A 15N-Tracing Study to Explore the Coupling Effects of Biochar and Nitrogen Fertilizer on Tomato Growth, Yield, Nitrogen Uptake and Utilization, and the Rhizosphere Soil Environment under Root-Divide Alternative Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Materials
2.3. Experimental Design
2.4. Indices and Measurement Methods
2.4.1. Plant Growth Indicators
2.4.2. Fruits’ Yield and Quality
2.4.3. Nitrogen Content
2.4.4. Nitrogen Utilization Indicators
2.4.5. Soil Nutrient Content
2.4.6. Date Analysis
3. Results
3.1. Coupling Effect of Biochar and Nitrogen Fertilizer Application on Tomato Growth and Yield
3.2. Coupling Effect of Biochar and Nitrogen Fertilizer on Nitrogen Derived from Fertilizer Applied to Various Organs of Tomatoes
3.3. Coupling Effect of Biochar and Nitrogen Fertilizer on the Nitrogen Accumulation of Tomatoes
3.4. Coupling Effect of Biochar and Nitrogen Fertilizer on the Quality of Tomatoes
3.5. Coupling Effect of Biochar and Nitrogen Fertilizer on the Rhizosphere Soil Environment of Tomatoes
3.6. Effect of Nitrogen Uptake and Soil Environment on Yield and Quality of Tomatoes
3.7. Evaluating the Comprehensive Benefits of Tomatoes Using the TOPSIS Method
4. Discussion
5. Conclusions
- (1)
- Biochar application promoted the growth and dry matter mass accumulation of tomatoes and increased the yield and WUE of tomatoes.
- (2)
- Under the biochar and nitrogen fertilizer coupling application mode, the nitrogen derived from the fertilizer was concentrated in the leaves and fruits of the tomatoes. Biochar application rates increased the uptake of 15N, the nitrogen derived from soil, the TN, and the proportion of fertilizer nitrogen, and increased the utilization rate and recovery rate of nitrogen fertilizer, while decreasing the nitrogen derived from fertilizer.
- (3)
- Biochar application increased the contents of the soil organic matter, organic carbon, and TN.
- (4)
- The uptake of nitrogen derived from soil and the TN, organic matter, organic carbon, and total nitrogen of the soil had a direct effect on the tomato yield, with significant correlations. B2N2 treatment with biochar rates of 6 t/hm2 and a N level of 300 kg/hm2 under split-root alternate irrigation are recommended.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lutes, K.; Oelbermann, M.; Thevathasan, N.V.; Gordon, A.M. Effect of nitrogen fertilizer on greenhouse gas emissions in two willow clones (Salix miyabeana and S. dasyclados) in southern Ontario, Canada. Agrofor. Syst. 2016, 90, 785–796. [Google Scholar] [CrossRef]
- Kahrl, F.; Li, Y.; Su, Y.; Tennigkeit, T.; Wilkes, A.; Xu, J. Greenhouse gas emissions from nitrogen fertilizer use in China. Environ. Sci. Policy 2010, 13, 688–694. [Google Scholar] [CrossRef]
- Bradbury, N.J.; Whitmore, A.P.; Hart, P.B.S.; Jenkinson, D.S. Modelling the fate of nitrogen in crop and soil in the years following application of 15N-labelled fertilizer to winter wheat. J. Agric. Sci. 1993, 121, 363–379. [Google Scholar] [CrossRef]
