Investigation of Fruit Quality and Biochemical Traits of Rosehip (R. canina) Ecotypes in the Aegean Region of Türkiye
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Pomological Parameters
2.3. Physicochemical and Biochemical Measures
- A (absorbance value): (A520 nm–A700 nm) pH 1.0- (A520 nm–A700 nm) pH 4.5.
- MW: Molecular weight of anthocyanin to be taken as base (Cyanidin-3-glucoside molecular weight: 449.2 g/mol).
- Sf: Dilution factor.
- ε: Molar absorption coefficient (Molar absorbance value of cyanidin-3-glucoside: 26,900)
- L: Layer thickness of the spectrophotometer cuvette (cm).
2.4. Statistical Analyses
3. Results
3.1. Pomological Parameters
3.2. Physicochemical and Biochemical Mesasures
3.3. Clustering Analysis
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, P.H. Flora of Türkiye and the East Aegean Islands; Edinburgh University Press: Edinburgh, UK, 1997; Volume 1–9. [Google Scholar]
- Encu, T. Determination of Pomological and Some Biochemical Properties of Rosehip (Rosa canina L.) fruit Taken from Different Locations (Van-Hakkari-Şırnak) of Eastern Anatolia Region. Master’s Thesis, Institute of Science Department of Horticulture, Yuzuncu Yıl University, Van, Turkey, 2015. [Google Scholar]
- Yildiz, U.; Celik, F. Physico-chemical characteristics of native rosehip (Rosa spp.) genetic resources grown in Muradiye (Van) District. Yuz. Yil Univ. J. Inst. Nat. Appl. Sci. 2011, 16, 45–53. [Google Scholar]
- Joublan, J.P.; Rios, D. Rose Culture and industry in Chile. In Proceedings of the I International Rose Hip Conference, Gümüşhane, Turkey, 7–10 September 2004; pp. 65–70. [Google Scholar] [CrossRef]
- Akkus, E. Morphological description of wild rosehips (Rosa spp.) genotypes growing in Hamur (Agri). Master’s Thesis, Institute of Science Department of Horticulture, Ordu University, Ordu, Turkey, 2016. [Google Scholar]
- Karakus, S.; Bostan, S.Z. Breeding by selection of wild rose hip genotypes (Rosa spp.) grown in Akincilar county (Sivas Province, Turkey). J. Nevsehir Sci. Technol. 2017, 6, 215–225. [Google Scholar] [CrossRef]
- Ozcelik, H.; Ozcelik, D.S. Botanical characteristics of fruit roses/rosehips Rosa L. spp. Biol. Divers. Conserv. 2018, 11, 68–79. [Google Scholar] [CrossRef]
- Ozturk, A.; Bastas, K.K. A potential threat for blackberry, raspberry and rosehip growing in Konya Province: Fire blight disease. Turk. J. Agric.—Food Sci. Technol. 2021, 9, 2663–2669. [Google Scholar]
- Ercisli, S. Rose (Rosa spp.) germplasm resources of Turkey. Genet. Resour. Crop Evol. 2005, 52, 787–795. [Google Scholar] [CrossRef]
- Tumbas, V.T.; Canadanovic-Brunet, J.M. Effect of rosehip (Rosa canina L.) phytochemicals on stable free radicals and human cancer cells. J. Sci. Food Agric. 2012, 92, 1273–1281. [Google Scholar] [CrossRef]
- Sar, S. The analysis of the use of certain berries from the perspective of pharmacy and history of medicine. Mersin Univ. Sch. Med. Lokman Hekim. J. Hist. Med. Folk. Med. 2011, 1, 1–6. [Google Scholar]
