Morpho-Physiological, Chlorophyll Fluorescence, and Diffuse Reflectance Spectra Characteristics of Lettuce under the Main Macronutrient Deficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Object of Research
2.2. Cultivation Conditions
2.3. Morpho-Physiological Characteristics
2.4. Pigment Content and Diffuse Leaf Reflectance Spectroscopy
2.5. The Assessment of the Physiological Status of Plants by the Modulated Chlorophyll Fluorescence Method
2.6. Statistical Analysis
3. Results
3.1. Morpho-Physiological Indicators of Lettuce Plants under Optimal Mineral Nutrition and Main Macronutrients Deficiency
3.2. Diffuse Leaf Reflectance Indices of Lettuce under the Main Macronutrients Deficiency
3.3. Changes in Fluorescence Parameters of Lettuce Plants Influenced by Nitrogen, Phosphorus or Potassium Deficiency
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Berger, K.; Verrelst, J.; Féret, J.B.; Wang, Z.; Wocher, M.; Strathmann, M.; Hank, T. Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sens. Environ. 2020, 242, 111758. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar]
- Yan, F.; Zhang, F.; Fan, X.; Fan, J.; Wang, Y.; Zou, H.; Li, G. Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China. Agric. Water Manag. 2021, 243, 106440. [Google Scholar] [CrossRef]
- Xin, L. Chemical fertilizer rate, use efficiency and reduction of cereal crops in China, 1998–2018. J. Geogr. Sci. 2022, 32, 65–78. [Google Scholar] [CrossRef]
- Barker, A.V.; Pilbeam, D.J. Handbook of Plant Nutrition, 2nd ed.; Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2015; ISBN 0-8247-5904-4. [Google Scholar]
- Gureev, I.I.; Zherdev, M.N.; Brezhnev, A.L.; Chernonogov, V.G.; Solonichkin, V.N. Influence of nutrition spraying on sugars accumulation, winter wheat yield and grain quality. Zemledelie 2015, 4, 24–26, (In Russian with English Abstract). [Google Scholar]
- Yakushev, V.P. Approaches to Precision Agriculture; PIYAF RAN: Saint-Petersburg, Russia, 2002; ISBN 5-86763-063-3. [Google Scholar]
- Yakushev, V.P.; Dubenok, N.N.; Loupian, E.A. Earth remote sensing technologies for agriculture: Application experience and development prospects. Curr. Probl. Remote Sens. Earth Space 2019, 16, 11–23. [Google Scholar] [CrossRef]
- Yakushev, V.P.; Yakushev, V.V. Prospects for “smart agriculture” in Russia. Her. Russ. Acad. Sci. 2018, 5, 330–340. [Google Scholar] [CrossRef]
- Monteiro, A.; Santos, S.; Gonçalves, P. Precision agriculture for crop and livestock farming—Brief review. Animals 2021, 11, 2345. [Google Scholar] [CrossRef]
- Vizzari, M.; Santaga, F.; Benincasa, P. Sentinel 2-based nitrogen VRT fertilization in wheat: Comparison between traditional and simple precision practices. Agronomy 2019, 9, 278. [Google Scholar] [CrossRef]
- Loures, L.; Chamizo, A.; Ferreira, P.; Loures, A.; Castanho, R.; Panagopoulos, T. Assessing the effectiveness of precision agriculture management systems in mediterranean small farms. Sustainability 2020, 12, 3765. [Google Scholar] [CrossRef]
- Rusakov, D.V.; Kanash, E.V. Spectral characteristics of leaves diffuse reflection in conditions of soil drought: A study of soft spring wheat cultivars of different drought resistance. Plant Soil Environ. 2022, 68, 137–145. [Google Scholar] [CrossRef]
- Yi, J.; Krusenbaum, L.; Unger, P.; Hüging, H.; Seidel, S.J.; Schaaf, G.; Gall, J. Deep learning for non-invasive diagnosis of nutrient deficiencies in sugar beet using RGB images. Sensors 2020, 20, 5893. [Google Scholar] [CrossRef] [PubMed]
- Yakushev, V.; Kanash, E. Evaluation of wheat nitrogen status by colorimetric characteristics of crop canopy presented in digital images. J. Agric. Inform. 2016, 7, 65–74. [Google Scholar]
- Fu, Y.; Yang, G.; Pu, R.; Li, Z.; Li, H.; Xu, X.; Zhao, C. An overview of crop nitrogen status assessment using hyperspectral remote sensing: Current status and perspectives. Eur. J. Agron. 2021, 124, 126241. [Google Scholar] [CrossRef]
- Berger, K.; Verrelst, J.; Féret, J.B.; Hank, T.; Wocher, M.; Mauser, W.; Camps-Valls, G. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102174. [Google Scholar] [CrossRef]
- Xu, X.; Fan, L.; Li, Z.; Meng, Y.; Feng, H.; Yang, H.; Xu, B. Estimating leaf nitrogen content in corn based on information fusion of multiple-sensor imagery from UAV. Remote Sens. 2021, 13, 340. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, H.; Wang, P. Quantitative modelling for leaf nitrogen content of winter wheat using UAV-based hyperspectral data. Int. J. Remote Sens. 2017, 38, 2117–2134. [Google Scholar] [CrossRef]
- Lu, J.; Yang, T.; Su, X.; Qi, H.; Yao, X.; Cheng, T.; Tian, Y. Monitoring leaf potassium content using hyperspectral vegetation indices in rice leaves. Precis. Agric. 2020, 21, 324–348. [Google Scholar] [CrossRef]
- Belgiu, M.; Marshall, M.; Boschetti, M.; Pepe, M.; Stein, A.; Nelson, A. PRISMA and Sentinel-2 spectral response to the nutrient composition of grains. Remote Sens. Environ. 2023, 292, 113567. [Google Scholar] [CrossRef]