- Tian, X.; Li, Z.; Wang, L.; Wang, Y.; Li, B.; Duan, M.; Liu, B. Effects of biochar combined with nitrogen fertilizer reduction on rapeseed yield and soil aggregate stability in upland of purple soils. Int. J. Environ. Res. Public Health 2020, 17, 279. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; You, L.; Amini, M.; Obersteiner, M.; Herrero, M.; Zehnder, A.J.; Yang, H. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. USA 2010, 107, 8035–8040. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Kang, S.; Li, F.; Du, T. Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China. Agric. Water Manag. 2017, 179, 184–192. [Google Scholar] [CrossRef]
- Shu, L.Z.; Liu, R.; Min, W.; Wang, Y.S.; Yu, H.-M.; Zhu, P.F.; Zhu, J.R. Regulation of soil water threshold on tomato plant growth and fruit quality under alternate partial root-zone drip irrigation. Agric. Water Manag. 2020, 238, 1–8. [Google Scholar] [CrossRef]
- Mossad, A.; Farina, V.; Lo Bianco, R. Fruit Yield and Quality of ‘Valencia’ Orange Trees under Long-Term Partial Rootzone Drying. Agronomy 2020, 10, 164. [Google Scholar] [CrossRef]
- Liu, F.; Shahnazari, A.; Andersen, M.N.; Jacobsen, S.E.; Jensen, C.R. Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. J. Exp. Bot. 2006, 57, 3727–3735. [Google Scholar] [CrossRef]
- Wei, Z.; Du, T.; Li, X.; Fang, L.; Liu, F. Interactive effects of CO2 concentration elevation and nitrogen fertilization on water and nitrogen use efficiency of tomato grown under reduced irrigation regimes. Agric. Water Manag. 2018, 202, 174–182. [Google Scholar] [CrossRef]
- Shao, G.-C.; Liu, N.; Zhang, Z.-Y.; Yu, S.-E.; Chen, C.-R. Growth, yield and water use efficiency response of greenhouse-grown hot pepper under Time-Space deficit irrigation. Sci. Hortic. 2010, 126, 172–179. [Google Scholar]
- Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.H.; Hook, J.; Van Zwieten, L.; Kimber, S.; Cowie, A.; Singh, B.P.; et al. An investigation into the reactions of biochar in soil. Soil Res. 2010, 48, 501–515. [Google Scholar] [CrossRef]
- Lin, M.; Li, F.; Li, X.; Rong, X.; Oh, K. Biochar-clay, biochar-microorganism and biochar-enzyme composites for environmental remediation: A review. Environ. Chem. Lett. 2023, 21, 1837–1862. [Google Scholar] [CrossRef]
- Li, Q.; Li, H.; Fu, Q.; Li, T.; Liu, D.; Hou, R.; Cui, S.; Ji, Y.; Cai, Y. Effects of different biochar application methods on soybean growth indicator variability in a seasonally frozen soil area. Catena 2020, 185, 104307. [Google Scholar] [CrossRef]
- Du, B.; Cao, H.; Pan, X.; Zhang, Z. Effects of biochar on the tomato yield and quality in heavy loam soil in greenhouse under deficit irrigationin. Agric. Res. Arid. Areas 2020, 38, 136–142. [Google Scholar]