- Smanalieva, J.; Iskakova, J.; Oskonbaeva, Z.; Wichern, F.; Darr, D. Investigation of nutritional characteristics and free radical scavenging activity of wild apple, pear, rosehip, and barberry from the walnut-fruit forests of Kyrgyzstan. Eur. Food Res. Technol. 2020, 246, 1095–1104. [Google Scholar] [CrossRef]
- Jimenez-Lopez, J.; Ruiz-Medina, A.; Ortega-Barrales, P.; Llorent-Martínez, E.J. Rosa rubiginosa and Fraxinus oxycarpa herbal teas: Characterization of phytochemical profiles by liquid chromatography-mass spectrometry, and evaluation of the antioxidant activity. New J. Chem. 2017, 41, 7681–7688. [Google Scholar] [CrossRef]
- Unalan, O. Rose hip in Turkish beliefs and practices. Ordu Univ. Inst. Soci. Sci. J. Soci. Sci. Res. 2021, 11, 745–762. [Google Scholar] [CrossRef]
- Tomar, O. Determination of some quality properties and antimicrobial activities of kombucha tea prepared with different berries. Turk. J. Agric. For. 2023, 47, 252–262. [Google Scholar] [CrossRef]
- Murathan, Z.T.; Zarifikhosroshahi, M.; Kafkas, N.E. Determination of fatty acids and volatile compounds in fruits of rosehip (Rosa L.) species by HS-SPME/GC-MS and Im-SPME/GC-MS techniques. Turk. J. Agric. For. 2016, 40, 269–279. [Google Scholar] [CrossRef]
- Cetinbas, M.; Butar, S.; Koyuncu, F. Effects of Aminoethoxyvinylglycine (AVG) on fruit quality of 0900-ziraat sweet cherry. J. Agric. Fac. Ege Univ. 2012, 49, 103–106. [Google Scholar]
- Ozkaplan, M.; Balkaya, A. The effects of light and temperature on the fruit quality parameters of cluster tomatoes growing in soilless culture. J. Agric. Sci. 2019, 34, 227–238. [Google Scholar] [CrossRef]
- Yilmaz, K.U.; Ercisli, S.; Zengin, Y.; Sengul, M.; Kafkas, E.Y. Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chem. 2009, 114, 408–412. [Google Scholar] [CrossRef]
- Attar, S.H.; Gundesli, M.A.; Urun, I.; Kafkas, S.; Kafkas, N.E.; Ercisli, S.; Ge, C.; Mlcek, J.; Adamkova, A. Nutritional analy-sis of red-purple and white-fleshed pitaya (Hylocereus) species. Molecules 2022, 27, 808. [Google Scholar] [CrossRef]
- Wrolstad, R.E. Color and Pigment Analyses in Fruit Products; Agricultural Communications, Oregon State University: Corvallis, OR, USA, 1993. [Google Scholar]
- Inacio, M.R.C.; de Lima, K.M.G.; Lopes, V.G.; Pessoa, J.D.C.; de Almeida Teixeira, G.H. Total anthocyanin content determination in intact açaí (Euterpe oleracea Mart.) and palmitero-juçara (Euterpe edulis Mart.) fruit using near infrared spectroscopy (NIR) and multivariate calibration. Food Chem. 2013, 136, 1160–1164. [Google Scholar] [CrossRef]
- Shameh, S.; Alirezalu, A.; Hosseini, B.; Maleki, R. Fruit phytochemical composition and color parameters of 21 accessions of five Rosa species grown in North West Iran. J. Sci. Food Agric. 2019, 99, 5740–5751. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Alirezalu, A.; Salehi, P.; Ahmadi, N.; Sonboli, A.; Aceto, S.; Hatami Maleki, H.; Ayyari, M. Flavonoids profile and antioxidant activity in flowers and leaves of hawthorn species (Crataegus spp.) from different regions of Iran. Int. J. Food Prop. 2018, 21, 452–470. [Google Scholar] [CrossRef]
