Adsorption/Desorption on Macroporous Resins of Okicamelliaside in the Extract of Camellia nitidissima Chi Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Preparation of Crude OCS Extract E1
2.3. Reagents
2.4. Analysis of OCS Using the UHPLC-Q Exactive Orbitrap-MS Method
2.5. Optimization of the Separation Conditions of OCS
2.5.1. Selection of Macroporous Resin
2.5.2. Measurement of the Dynamic Adsorption of the Optimal Resin
2.5.3. Measurement of the Dynamic Desorption of the Optimal Resin
2.6. Validation Experiment
2.7. Statistical Analysis
3. Results and Discussion
3.1. Screening of Optimal Resin
3.1.1. The Adsorption Capacity and Rate of Five Resins
3.1.2. The Desorption Capacity and Rate of Five Resins
3.1.3. Adsorption Kinetics of OCS
3.2. Dynamic Adsorption/Desorption of AB-8 Resin
3.2.1. Dynamic Adsorption of AB-8 Resin
3.2.2. Dynamic Desorption of AB-8 Resin
3.2.3. Validation Experiment Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhou, X.W.; Fan, Z.Q.; Chen, Y.; Zhu, Y.L.; Li, J.Y.; Yin, H.F. Functional Analyses of a Flavonol Synthase-like Gene from Camellia nitidissima Reveal Its Roles in Flavonoid Metabolism During Floral Pigmentation. J. Biosci. 2013, 38, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.X.; Liu, H.Y.; Wang, Z.N.; Qi, J.; Yuan, S.T.; Zhang, W.J.; Chen, H.J.; Finley, J.W.; Gu, L.W.; Jia, A.Q. Phytochemicals from Camellia nitidissima Chi Inhibited the Formation of Advanced Glycation End-products by Scavenging Methylglyoxal. Food Chem. 2016, 205, 204–211. [Google Scholar] [CrossRef]
- Zheng, H.Y.; Du, Q.Z.; Yin, J.F.; Gao, Y. A Narrative Review on the Main Chemical Constituents and Bioactivity of Camellia nitidissima Chi. Longhua Chin. Med. 2022, 5, 29. [Google Scholar] [CrossRef]
- Chen, J.H.; Wu, X.H.; Zhou, Y.; He, J.H. Camellia nitidissima Chi Leaf as Pancreatic Lipase Inhibitors: Inhibition Potentials and Mechanism. J. Food Biochem. 2021, 9, e13837. [Google Scholar] [CrossRef]
- Ken-Ichi, O.; Keiko, T.; Mina, Y.H.; Kazuyo, T.; Kaoru, H.; Hideo, N.; Takeshi, Y. Okicamelliaside, an Extraordinarily Potent Anti-Degranulation Glucoside. Biosci. Biotechnol. Biochem. 2010, 74, 2532–2534. [Google Scholar]
- Kuba-Miyara, M.; Agarie, K.; Sakima, R.; Imamura, S.; Tsuha, K.; Yasumoto, T.; Gima, S.; Matsuzaki, G.; Ikehara, T. Inhibitory Effects of an Ellagic Acid Glucoside, Okicamelliaside, on Antigen-Mediated Degranulation in Rat Basophilic Leukemia RBL-2H3 Cells and Passive Cutaneous Anaphylaxis Reaction in Mice. Int. Immunopharmacol. 2012, 12, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Kuba, M.; Tsuha, K.; Tsuha, K.; Matsuzaki, G.; Yasumoto, T. In Vivo Analysis of the Anti-allergic Activities of Camellia japonica Extract and Okicamelliaside, a Degranulation Inhibitor. J. Health Sci. 2008, 54, 584–588. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.J.; Cong, L.F.; Li, Z.Q.; Hao, E.W.; Hou, X.T.; Hou, Y.Y.; Bai, G.; Deng, J.G. Screening, Preparation and Investigation of the Antitumor Activity of Punch Camptothecin in Camellia nitidissima Chi Leaves. Tianjin J. Tradit. Chin. Med. 2020, 37, 1425–1430. [Google Scholar]