- Guo, L.; Bornø, M.L.; Niu, W.; Liu, F. Biochar amendment improves shoot biomass of tomato seedlings and sustains water relations and leaf gas exchange rates under different irrigation and nitrogen regimes. Agric. Water Manag. 2021, 245, 106580. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Li, G.; Andersen, M.N.; Liu, F. Biochar enhances yield and quality of tomato under reduced irrigation. Agric. Water Manag. 2014, 138, 37–44. [Google Scholar] [CrossRef]
- Han, J.; Feng, T.; Zhu, Z.; Li, P.; Zhang, A.; Tong, Y.; Wang, X. Evaluating the effects of fertilization treatments on the nitrogen use efficiency of apple trees using allometric model and 15N tracer. Trans. Chin. Soc. Agric. Eng. 2021, 37, 96–104. [Google Scholar]
- Li, X.; Wang, Y.; Feng, G.; Xu, Z.; Meng, F.; Gao, Q. Differential fertilizer nitrogen fates in maize cropping system among three soil textures based on 15N. Field Crop. Res. 2023, 291, 108780. [Google Scholar] [CrossRef]
- Guo, R.; Miao, W.; Fan, C.; Li, X.; Shi, X.; Li, F.; Qin, W. Exploring optimal nitrogen management for high yielding maize in arid areas via 15N-labeled technique. Geoderma 2021, 382, 114711. [Google Scholar] [CrossRef]
- Zheng, J.; Qi, X.Y.; Yang, S.H.; Shi, C.; Feng, Z.J. Effects and evaluation of biogas slurry/water integrated irrigation technology on the growth, yield and quality of tomatoes. Int. J. Agric. Biol. Eng. 2022, 15, 123–131. [Google Scholar] [CrossRef]
- Zheng, J.; Li, X.; Zhang, Y.; Zhang, P.; Wang, J. Effects of Digestate Application on Tomato Growth, Yield, Quality, and Soil Nitrogen Content via Integrated Hole Irrigation. J. Biobased Mater. Bioenergy 2019, 13, 620–634. [Google Scholar] [CrossRef]
- Pier, J.W.; Doerge, T.A. Concurrent evaluation of agronomic, economic, and environmental aspects of trickleirrigated watermelon production. J. Environ. Qual. 1995, 24, 79–86. [Google Scholar] [CrossRef]
- Shi, X.; Song, X.; Yang, J.; Zhao, Y.; Yuan, Z.; Zhao, G.; Abbott, L.K.; Zhang, F.; Li, F.M. Yield benefits from joint application of manure and inorganic fertilizer in a long-term field pea, wheat and potato crop rotation. Field Crop. Res. 2023, 294, 108873. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, P.; Cui, N.; Wang, Y.; Wang, J.; Qi, X. Experimental Study on the Optimal Threshold of Water and Nitrogen Quantities for Tomato Growth under the Irrigation with Biogas Slurry in Greenhouse. Appl. Eng. Agric. 2021, 37, 333–342. [Google Scholar] [CrossRef]
- Jovanovic, Z.; Stikic, R. Partial root-zone drying technique: From water saving to the improvement of a fruit quality. Front. Sustain. Food Syst. 2018, 1, 3. [Google Scholar] [CrossRef]
- Puértolas, J.; Dodd, I.C. Evaluating soil evaporation and transpiration responses to alternate partial rootzone drying to minimise water losses. Plant Soil 2022, 480, 473–489. [Google Scholar] [CrossRef]