- Chang, Q.; Zuo, Z.; Harrison, F.; Chow, M.S.S. Hawthorn. J. Clin. Pharmacol. 2002, 42, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, M.A.; Hosseinimehr, S.J.; Hamidinia, A.; Jafari, M. Antioxidant and free radical scavenging activity of Feijoa sellowiana fruitspeel and leaves. Pharmacologyonline 2008, 1, 7–14. [Google Scholar]
- Koukounaras, A.; Siomos, A.S. Changes in antıoxidant activity of radicchio during storage. Acta Hortic. 2010, 877, 1281–1285. [Google Scholar] [CrossRef]
- Paladines, D.; Valero, D.; Valverde, J.M.; Diaz-Mula, H.; Serrano, M.; Martínez-Romero, D. The addition of rosehip oil improves the beneficial effect of Aloe vera gel on delaying ripening and maintaining postharvest quality of several stone fruit. Postharvest Biol. Technol. 2014, 92, 23–28. [Google Scholar] [CrossRef]
- Qian, J.Y.; Liu, D.; Huang, A.G. The efficiency of flavonoids in polar extracts of Lycium chinense Mill fruits as free radical scavenger. Food Chem. 2004, 87, 283–288. [Google Scholar] [CrossRef]
- Trappey II, A.; Bawadi, H.A.; Bansode, R.R.; Losso, J.N. Anthocyanin profile of mayhaw (Cretaegus opaca). Food Chem. 2005, 91, 665–671. [Google Scholar] [CrossRef]
- Su, L.; Yin, J.J.; Charles, D.; Zhou, K.; Moore, J.; Yu, L.L. Total phenolic contents, chelating capacities, and radical-scavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chem. 2007, 100, 990–997. [Google Scholar] [CrossRef]
- Barros, L.; Carvalho, A.M.; Morais, J.S.; Ferreira, I.C. Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chem. 2010, 120, 247–254. [Google Scholar] [CrossRef]
- Colak, A.M.; Okatan, V.; Polat, M.; Guclu, S.F. Different harvest times affect market quality of Lycium barbarum L. berries. Turk. J. Agric. For. 2019, 43, 326–333. [Google Scholar] [CrossRef]
- Korkmaz, N.; Askin, M.A.; Altunlu, H.; Polat, M.; Okatan, V.; Kahramanoglu, I. The effects of melatonin application on the drought stress of different citrus rootstocks. Turk. J. Agric. For. 2022, 46, 585–600. [Google Scholar] [CrossRef]
- Sun, Y.F.; Liang, Z.S.; Shan, C.J.; Viernstein, H.; Unger, F. Comprehensive evaluation of natural antioxidants and antioxidant potentials in Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex HF Chou fruits based on geographical origin by TOPSIS method. Food Chem. 2011, 124, 1612–1619. [Google Scholar] [CrossRef]
- Saint-Eve, A.; Deleris, I.; Aubin, E.; Rabillier, J.M.; Ibarra, D.; Souchon, I. Influence of Composition (CO2 and Sugar) on aroma release and perception of mint-flavored carbonated beverages. J. Agric. Food Chem. 2014, 57, 5891–5898. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, S.; Facsar, G.; Udvardy, L.; Toth, M. Phenological, morphological and pomological characteristics of some rose species found in Hungary. Acta Hortic. 2005, 690, 71–76. [Google Scholar] [CrossRef]
- Nojavan, S.; Khalilian, F.; Kiaie, F.M.; Rahimi, A.; Arabanian, A.; Chalavi, S. Extraction and quantitative determination of ascorbic acid during different maturity stages of Rosa canina L. fruit. J. Food Compos. Anal. 2008, 21, 300–305. [Google Scholar] [CrossRef]