- Cheng, C.J.; Liu, K.X.; Zhang, M.; Shen, F.K.; Ye, L.L.; Wu, W.B.; Hou, X.T.; Hao, E.W.; Hou, Y.Y.; Bai, G. Okicamelliaside Targets the N-terminal Chaperone Pocket of HSP90 Disrupts the Chaperone Protein Interaction of HSP90-CDC37 and Exerts Antitumor Activity. Acta Pharmacol. Sin. 2022, 43, 1046–1058. [Google Scholar] [CrossRef]
- Wang, N.N.; Chen, T.; Yang, X.; Shen, C.; Li, H.M.; Wang, S.; Zhao, J.Y.; Chen, J.L.; Chen, Z.; Li, Y.L. A Practicable Strategy for Enrichment and Separation of Four Minor Flavonoids Including Two Isomers from Barley Seedlings by Macroporous Resin Column Chromatography, Medium-pressure LC, and High-speed Countercurrent Chromatography. J. Sep. Sci. 2019, 42, 1717–1724. [Google Scholar] [CrossRef]
- Li, H.J.; Shi, J.L.; Li, Y.Y.; Wang, C.H.; Hou, G.G.; Cong, W.; Zhao, F. Purification of Spinosin from Ziziphi Spinosae Semen Using Macroporous Resins Followed by Preparative High-performance Liquid Chromatography. J. Sep. Sci. 2019, 42, 3134–3140. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Cui, H.C.; Xue, J.J.; Wang, W.; Wang, W.W.; Le, T.; Chen, L.; Engelhardt, U.; Jiang, H.Y. Adsorption Equilibrium and Thermodynamics of Tea Theasinensins on HP20-A High-Efficiency Macroporous Adsorption Resin. Foods 2021, 10, 2971. [Google Scholar] [CrossRef] [PubMed]
- Limwachiranon, J. Extraction, Recovery and Bioaccessibility Enhancement of Phenolics from Lotus (Nelumbo nucifera Gaertn.) Seedpods and Seed Kernels. Ph.D. Thesis, Zhengjiang University, Hangzhou, China, 2019. [Google Scholar]
- Manaa, M.B.; Issaoui, N.; Bouaziz, N.; Lamine, A.B. Combined Statistical Physics Models and DFT Theory to Study the Adsorption Process of Paprika Dye on TiO2 for Dye Sensitized Solar Cells. J. Mater. Res. Technol. 2019, 2, 1175–1188. [Google Scholar] [CrossRef]
- Manaa, M.B.; Issaoui, N.; Al-Ghamdi, Y.O.; Belmabrouk, H.; Lamine, A.B. A Microscopic and Macroscopic Investigation of the Adsorption of N719 Dye on ZnONanopowders (ZNP) and ZnONanorods (ZNR) for Dye Sensitized Solar Cells Using Statistical Physics Treatment and DFT Simulation. RSC Adv. 2020, 10, 27615. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.Q.; Wang, J.Q.; Chen, J.X.; Wang, F.; Yin, J.F.; Zeng, L.; Shi, J.; Xu, Y.Q. Effect of Baking on the Flavor Stability of Green Tea Beverages. Food Chem. 2020, 331, 127258. [Google Scholar] [CrossRef]
- Wang, J.Q.; Fu, Y.Q.; Chen, J.X.; Wang, F.; Feng, Z.H.; Yin, J.F.; Zeng, L.; Shi, J.; Xu, Y.Q. Effects of Baking Treatment on the Sensory Quality and Physicochemical Properties of Green Tea with Different Processing Methods. Food Chem. 2022, 380, 132217. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Fan, L.P.; Li, J.W. A Novel Process for Asparagus Polyphenols Utilization by Ultrasound Assisted Adsorption and Desorption Using Resins. Ultrason. Sonochem. 2020, 63, 104920. [Google Scholar] [CrossRef] [PubMed]
- Seif, Z.N.; Zeppa, G. Recovery and Concentration of Polyphenols from Roasted Hazelnut Skin Extract Using Macroporous Resins. Foods 2022, 11, 1969. [Google Scholar] [CrossRef]