- Guo, L.; Yu, H.; Kharbach, M.; Zhang, W.; Wang, J.; Niu, W. Biochar improves soil-tomato plant, tomato production, and economic benefits under reduced nitrogen application in northwestern China. Plants 2021, 10, 759. [Google Scholar] [CrossRef]
- Sha, H.; Sun, Q.; Li, J.; Guo, X.; Chen, R. Effect of N Fertilizer on Growth, Yield, Quality of Tomato and Optimum Application Rate of N in Greenhouse. Acta Agric. Boreali-Occident. Sin. 2010, 19, 104–108. [Google Scholar]
- Zhang, M.; Hou, R.; Li, T.; Fu, Q.; Zhang, S.; Su, A.; Xue, P.; Yang, X. Study of soil nitrogen cycling processes based on the 15N isotope tracking technique in the black soil areas. J. Clean. Prod. 2022, 375, 134173. [Google Scholar] [CrossRef]
- Liu, R.; Yang, Y.; Wang, Y.S.; Wang, X.C.; Rengel, Z.; Zhang, W.J.; Shu, L.Z. Alternate partial root-zone drip irrigation with nitrogen fertigation promoted tomato growth, water and fertilizer-nitrogen use efficiency. Agric. Water Manag. 2020, 233, 106049. [Google Scholar] [CrossRef]
- Shang, X.; Hung, C.Y.; Husk, B.; Orsat, V.; Whalen, J.K. Wood-based biochar for small fruit production in southern Quebec, Canada. Can. J. Soil Sci. 2021, 102, 89–96. [Google Scholar] [CrossRef]
- Ghafari, H.; Hassanpour, H.; Jafari, M.; Besharat, S. Effect of partial root zone irrigation on physiology, water use efficiency, fruit yield, phenolic compounds and antioxidant capacity of apple. Arch. Agron. Soil Sci. 2021, 67, 1521–1538. [Google Scholar] [CrossRef]
- Fu, G.; Shen, Z.-X. Response of alpine soils to nitrogen addition on the Tibetan Plateau: A meta-analysis. Appl. Soil Ecol. 2017, 114, 99–104. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Zhao, J.X.; Huang, X.L. Effects of graphene-modified biochar on soil enzyme activity and microbial biomass carbon nitrogen phosphorus. Fresenius Environ. Bull. 2022, 31, 9109–9117. [Google Scholar]
- Zhou, H.; Wang, Y.; Wang, J.; Liu, H.; Li, H.; Guo, J. Effects of Long-Term Organic–Inorganic Nitrogen Application on Maize Yield and Nitrogen-Containing Gas Emission. Agronomy 2023, 13, 848. [Google Scholar] [CrossRef]
- Liang, C.; Yu, S.; Zhang, H.; Wang, Z.; Li, F. Economic Evaluation of Drought Resistance Measures for Maize Seed Production Based on TOPSIS Model and Combination Weighting Optimization. Water 2022, 14, 3262. [Google Scholar] [CrossRef]
- Yu, N.; Wu, C.; Zhang, Y.; Zou, H.; Fan, Q.; Zhang, Y. Application of TOPSIS model method based on entropy weight coupling effect of irrigation and fertilization of greenhouse to evaluate Tomato. J. Shenyang Agric. Univ. 2012, 43, 456–460. [Google Scholar]
- Wang, F.; Kang, S.; Du, T.; Li, F.; Qiu, R. Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agric. Water Manag. 2011, 98, 1228–1238. [Google Scholar] [CrossRef]
Season | pH | Total Nitrogen (g/kg) | Organic Matter (g/kg) | Organic Carbon (g/kg) | Bulk Density (g/cm3) | Water-Holding Capacity of Soil (%) |
---|---|---|---|---|---|---|