- Koca, I.; Ustun, N.S.; Koyuncu, T. Effect of drying conditions on antioxidant properties of rosehip fruits (Rosa canina sp.). Asian J. Chem. 2009, 21, 1061. [Google Scholar]
- Pirone, B.N.; Ochoa, M.R.; Kesseler, A.G.; De Michelis, A. Chemical characterization and evolution of ascorbic acid concentration during dehydration of rosehip (Rosa eglanteria) fruits. Am. J. Food Technol. 2007, 2, 377–387. [Google Scholar] [CrossRef]
- Paunovic, D.; Kalusevic, A.; Petrovic, T.; Urosevic, T.; Djinovic, D.; Nedovic, V.; Popovic-Djordjevic, J. Assessment of chemical and antioxidant properties of fresh and dried rosehip (Rosa canina L.). Not. Bot. Horti Agrobo Cluj Napoca 2019, 47, 108–113. [Google Scholar] [CrossRef]
- Socaciu, C. (Ed.) Food Colorants: Chemical and Functional Properties; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Beyhan, O.; Koc, A.; Ercisli, S.; Jurikova, T.; Cakir, O. Bioactive Content of Rosa canina Biotypes from Turkey. Oxid. Commun. 2017, 40, 178–185. [Google Scholar]
- Gunes, M.; Dolek, U.; Elmastas, M. Pomological changes in some rosehip species during ripening. J. Agric. Fac. Gaziosmanpaşa Univ. JAFAG 2016, 33, 214–222. [Google Scholar] [CrossRef]
- Dogan, A.; Kazankaya, A. Fruit properties of rose hip species grown in Lake Van Basin (Eastern Anatolia Region). Asian J. Plant Sci. 2006, 5, 120–122. [Google Scholar]
- Celik, F.; Kazankaya, A.; Ercisli, S. Fruit characteristics of some selected promising rose hip (Rosa spp.) genotypes from Van region of Turkey. Afr. J. Agric. Res. 2009, 4, 236–240. [Google Scholar]
- Uggla, M.; Gao, X.; Werlemark, G. Variation among and within dogrose taxa (Rosa sect. caninae) in fruit weight, percentages of fruit flesh and dry matter, and vitamin C content. Acta Agric. Scand. Sect. B Plant Soil. Sci. 2003, 53, 147–155. [Google Scholar] [CrossRef]
- Ersoy, B. Determination of fruit properties of different genotypes of Rosa pimpinellifolia. Master’s Thesis, Institute of Science Department of Horticulture, Ataturk University, Erzurum, Turkey, 2019. [Google Scholar]
- Murathan, Z.T.; Zarifikhosroshahi, M.; Kafkas, E.; Sevindik, E. Characterization of bioactive compounds in rosehip species from East Anatolia region of Turkey. Ital. J. Food Sci. 2016, 28, 314–325. [Google Scholar] [CrossRef]
- Guerrero, J.; Ciampi, L.; Castilla, A.; Medel, F.; Schalchli, H.; Hormazabal, E.; Bensch, E.; Alberdi, M. Antioxidant capacity, anthocyanins, and total phenols of wild and cultivated berries in Chile. Chil. J. Agric. Res. 2010, 70, 537–544. [Google Scholar] [CrossRef]
- Demir, B.; Sayinci, B.; Yaman, M.; Sumbul, A.; Yildiz, E.; Karakaya, O.; Alkaya, G.B.; Ercisli, S. Biochemical composition and shape-dimensional traits of rosehip genotypes. Folia Hortic. 2021, 33, 293–308. [Google Scholar] [CrossRef]
- Ercisli, S. Chemical composition of fruits in some rose (Rosa spp.) species. Food Chem. 2007, 104, 1379–1384. [Google Scholar] [CrossRef]
