 0.00 |
20 | 4-ol-terpinen | 0.97 | 1.77 | 1.94 |
21 | b-caryophyllene | 3.71 | 0.24 | 0.00 |
22 | a-humulene | 0.41 | 0.02 | 0.00 |
23 | β-bisabolene | 3.03 | 0.18 | 0.00 |
24 | Germacrene | 1.97 | 0.07 | 0.00 |
25 | sesquiterpene 1 | 0.42 | 0.00 | 0.00 |
26 | thymol acetate | 0.28 | 0.07 | 0.00 |
27 | thymol | 39.11 | 87.60 | 79.14 |
28 | carvacrol | 0.68 | 2.22 | 0.00 |
Treatments | C.L. | Days of Storage | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
15 D | 16 D | 17 D | 18 D | 19 D | 20 D | 21 D | 22 D | 23 D | 24 D | 25 D | ||
CTR | N.I. | 4.67 ± 0.33 a | 1.33 ± 1.33 a | 2.00 ± 1.15 a | 2.00 ± 1.15 a | 2.00 ± 1.15 a | 1.33 ± 0.67 a | 1.00 ± 0.57 a | 0.33 ± 0.33 a | 0 | 0 | 0 |
S.I. | 0.33 ± 0.33 b | 3.00 ± 0.67 a | 2.00 ± 0.57 a | 2.00 ± 0.57 a | 2.00 ± 0.57 a | 2.67 ± 0.33 a | 2.67 ± 0.88 a | 2.67 ± 1.33 a | 1.67 ± 1.20 a | 1.33 ± 0.88 a | 1.33 ± 0.88 a | |
M.I. | 0 | 0.67 ± 0.66 a | 1.00 ± 0.57 a | 1.00 ± 0.57 a | 1.00 ± 0.57 a | 0.67 ± 0.67 a | 0 | 0 | 0 | 0.33 ± 0.33 a | 0.33 ± 0.33 a | |
H.I. | 0 | 0 | 0 | 0 | 0 | 0.33 ± 0.33 a | 1.33 ± 1.33 a | 2 ± 1.52 a | 3.33 ± 1.20 a | 3.33 ± 1.20 a | 3.33 ± 1.20 a | |
EC1 | N.I. | 5.00 ± 0.01 a | 4.70 ± 0.33 a | 4.7 ± 0.33 a | 4.7 ± 0.33 a | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S.I. | 0 | 0.33 ± 0.33 b | 0.33 ± 0.33 b | 0.33 ± 0.33 b | 0.33 ± 0.33 a | 0.33 ± 0.33 a | 0.33 ± 0.33 a | 0 ± 1.67 a | 0 | 0 | 0 | |
M.I. | 0 | 0 | 0 | 0 | 1.33 ± 1.33 a | 1.33 ± 1.33 a | 0 | 0 | 2.67 ± 1.45 a | 2.33 ± 1.45 a | 2.33 ± 1.45 a | |
H.I. | 0 | 0 | 0 | 0 | 0.33 ± 0.33 a | 0.33 ± 0.33 a | 1.67 ± 1.67 a | 1.67 ± 1.67 a | 2.33 ± 1.45 a | 2.67 ± 1.45 a | 2.67 ± 1.45 a | |
EC2 | N.I. | 5.00 ± 0.01 a | 4.33 ± 0.33 a | 4.33 ± 0.33 a | 4.33 ± 0.33 a | 4.33 ± 0.33 a | 3.33 ± 0.33 a | 2.33 ± 1.20 a | 2.33 ± 1.20 a | 2.33 ± 1.20 a | 2.33 ± 1.20 a | 2.33 ± 1.20 a |
S.I. | 0 | 0.67 ± 0.33 b | 0.67 ± 0.33 b | 0.67 ± 0.33 b | 0.67 ± 0.33 b | 1.67 ± 0.33 b | 2.67 ± 1.20 b | 2.67 ± 1.20 b | 2.67 ± 1.20 a | 2.67 ± 1.20 a | 2.67 ± 1.20 a | |
M.I. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
H.I. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Days | Tr | Flesh Color | C* | TA (g·L−1) | TSS (°Brix) | MI | FF (N) | ||
---|---|---|---|---|---|---|---|---|---|
(L*, a*, b*) | |||||||||
0 | F.f. | 53.16 ± 2.01 b | −9.78 ± 1.28 b | 26.76 ± 1.15 b | 28.49 b | 0.80 ± 0.01 a | 8.59 ± 0.36 b | 96.00 ± 0.36 a | 13.00 ± 1.6 a |
25 | CTR | 75.80 ± 0.92 aA | 2.69 ± 1.69 aA | 45.06 ± 0.66 aA | 45.25 aA | 0.60 ± 0.01 abA | 9.86 ± 0.38 aA | 98.58 ± 1.01 aA | 10.63 ± 0.14 bA |
EC1 | 74.88 ± 1.19 aA | 0.60 ± 1.27 aA | 40.55 ± 1.72 aA | 40.62 aA | 0.40 ± 0.01 bA | 9.71 ± 0.10 aB | 97.01 ± 1.11 aA | 10.35 ± 0.26 bA | |
EC2 | 76.55 ± 0.49 aA | 0.74 ± 0.82 aA | 43.71 ± 0.82 aA | 43.84 aA | 0.50 ± 0.01 abA | 9.62 ± 0.23 aB | 96.00 ± 1.06 aA | 11.37 ± 0.19 bA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Culmone, A.; Mirabile, G.; Tinebra, I.; Michelozzi, M.; Carrubba, A.; Bellardi, M.G.; Farina, V.; Romanazzi, G.; Torta, L. Hydrolate and EO Application to Reduce Decay of Carica papaya during Storage. Horticulturae 2023, 9, 204. https://doi.org/10.3390/horticulturae9020204
Culmone A, Mirabile G, Tinebra I, Michelozzi M, Carrubba A, Bellardi MG, Farina V, Romanazzi G, Torta L. Hydrolate and EO Application to Reduce Decay of Carica papaya during Storage. Horticulturae. 2023; 9(2):204. https://doi.org/10.3390/horticulturae9020204
Chicago/Turabian StyleCulmone, Alessandra, Giulia Mirabile, Ilenia Tinebra, Marco Michelozzi, Alessandra Carrubba, Maria Grazia Bellardi, Vittorio Farina, Gianfranco Romanazzi, and Livio Torta. 2023. "Hydrolate and EO Application to Reduce Decay of Carica papaya during Storage" Horticulturae 9, no. 2: 204. https://doi.org/10.3390/horticulturae9020204
APA StyleCulmone, A., Mirabile, G., Tinebra, I., Michelozzi, M., Carrubba, A., Bellardi, M. G., Farina, V., Romanazzi, G., & Torta, L. (2023). Hydrolate and EO Application to Reduce Decay of Carica papaya during Storage. Horticulturae, 9(2), 204. https://doi.org/10.3390/horticulturae9020204