2021S | 7.84 | 1.061 | 16.12 | 9.503 | 1.35 | 25.3 |
2021A | 7.99 | 1.034 | 16.03 | 9.411 | 1.36 | 24.8 |
PH | Bulk Density (g/cm3) | Specific Surface Area (m2/g) | Total Porosity (%) | Cation Exchange Capacity (mol/kg) | Total Nitrogen (g/kg) | Fixed Carbon (g/kg) |
---|---|---|---|---|---|---|
10.23 | 0.19 | 9 | 67.03 | 60.8 | 13.17 | 400 |
Treatments | Biochar Application Rates (t/hm2) | Nitrogen Application Rates (kg/hm2) |
---|---|---|
B0N1 | 0 | 150 |
B0N2 | 0 | 300 |
B0N3 | 0 | 450 |
B1N1 | 3 | 150 |
B1N2 | 3 | 300 |
B1N3 | 3 | 450 |
B2N1 | 6 | 150 |
B2N2 | 6 | 300 |
B2N3 | 6 | 450 |
Symbol | Representative Meaning | Unit |
---|---|---|
15N0 | Abundance of 15N in natural | % |
15N1 | Abundance of 15N in sample | % |
15N2 | Abundance of 15N in labeled urea | % |
Ndff | Nitrogen derived from fertilizer | % |
Ndfs | Nitrogen derived from soil | % |
15NUO | 15N uptake capacity of each organ | g/plant |
K | Mass ratio of TN in each organ | / |
15NU | 15N uptake capacity | g/plant |
15NUR, 15NUS, 15NUL, 15NUF | 15N uptake capacity by roots, stems, leaves, fruits | g/plant |
Ndfso | Absorbed capacity of nitrogen derived from soil by tomato organs | g/plant |
Ndfsa | Capacity of nitrogen derived from soil absorbed | g/plant |
NdfsaR, NdfsaS, NdfsaL, NdfsaF | Capacity of nitrogen derived from soil absorbed by roots, stems, leaves, fruits | g/plant |
15NUr | 15N utilization rate of tomato | % |
15NUR | 15N uptake rate | % |
TN | Total nitrogen content | g/plant |
15NRR | 15N recovery rate of tomato | % |
15NSR | Residue of soil 15N | g/plant |
Treatment | 2021 S | 2021 A | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Plant Height (cm) | Stem Diameter (mm) | Dry Matter Mass (g/plant) | Yield (kg) | Irrigation Water-Use Efficiency (kg/m3) | Plant Height (cm) | Stem Diameter (mm) | Dry Matter Mass (g/plant) | Yield (kg) | Irrigation Water-Use Efficiency (kg/m3) | |
B0 N1 | 76.8 f | 8.32 g | 114.52 g | 1.95 g | 63.37 g | 70.2 f | 7.95 g | 111.54 f | 1.69 f | 63.68 g |
B0 N2 | 77.6 e | 8.54 fg | 122.42 e | 2.20 de | 71.49 d | 71.6 e | 8.12 f | 120.56 de | 1.94 d | 73.10 c |
B0 N3 | 80.6 d | 8.75 de | 116.75 fg | 2.06 f | 66.94 f | 72.9 d | 8.41 e | 116.15 e | 1.79 ef | 67.45 f |
B1 N1 | 78.8 f | 8.81 ef | 118.73 f | 2.14 e | 69.54 e | 73.6 d | 8.57 d | 117.93 e | 1.83 e | 68.95 e |
B1 N2 | 83.5 b | 9.13 bc | 133.26 b | 2.43 c | 78.32 c | 74.4 d | 8.62 d | 131.72 c | 2.11 bc | 79.50 bc |
B1 N3 | 83.9 b | 9.19 bc | 128.25 c | 2.37 c | 77.02 c | 75.9 bc | 8.79 b | 125.93 d | 2.06 c | 77.62 bc |
B2 N1 | 82.4 c | 8.92 cd | 123.35 d | 2.23 de | 72.47 d | 75.2 c | 8.71 c | 123.67 d | 1.92 d | 72.34 d |
B2 N2 | 84.9 a | 9.36 ab | 144.96 a | 2.61 a | 84.82 a | 76.6 b | 8.85 b | 139.95 a | 2.29 a | 86.28 a |
B2 N3 | 85.8 a | 9.58 a | 136.01 b | 2.49 b | 80.92 b | 78.1 a | 9.03 a | 135.16 b | 2.15 b | 81.01 b |