- Zheng, X.Z.; Zhang, Z.G.; Jin, C.J.; Mu, Y.Q.; Liu, C.H.; Chen, Z.Y.; Liu, H.J.; Lin, Z. Purification Characteristics and Parameters Optimization of Anthocyanin Extracted from Blueberry. Int. J. Agric. Biol. Eng. 2015, 8, 135–144. [Google Scholar]
- Liu, Y.X.; Zhao, Y.H.; Zhuo, Y.; Li, Y.W.; Meng, J.X.; Wang, Y.L.; Li, H.H. Ultrasound-Assisted Extraction of Anthocyanins from Malus ‘Royalty’ Fruits: Optimization, Separation, and Antitumor Activity. Molecules 2022, 27, 4299. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, A.K.; Gu, L. Adsorption/desorption Characteristics and Separation of Anthocyanins from Muscadine (Vitis Rotundifolia) Juice Pomace by Use of Macroporous Adsorbent Resins. J. Agric. Food Chem. 2013, 61, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.Y.; Zhao, M.M.; Lin, L.Z. Adsorption and Desorption Characteristics of Adlay Bran Free Phenolics on Macroporous Resins. Food Chem. 2016, 194, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.Z.; Zhao, H.F.; Dong, Y.; Yang, B.; Zhao, M.M. Macroporous Resin Purification Behavior of Phenolics and Rosmarinic Acid from Rabdosia serra (MAXIM.) HARA Leaf. Food Chem. 2012, 130, 417–424. [Google Scholar] [CrossRef]
- Chen, S.D.; Qiao, J.J.; Lu, G.Y.; Xie, G.Y.; Qin, M.J. Research Progress on Separation and Purification of Flavonoids by Macroporous Resin. Guangzhou Chem. Ind. 2021, 49, 9–13. [Google Scholar]
- Xu, Z.Y.; Zhang, Q.X.; Chen, J.L.; Wang, L.S.; Anderson, G.K. Adsorption of Napthalene Derivatives on Hypercrosslinked Polymeric Adsorbents. Chemosphere 1999, 38, 2003–2011. [Google Scholar] [CrossRef]
- Wang, J.L.; Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, J.L. Comparison of Linearization Methods for Modeling the Langmuir Adsorption Isotherm. J. Mol. Liq. 2019, 296, 111850. [Google Scholar] [CrossRef]
- Rudzinski, W.; Plazinski, W. Kinetics of Dyes Adsorption at the Solid-Solution Interfaces: A Theoretical Description Based on the Two-Step Kinetic Model. Environ. Sci. Technol. 2008, 42, 2470–2475. [Google Scholar] [CrossRef] [PubMed]
- Duran, C.; Ozdes, D.; Gundogdu, A.; Senturk, H.B. Kinetics and Isotherm Analysis of Basic Dyes Adsorption onto Almond Shell (Prunus dulcis) as a Low Cost Adsorbent. J. Chem. Eng. Data 2011, 56, 2136–2147. [Google Scholar] [CrossRef]
- Wang, X.Y.; Su, J.Q.; Chu, X.L.; Zhang, X.Y.; Kan, Q.B.; Liu, R.X.; Fu, X. Adsorption and Desorption Characteristics of Total Flavonoids from Acanthopanax senticosus on Macroporous Adsorption Resins. Molecules 2021, 26, 4162. [Google Scholar] [CrossRef]
- Si, C.Y.; Hu, H.; Cheng, J.R.; Tian, M.M.; Dai, S.Y.; Li, R.X.; Fan, R.F.; Yang, C.L.; Pi, Z.P.; Xu, K.J. Adsorption Behavior of D-101 Macroporous Resins for Phloridzin. Ion Exch. Adsorpt. 2020, 36, 541–553. [Google Scholar]
- Iqbal, M.; Datta, D. Improved Sono-assisted Adsorption of a Binary Dye Mixture Using Bis (2-ethylhexyl) Phosphate Modified Amberlite XAD-2 Resin and Response Optimization. J. Indian Chem. Soc. 2022, 99, 100740. [Google Scholar] [CrossRef]