- Machmudah, S.; Kawahito, Y.; Sasaki, M.; Goto, M. Process optimization and extraction rate analysis of carotenoids extraction from rosehip fruit using supercritical CO2. J. Supercrit. Fluids 2008, 44, 308–314. [Google Scholar] [CrossRef]
- Razungles, A.; Oszmianski, J.; Sapis, J.-C. Determination of carotenoids in fruits of Rosa sp. (Rosa canina and Rosa rugosa) and of chokeberry (Aronia melanocarpa). J. Food Sci. 1989, 54, 774–775. [Google Scholar] [CrossRef]
- Hodisan, T.; Socaciu, C.; Ropan, I.; Neamtu, G. Carotenoid composition of Rosa canina fruits determined by thin-layer chromatography and high-performance liquid chromatography. J. Pharm. Biomed. Anal. 1997, 16, 521–528. [Google Scholar] [CrossRef]
- Kostic, D.A.; Dimitrijevic, D.S.; Mitic, S.S.; Mitic, M.N.; Stojanovic, G.S.; Zivanovic, A.V. A survey on macro-and micro-elements, phenolic compounds, biological activity and use of Morus spp. (Moraceae). Fruits 2013, 68, 333–347. [Google Scholar] [CrossRef]
- Dogan, H.; Ercisli, S.; Temim, E.; Hadziabulic, A.; Tosun, M.; Yilmaz, S.O.; Zia-Ul-Haq, M. Diversity of chemical content and biological activity in flower buds of a wide number of wild grown caper (Capparis ovate Desf.) genotypes from Turkey. Comptes Rendus Acad. Bulg. Sci. 2014, 67, 1593–1600. [Google Scholar]
- Cavusoglu, S.; Yilmaz, N.; Islek, F.; Tekin, O.; Sagbas, H.I.; Ercisli, S.; Rampáčková, E.; Nečas, T. Effect of Methyl Jasmonate, Cytokinin, and Lavender Oil on Antioxidant Enzyme System of Apricot Fruit (Prunus armeniaca L.). Sustainability 2021, 13, 8565. [Google Scholar] [CrossRef]
- Skrovankova, S.; Ercisli, S.; Ozkan, G.; Ilhan, G.; Sagbas, H.I.; Karatas, N.; Jurikova, T.; Mlcek, J. Diversity of phytochemical and antioxidant characteristics of black mulberry (Morus nigra L.) fruits from Turkey. Antioxidants 2022, 11, 1339. [Google Scholar] [CrossRef]
- Jaćimović, V.; Adakalić, M.; Ercisli, S.; Božović, D.; Bujdosó, G. Fruit Quality Properties of Walnut (Juglans regia L.) Genetic Resources in Montenegro. Sustainability 2020, 12, 9963. [Google Scholar] [CrossRef]
- Bolaric, S.; Müller, I.D.; Vokurka, A.; Cepo, D.V.; Ruscic, M.; Srecec, S.; Kremer, D. Morphological and molecular characterization of Croatian carob tree (Ceratonia siliqua L.) germplasm. Turk. J. Agric. For. 2021, 45, 807–818. [Google Scholar] [CrossRef]
- Grygorieva, O.; Klymenko, S.; Kuklina, A.; Vinogradova, Y.; Vergun, O.; Sedlackova, V.H.; Brindza, J. Evaluation of Lonicera caerulea L. genotypes based on morphological characteristics of fruits germplasm collection. Turk. J. Agric. For. 2021, 45, 850–860. [Google Scholar] [CrossRef]
- Ozkan, G.; Ercıslı, S.; Zeb, A.; Agar, G.; Sagbas, H.I.; Ilhan, G. Some morphological and biochemical characteristics of wild grown caucasian whortleberry (Vaccinium arctostaphylos L.) genotypes from northeastern Turkey. Not Bot Horti Agrobo 2018, 47, 378–383. [Google Scholar]
- Abanoz, Y.Y.; Okcu, Z. Biochemical content of cherry laurel (Prunus laurocerasus L.) fruits with edible coatings based on caseinat, Semperfresh and lecithin. Turk. J. Agric. For. 2022, 46, 908–918. [Google Scholar] [CrossRef]