Season | Treatment | 15 N Uptake Capacity (g/plant) | Uptake of Nitrogen Derived from Soil (g/plant) | TN Uptake (g/plant) | 15 N TN Uptake (%) | 15 N Utilization Rate (%) | 15 N Recovery Rate (%) |
---|---|---|---|---|---|---|---|
2021 S | B0 N1 | 298.2 g | 1.918 h | 2.216 h | 13.45 e | 28.13 b | 60.37 f |
B0 N2 | 442.3 e | 2.511 f | 2.953 f | 14.97 cb | 20.86 d | 52.17 g | |
B0 N3 | 534.3 d | 2.739 e | 3.273 e | 16.32 a | 16.80 f | 49.74 h | |
B1 N1 | 325.6 f | 2.268 g | 2.594 g | 12.57 f | 30.71 a | 68.45 c | |
B1 N2 | 530.6 d | 3.134 c | 3.665 c | 14.49 dc | 25.03 c | 63.76 d | |
B1 N3 | 614.6 c | 3.375 b | 3.992 b | 15.41 b | 19.33 e | 61.73 e | |
B2 N1 | 337.5 f | 2.924 d | 3.270 d | 10.58 g | 31.84 a | 75.53 a | |
B2 N2 | 650.4 b | 3.986 a | 4.636 a | 14.02 d | 30.68 a | 72.71 b | |
B2 N3 | 699.2 a | 4.028 a | 4.727 a | 14.79 c | 21.99 d | 69.46 c | |
2021 A | B0 N1 | 286.5 h | 1.888 h | 2.175 h | 13.18 d | 27.03 c | 56.87 d |
B0 N2 | 403.7 e | 2.352 f | 2.755 f | 14.65 b | 19.04 f | 45.99 g | |
B0 N3 | 495.1 d | 2.547 e | 3.042 e | 16.28 a | 15.57 h | 42.42 h | |
B1 N1 | 320.0 g | 2.286 g | 2.606 g | 12.28 e | 30.19 a | 64.38 b | |
B1 N2 | 473.7 d | 3.021 c | 3.495 c | 13.56 c | 22.35 d | 54.31 e | |
B1 N3 | 576.9 c | 3.271 b | 3.848 b | 14.99 b | 18.14 g | 52.08 f | |
B2 N1 | 348.5 f | 2.859 d | 3.208 d | 10.87 f | 30.88 a | 72.66 a | |
B2 N2 | 614.1 b | 4.079 a | 4.693 a | 13.09 cd | 28.97 b | 64.39 b | |
B2 N3 | 662.2 a | 4.033 a | 4.695 a | 14.10 bc | 20.82 e | 57.61 c |
Season | Treatment | Flavor Quality | Nutritional Quality | |||||
---|---|---|---|---|---|---|---|---|
Soluble Sugar (%) | Titration Acid (%) | Sugar/Acid Ratio | Solvable Solids (%) | Vitamin C (mg·100/g) | Soluble Protein (mg/g) | Lycopene (mg/kg) | ||
B0 N1 | 3.611 f | 0.356 g | 10.143 d | 5.47 f | 35.256 h | 0.936 g | 28.34 h | |
B0 N2 | 3.694 e | 0.359 fg | 10.290 c | 5.68 d | 35.797 g | 1.043 e | 29.15 g | |
B0 N3 | 3.602 f | 0.362 f | 9.950 f | 5.36 g | 35.133 i | 0.885 h | 28.73 g | |
B1 N1 | 3.759 d | 0.373 d | 10.078 e | 5.92 b | 37.082 e | 1.052 de | 31.52 e | |
2021 S | B1 N2 | 3.857 c | 0.399 b | 9.667 h | 6.19 a | 37.158 d | 1.107 c | 37.63 a |
B1 N3 | 3.715 de | 0.406 a | 9.150 i | 5.76 c | 36.141 f | 0.984 f | 35.87 c | |
B2 N1 | 3.943 b | 0.368 e | 10.715 b | 5.71 cd | 38.065 b | 1.124 b | 30.55 f | |
B2 N2 | 4.162 a | 0.372 de | 11.188 a | 5.86 b | 38.373 a | 1.165 a | 36.94 b | |
B2 N3 | 3.721 de | 0.381 c | 9.766 g | 5.59 e | 37.734 c | 1.061 d | 33.26 d | |
B0 N1 | 3.583 de | 0.361 f | 9.925 b | 5.38 e | 34.796 e | 0.794 e | 30.35 h | |
B0 N2 | 3.609 d | 0.372 e | 9.702 c | 5.46 e | 34.929 e | 0.805 de | 32.66 f | |
B0 N3 | 3.499 e | 0.379 e | 9.232 f | 5.26 f | 33.865 f | 0.771 f | 31.43 g | |
B1 N1 | 3.716 c | 0.395 cd | 9.408 e | 5.88 b | 35.176 d | 0.887 c | 34.74 d | |
2021 A | B1 N2 | 3.867 b | 0.403 c | 9.596 d | 6.08 a | 36.124 c | 1.016 b | 37.51 a |