- Chang, X.L.; Wang, D.; Chen, B.Y.; Feng, Y.M.; Wen, S.H.; Zhan, P.Y. Adsorption and Desorption Properties of Macroporous Resins for Anthocyanins from the Calyx Extract of Roselle (Hibiscus sabdariffa L.). J. Agric. Food Chem. 2012, 60, 2368–2376. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.M.; Wang, H.; Huang, X.J.; Xia, S.K.; Chen, C.H.; Nie, Q.X.; Nie, S.P. Efficient Enrichment of Total Flavonoids from Lale (Brassica oleracea L. var. acephala L.) Extracts by NKA-9 Resin and Antioxidant Activities of Flavonoids Extract in vitro. Food Chem. 2022, 374, 131508. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.B.; Li, Y. Enrichment of Rosmarinic Acid from Salvia Przewalskii Maxim. Leaves Using Macroporous Resin: Adsorption/desorption Behavior, Process Optimization Followed by Scale-up. Ind. Crop. Prod. 2023, 191, 115931. [Google Scholar] [CrossRef]
Trade Name | Specific Surface Area (m2/g) | Particle Size (mm) | Mean Pore Size (nm) | Polarity Type |
---|---|---|---|---|
HPD100 | 400–600 | 0.30–1.20 | 10.0–12.0 | Non-polarity |
D101 | 650–700 | 0.30–1.25 | 8.5–9.0 | Non-polarity |
DM130 | 500–550 | 0.30–1.25 | 9.0–10.0 | Weak polarity |
AB-8 | 480–520 | 0.30–1.25 | 13.0–14.0 | Weak polarity |
NKA-9 | 250–290 | 0.30–1.25 | 15.5–16.5 | Polarity |
Resins | Dynamic Equation | Transforming Formulas | R2 | Dynamic Parameters |
---|---|---|---|---|
HPD100 | Ln(Qe − Qt) = −k1t + lnQe | y = 235.00760 × (1 − exp(−0.02849 × x)) | 0.89576 | k1 = 0.02849 k2 = 0.00020 |
y = 0.07866 + 0.00397x | 0.99994 | |||
D101 | Ln(Qe − Qt) = −k1t + lnQe | y = 207.69370 × (1 − exp(−0.02315 × x)) | 0.87176 | k1 = 0.02315 k2 = 0.00020 |
y = 0.13072 + 0.00436x | 0.99947 | |||
DM130 | Ln(Qe − Qt) = −k1t + lnQe | y = 172.60070 × (1 − exp(−0.03116 × x)) | 0.93574 | k1 = 0.03116 k2 = 0.00030 |
y = 0.09759 + 0.00543x | 0.99956 | |||
AB-8 | Ln(Qe − Qt) = −k1t + lnQe | y = 250.03747 × (1 − exp(−0.01195 × x)) | 0.99766 | k1 = 0.01195 k2 = 0.00006 |
y=0.20347+0.00357x | 0.99633 | |||
NKA-9 | Ln(Qe − Qt) = −k1t + lnQe | y = 233.43601 × (1 − exp(−0.02133 × x)) | 0.99423 | k1 = 0.02133 k2 = 0.00019 |
y = 0.08610 + 0.00405x | 0.99909 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Gao, Y.; Zhang, J.; Meng, X.; Du, Q.; Yin, J. Adsorption/Desorption on Macroporous Resins of Okicamelliaside in the Extract of Camellia nitidissima Chi Leaves. Horticulturae 2023, 9, 166. https://doi.org/10.3390/horticulturae9020166
Zheng H, Gao Y, Zhang J, Meng X, Du Q, Yin J. Adsorption/Desorption on Macroporous Resins of Okicamelliaside in the Extract of Camellia nitidissima Chi Leaves. Horticulturae. 2023; 9(2):166. https://doi.org/10.3390/horticulturae9020166
Chicago/Turabian StyleZheng, Hanyu, Ying Gao, Jianyong Zhang, Xin Meng, Qizhen Du, and Junfeng Yin. 2023. "Adsorption/Desorption on Macroporous Resins of Okicamelliaside in the Extract of Camellia nitidissima Chi Leaves" Horticulturae 9, no. 2: 166. https://doi.org/10.3390/horticulturae9020166
APA StyleZheng, H., Gao, Y., Zhang, J., Meng, X., Du, Q., & Yin, J. (2023). Adsorption/Desorption on Macroporous Resins of Okicamelliaside in the Extract of Camellia nitidissima Chi Leaves. Horticulturae, 9(2), 166. https://doi.org/10.3390/horticulturae9020166