- Daler, S.; Cangi, R. Characterization of grapevine (V. vinifera L.) varieties grown in Yozgat province (Turkey) by simple sequence repeat (SSR) markers. Turk. J. Agric. For. 2022, 46, 38–48. [Google Scholar]
- Dawadi, P.; Shrestha, R.; Mishra, S.; Bista, S.; Raut, J.K.; Joshi, T.P.; Bhatt, L.R. Nutritional Value and Antioxidant Properties of Viburnum mullaha Buch.-Ham. Ex D. Don fruit from Central Nepal. Turk. J. Agric. For. 2022, 46, 781–789. [Google Scholar] [CrossRef]
- Delialioglu, R.A.; Dumanoglu, H.; Erdogan, V.; Dost, S.E.; Kesik, A.; Kocabas, Z. Multidimensional scaling analysis of sensory characteristics and quantitative traits in wild apricots. Turk. J. Agric. For. 2022, 46, 160–172. [Google Scholar] [CrossRef]
- Ozer, G.; Makineci, E. Fruit characteristics, defoliation, forest floor and soil properties of sweet chestnut (Castanea sativa Mill.) forests in Istanbul-Turkey. Turk. J. Agric. For. 2022, 46, 703–716. [Google Scholar] [CrossRef]
- Kotsou, K.; Stoikou, M.; Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Sfougaris, A.I.; Lalas, S.I. Enhancing Antioxidant Properties of Prunus spinosa Fruit Extracts via Extraction Optimization. Horticulturae 2023, 9, 942. [Google Scholar] [CrossRef]
- Kayahan, S.; Ozdemir, Y.; Gulbag, F. Functional Compounds and Antioxidant Activity of Rosa Species Grown in Turkey. Erwerbs Obstbau 2023, 65, 1079–1086. [Google Scholar] [CrossRef]
Ecotypes | Fruit Weight (g) | Fruit Firmness (N) | Fruit Flesh Ratio (%) | Fruit Shape Index |
---|---|---|---|---|
A-1 | 2.83 ± 0.09 cd | 5.71 ± 0.17 cde | 77.69 ± 1.35 b | 1.02 ± 0.03 abc |
A-2 | 2.68 ± 0.20 d–g | 5.56 ± 0.69 def | 81.67 ± 1.82 a | 0.97 ± 0.01 c |
A-3 | 2.80 ± 0.10 de | 6.93 ± 0.20 ab | 71.78 ± 1.18 fg | 1.05 ± 0.02 ab |
A-4 | 2.94 ± 0.14 bcd | 5.38 ± 0.19 efg | 69.34 ± 0.52 g | 1.07 ± 0.03 a |
A-5 | 2.28 ± 0.08 h | 5.39 ± 0.37 efg | 75.34 ± 1.10 bcd | 1.02 ± 0.01 abc |
A-6 | 2.31 ± 0.05 h | 6.41 ± 0.32 abc | 71.67 ± 1.08 fg | 1.01 ± 0.02 bc |
A-7 | 2.74 ± 0.08 def | 6.34 ± 0.17 bc | 70.19 ± 0.47 g | 1.05 ± 0.01 ab |
A-8 | 3.00 ± 0.07 a–d | 7.12 ± 0.17 a | 75.56 ± 1.14 bc | 1.05 ± 0.02 ab |
A-9 | 2.50 ± 0.03 e–h | 5.43 ± 0.18 d–g | 74.19 ± 1.22 c | 1.05 ± 0.01 ab |
A-10 | 2.45 ± 0.23 fgh | 6.44 ± 0.21 abc | 70.23 ± 0.61 g | 1.01 ± 0.02 bc |
A-11 | 2.37 ± 0.10 gh | 6.18 ± 0.24 bcd | 75.03 ± 0.66 b–e | 1.04 ± 0.01 ab |
A-12 | 3.14 ± 0.05 abc | 4.84 ± 0.09 fg | 71.33 ± 0.65 fg | 1.02 ± 0.01 abc |
A-13 | 3.21 ± 0.08 ab | 6.35 ± 0.11 abc | 73.96 ± 1.10 c–f | 1.05 ± 0.03 ab |
A-14 | 3.15 ± 0.05 abc | 5.74 ± 0.14 cde | 72.10 ± 0.34 efg | 1.04 ± 0.01 ab |
A-15 | 3.29 ± 0.17 a | 4.70 ± 0.15 g | 72.37 ± 1.79 d–g | 1.00 ± 0.02 bc |
Ecotypes | Chroma | SSC (%) | DPPH (mg AAE/g) | Total Anthocyanin (mg/kg) |
---|---|---|---|---|
A-1 | 57.74 ± 1.46 a–d | 21.28 ± 0.64 a | 18.44 ± 0.14 ef | 7.13 ± 0.17 ab |
A-2 | 53.04 ± 1.63 f | 19.79 ± 0.51 bcd | 20.31 ± 0.15 b–f | 4.61 ± 0.16 g |
A-3 | 56.07 ± 1.33 b–f | 18.87 ± 0.24 d | 24.79 ± 0.42 ab | 5.16 ± 0.09 f |
A-4 | 55.19 ± 2.53 c–f | 20.93 ± 0.26 ab | 18.64 ± 0.16 def | 5.71 ± 0.13 de |