B1 N3 | 3.665 cd | 0.425 a | 8.624 h | 5.57 d | 35.063 d | 0.813 d | 36.97 b | |
B2 N1 | 3.851 b | 0.383 d | 10.055 b | 5.64 c | 36.635 b | 0.964 c | 33.27 e | |
B2 N2 | 3.926 a | 0.388 d | 10.119 a | 5.81 b | 37.918 a | 1.085 a | 36.59 b | |
B2 N3 | 3.684 c | 0.412 b | 8.942 g | 5.51 d | 35.883 c | 0.921 c | 35.76 c |
Treatment | 2021 S | 2021 A | ||||||
---|---|---|---|---|---|---|---|---|
Organic Matter (g/kg) | Organic Carbon (g/kg) | TN (g/kg) | pH | Organic Matter (g/kg) | Organic Carbon (g/kg) | TN (g/kg) | pH | |
B0 N1 | 18.46 e | 10.688 f | 1.305 f | 7.76 bc | 18.31 f | 10.616 f | 1.311 f | 7.75 d |
B0 N2 | 18.59 d | 10.775 e | 1.431 ef | 7.71 cd | 18.51 e | 10.684 ef | 1.422 d | 7.69 ef |
B0 N3 | 18.61 d | 10.794 e | 1.440 e | 7.72 c | 18.57 e | 10.691 e | 1.431 b | 7.67 f |
B1 N1 | 18.91 c | 10.895 d | 1.434 d | 7.78 cd | 18.86 d | 10.882 d | 1.339 e | 7.79 bc |
B1 N2 | 19.04 c | 10.994 c | 1.465 c | 7.76 de | 18.98 c | 10.974 c | 1.464 c | 7.76 cd |
B1 N3 | 19.09 c | 11.025 c | 1.533 b | 7.74 ef | 19.05 c | 11.015 b | 1.485 b | 7.71 e |
B2 N1 | 19.45 b | 11.203 b | 1.447 d | 7.82 a | 19.04 cd | 11.027 b | 1.450 c | 7.85 a |
B2 N2 | 19.67 a | 11.394 a | 1.472 c | 7.79 ab | 19.38 b | 11.258 a | 1.469 bc | 7.81 b |
B2 N3 | 19.71 a | 11.442 a | 1.604 a | 7.78 b | 19.46 a | 11.264 a | 1.545 a | 7.78 c |
Layer | Judgment Matrix | Partial Weight | Final Weight | Parametric Test | ||||
---|---|---|---|---|---|---|---|---|
B-P | Index | B1 | B2 | B3 | B4 | γi | μi | CR = 0.004 λmax = 4.014 |
B1 | 1.000 | 1.301 | 0.802 | 1.021 | 0.253 | 0.253 | ||
B2 | 0.769 | 1.000 | 0.830 | 1.109 | 0.229 | 0.229 | ||
B3 | 1.247 | 1.205 | 1.000 | 1.224 | 0.289 | 0.289 | ||
B4 | 0.979 | 0.902 | 0.817 | 1.000 | 0.229 | 0.229 | ||
B-P | Index | P1 | P2 | P3 | P4 | γi | μi | CR = 0.014 λmax = 4.049 |
P1 | 1.000 | 1.514 | 1.496 | 1.289 | 0.320 | 0.081 | ||
P2 | 0.661 | 1.000 | 1.502 | 1.223 | 0.258 | 0.065 | ||
P3 | 0.668 | 0.666 | 1.000 | 1.351 | 0.211 | 0.053 | ||
P4 | 0.776 | 0.818 | 0.740 | 1.000 | 0.024 | 0.052 | ||
B-P | Index | P5 | P6 | P7 | γi | μi | CR = 0.000 λmax = 3.000 | |
P5 | 1.000 | 1.042 | 0.995 | 0.337 | 0.077 | |||
P6 | 0.960 | 1.000 | 0.947 | 0.323 | 0.074 | |||
P7 | 1.005 | 1.056 | 1.000 | 0.340 | 0.078 | |||
B-P | Index | P8 | P9 | P10 | γi | μi | CR = 0.000 λmax = 3.000 | |
P8 | 1.000 | 1.021 | 1.135 | 0.350 | 0.101 | |||
P9 | 0.979 | 1.000 | 1.104 | 0.342 | 0.099 | |||
P10 | 0.881 | 0.906 | 1.000 | 0.309 | 0.089 | |||
B-P | Index | P11 | P12 | γi | μi | CR = 0.000 λmax = 2.000 | ||
P11 | 1.000 | 1.045 | 0.511 | 0.117 | ||||
P12 | 0.957 | 1.000 | 0.489 | 0.112 |
Index | Soluble Sugar | Titration Acid | Sugar/Acid Ratio | Soluble Solids | Vitamin C | Soluble Protein |
2021S | 0.0119 | 0.0116 | 0.0187 | 0.0102 | 0.0059 | 0.0419 |
2021A | 0.0067 | 0.0118 | 0.0130 | 0.0096 | 0.0050 | 0.0664 |
Index | Lycopene | 15N Utilization Rate | 15N Recovery Rate | TN Uptake | Yield | IWUE |
2021S | 0.0891 | 0.2735 | 0.1059 | 0.3355 | 0.0479 | 0.0480 |
2021A | 0.0250 | 0.2888 | 0.1253 | 0.3012 | 0.0737 | 0.0738 |
Index | Soluble Sugar | Titration Acid | Sugar/Acid Ratio | Soluble Solids | Vitamin C | Soluble Protein |
2021S | 0.0097 | 0.0074 | 0.0101 | 0.0053 | 0.0046 | 0.0312 |
2021A | 0.0054 | 0.0077 | 0.0069 | 0.0049 | 0.0038 | 0.0489 |
Index | Lycopene | 15N Utilization Rate | 15N Recovery Rate | TN Uptake | Yield | IWUE |
2021S | 0.0697 | 0.2785 | 0.1053 | 0.0431 | 0.0565 | 0.3785 |
2021A | 0.0194 | 0.2913 | 0.1234 | 0.0656 | 0.0860 | 0.3366 |
Time | Treatment | D+ | D- | Si | Rank |
---|---|---|---|---|---|
2021S | B0N1 | 0.0318 | 0.0239 | 0.4290 | 7 |
B0N2 | 0.0372 | 0.0127 | 0.2548 | 8 | |
B0N3 | 0.0424 | 0.0139 | 0.2461 | 9 | |
B1N1 | 0.0246 | 0.0353 | 0.5898 | 4 | |
B1N2 | 0.0202 | 0.0303 | 0.6003 | 3 | |
B1N3 | 0.0332 | 0.0272 | 0.4508 | 6 | |
B2N1 | 0.0219 | 0.0397 | 0.6446 | 2 | |
B2N2 | 0.0043 | 0.0455 | 0.9137 | 1 | |
B2N3 | 0.0242 | 0.0314 | 0.5642 | 5 | |
2021A | B0N1 | 0.0539 | 0.0305 | 0.3613 | 7 |
B0N2 | 0.0586 | 0.0184 | 0.2386 | 8 | |
B0N3 | 0.0561 | 0.0144 | 0.2045 | 9 | |
B1N1 | 0.0426 | 0.0408 | 0.4891 | 4 | |
B1N2 | 0.0373 | 0.0345 | 0.4807 | 5 | |
B1N3 | 0.0436 | 0.0348 | 0.4437 | 6 | |
B2N1 | 0.0301 | 0.0525 | 0.6354 | 2 | |
B2N2 | 0.0115 | 0.0630 | 0.8455 | 1 | |
B2N3 | 0.0324 | 0.0526 | 0.6188 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Zheng, J.; Wang, Y.; Shi, C.; Wu, Y. A 15N-Tracing Study to Explore the Coupling Effects of Biochar and Nitrogen Fertilizer on Tomato Growth, Yield, Nitrogen Uptake and Utilization, and the Rhizosphere Soil Environment under Root-Divide Alternative Irrigation. Horticulturae 2023, 9, 1320. https://doi.org/10.3390/horticulturae9121320
Zhang K, Zheng J, Wang Y, Shi C, Wu Y. A 15N-Tracing Study to Explore the Coupling Effects of Biochar and Nitrogen Fertilizer on Tomato Growth, Yield, Nitrogen Uptake and Utilization, and the Rhizosphere Soil Environment under Root-Divide Alternative Irrigation. Horticulturae. 2023; 9(12):1320. https://doi.org/10.3390/horticulturae9121320
Chicago/Turabian StyleZhang, Ke, Jian Zheng, Yan Wang, Cong Shi, and You Wu. 2023. "A 15N-Tracing Study to Explore the Coupling Effects of Biochar and Nitrogen Fertilizer on Tomato Growth, Yield, Nitrogen Uptake and Utilization, and the Rhizosphere Soil Environment under Root-Divide Alternative Irrigation" Horticulturae 9, no. 12: 1320. https://doi.org/10.3390/horticulturae9121320
APA StyleZhang, K., Zheng, J., Wang, Y., Shi, C., & Wu, Y. (2023). A 15N-Tracing Study to Explore the Coupling Effects of Biochar and Nitrogen Fertilizer on Tomato Growth, Yield, Nitrogen Uptake and Utilization, and the Rhizosphere Soil Environment under Root-Divide Alternative Irrigation. Horticulturae, 9(12), 1320. https://doi.org/10.3390/horticulturae9121320