A-5 | 60.71 ± 0.27 a | 20.41 ± 0.26 abc | 24.44 ± 0.44 abc | 7.15 ± 0.19 a |
A-6 | 55.26 ± 0.91 c–f | 19.59 ± 0.17 cd | 28.17 ± 0.20 a | 5.46 ± 0.26 ef |
A-7 | 53.13 ± 1.93 ef | 20.43 ± 0.20 abc | 24.21 ± 0.08 abc | 6.12 ± 0.08 cd |
A-8 | 54.01 ± 0.92 def | 20.82 ± 0.70 abc | 17.81 ± 0.20 ef | 5.47 ± 0.17 ef |
A-9 | 56.97 ± 1.33 a–e | 20.52 ± 0.25 abc | 18.23 ± 0.85 ef | 7.56 ± 0.19 a |
A-10 | 56.09 ± 1.47 b–f | 20.07 ± 0.37 a–d | 19.31 ± 0.16 c–f | 6.66 ± 0.16 b |
A-11 | 57.46 ± 0.49 a–d | 20.89 ± 0.12 ab | 19.42 ± 0.14 c–f | 5.47 ± 0.19 ef |
A-12 | 59.28 ± 0.97 ab | 20.11 ± 0.21 abc | 15.78 ± 6.84 f | 4.67 ± 0.13 g |
A-13 | 58.86 ± 1.37 abc | 19.77 ± 0.45 bcd | 20.43 ± 0.19 b–f | 5.54 ± 0.18 ef |
A-14 | 56.89 ± 0.89 a–f | 20.59 ± 0.82 abc | 23.64 ± 0.15 a–d | 6.19 ± 0.13 c |
A-15 | 60.37 ± 0.58 a | 20.08 ± 0.40 a–d | 20.97 ± 0.18 b–e | 7.24 ± 0.12 a |
Ecotypes | Total Carotenoid (mg/g) | Total Flavonoid (mg/QUE g) | Total Phenolics (mg GAE/100 g) | Vitamin C (mg/100 g) |
---|---|---|---|---|
A-1 | 13.12 ± 0.23 a | 1.67 ± 0.17 c–f | 536 ± 18.85 de | 547 ± 21.42 b–f |
A-2 | 7.55 ± 0.28 hi | 1.18 ± 0.08 f | 551 ± 30.07 de | 530 ± 36.07 c–f |
A-3 | 8.58 ± 0.09 f | 1.41 ± 0.10 ef | 628 ± 8.51 ab | 565 ± 22.41 a–f |
A-4 | 7.71 ± 0.13 gh | 2.05 ± 0.10 bcd | 470 ± 18.58 f | 597 ± 31.82 ab |
A-5 | 13.60 ± 0.27 a | 2.17 ± 0.11 abc | 564 ± 19.78 cde | 594 ± 7.45 ab |
A-6 | 9.84 ± 0.11 e | 2.39 ± 0.35 ab | 644 ± 17.85 a | 589 ± 11.46 abc |
A-7 | 7.08 ± 0.07 ij | 1.44 ± 0.10 ef | 570 ± 13.86 b–e | 553 ± 37.56 b–f |
A-8 | 8.20 ± 0.43 fg | 1.54 ± 0.12 def | 523 ± 16.95 ef | 511 ± 11.59 ef |
A-9 | 11.10 ± 0.17 c | 1.32 ± 0.16 ef | 585 ± 17.14 a–d | 527 ± 12.47 def |
A-10 | 8.17 ± 0.08 fg | 2.64 ± 0.37 a | 622 ± 27.23 abc | 570 ± 21.62 a–e |
A-11 | 8.30 ± 0.13 f | 1.48 ± 0.12 ef | 541 ± 32.45 de | 564 ± 20.87 a–f |
A-12 | 6.94 ± 0.22 j | 1.76 ± 0.07 cde | 537 ± 18.82 de | 587 ± 10.74 a–d |
A-13 | 6.59 ± 0.21 j | 1.45 ± 0.06 ef | 550 ± 33.29 de | 621 ± 9.70 a |
A-14 | 10.43 ± 0.20 d | 1.78 ± 0.30 cde | 550 ± 5.29 de | 561 ± 16.46 a–f |
A-15 | 12.39 ± 0.10 b | 1.82 ± 0.16 cde | 516 ± 9.02 ef | 507 ± 18.01 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagbas, H.I. Investigation of Fruit Quality and Biochemical Traits of Rosehip (R. canina) Ecotypes in the Aegean Region of Türkiye. Horticulturae 2023, 9, 1292. https://doi.org/10.3390/horticulturae9121292
Sagbas HI. Investigation of Fruit Quality and Biochemical Traits of Rosehip (R. canina) Ecotypes in the Aegean Region of Türkiye. Horticulturae. 2023; 9(12):1292. https://doi.org/10.3390/horticulturae9121292
Chicago/Turabian StyleSagbas, Halil Ibrahim. 2023. "Investigation of Fruit Quality and Biochemical Traits of Rosehip (R. canina) Ecotypes in the Aegean Region of Türkiye" Horticulturae 9, no. 12: 1292. https://doi.org/10.3390/horticulturae9121292
APA StyleSagbas, H. I. (2023). Investigation of Fruit Quality and Biochemical Traits of Rosehip (R. canina) Ecotypes in the Aegean Region of Türkiye. Horticulturae, 9(12), 1292. https://doi.org/10.3390/horticulturae9121292