- Qiao, B.; He, X.; Liu, Y.; Zhang, H.; Zhang, L.; Liu, L.; Müller, J. Maize Characteristics Estimation and Classification by Spectral Data under Two Soil Phosphorus Levels. Remote Sens. 2022, 14, 493. [Google Scholar] [CrossRef]
- Chen, L.; Huang, S.; Sun, Y.; Zhu, E.; Wang, K. Rapid identification of potassium nutrition stress in rice based on machine vision and object-oriented segmentation. J. Spectrosc. 2019, 2019, 4623545. [Google Scholar] [CrossRef]
- Girenko, M.M.; Komarova, Z.A.; Borodkin, A.S. Classifier (Species) Lactuca sativa L., Cichorium endivia L. (Lettuce, Salad Chicory—Endive and Escarial); VIR Publishing House: Saint Petersburg, Russia, 1984. [Google Scholar]
- Panova, G.G.; Udalova, O.R.; Kanash, E.V.; Galushko, A.S.; Kochetov, A.A.; Priyatkin, N.S.; Chernousov, I.N. Fundamentals of physical modeling of “ideal” agroecosystems. Tech. Phys. 2020, 65, 1563–1569. [Google Scholar] [CrossRef]
- Panova, G.G.; Chernousov, I.N.; Udalova, O.R.; Alexandrov, A.V.; Karmanov, I.V.; Anikina, L.M.; Yakushev, V.P. Scientific basis for large year-round yields of high-quality crop products under artificial lighting. Russ. Agric. Sci. 2015, 41, 335–339. [Google Scholar] [CrossRef]
- Artemyeva, A.M.; Sinyavina, N.G.; Panova, G.G.; Chesnokov, Y.V. Biological features of Brassica rapa L. vegetable leafy crops when growing in an intensive light culture. Agric. Biol. 2021, 56, 103–120. [Google Scholar] [CrossRef]
- Mokronosov, A.T.; Kovalev, A.G. Techniques in Bioproductivity and Photosynthesis; Agropromizdat: Moscow, Russia, 1989; pp. 53–61. ISBN 5-10-001262-5. [Google Scholar]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Peñuelas, J.; Barret, F.; Fitella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Merzlyak, M.N.; Solovchenko, A.E.; Smagin, A.I.; Gitelson, A.A. Apple flavonols during fruit adaptation to solar radiation: Spectral features and techniques for non-destructive assessment. J. Plant Physiol. 2005, 162, 151–160. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Sheoran, I.S.; Dumonceaux, T.; Datla, R.; Sawhney, V.K. Anthocyanin accumulation in the hypocotyl of an ABA-over producing male-sterile tomato (Lycopersicon esculentum) mutant. Physiol. Plant. 2006, 127, 681–689. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C.; Döll, M.; Fietz, H.-J.; Bach, T.; Kozel, U.; Meier, D.; Rahmsdorf, U. Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis Res. 1981, 2, 115–141. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Butler, W.L. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim. Biophys. Acta Bioenerg. 1975, 376, 105–115. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.-M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta Bioenerg. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- van Kooten, O.; Snel, J.F.H. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 1990, 25, 147–150. [Google Scholar] [CrossRef]
- Kramer, D.M.; Johnson, G.; Kiirats, O.; Edwards, G.E. New Fluorescence Parameters for the Determination of QA Redox State and Excitation Energy Fluxes. Photosynth. Res. 2004, 79, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Bilger, W.; Björkman, O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 1990, 25, 173–185. [Google Scholar] [CrossRef]
- Akram, M.A.; Zhang, Y.; Wang, X.; Shrestha, N.; Malik, K.; Khan, I.; Deng, J. Phylogenetic independence in the variations in leaf functional traits among different plant life forms in an arid environment. J. Plant Physiol. 2022, 272, 153671. [Google Scholar] [CrossRef]
- Liu, F.; Stützel, H. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Sci. Hortic. 2004, 102, 15–27. [Google Scholar] [CrossRef]
- de Ávila Silva, L.; Omena-Garcia, R.P.; Condori-Apfata, J.A.; Costa, P.M.D.A.; Silva, N.M.; DaMatta, F.M.; Nunes-Nesi, A. Specific leaf area is modulated by nitrogen via changes in primary metabolism and parenchymal thickness in pepper. Planta 2021, 253, 16. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Li, S.; Lü, X.; Wang, X.; Han, X. Changes in specific leaf area of dominant plants in temperate grasslands along a 2500 km transect in northern China. Sci. Rep. 2017, 7, 10780. [Google Scholar] [CrossRef]
- Serbin, S.P.; Wu, J.; Ely, K.S.; Kruger, E.L.; Townsend, P.A.; Meng, R.; Rogers, A. From the Arctic to the tropics: Multibiome prediction of leaf mass per area using leaf reflectance. New Phytol. 2019, 224, 1557–1568. [Google Scholar] [CrossRef] [PubMed]
- Poorter, H.; Niinemets, U.; Poorter, L.; Wright, I.; Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 2009, 182, 565–588. [Google Scholar] [CrossRef] [PubMed]
- Pettigrew, W.T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 2008, 133, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Vasfilov, S.P. The analysis of the causes of variability of the relationship between leaf dry mass and area in plants. Zhurnal Obs. Biol. 2011, 72, 436–454, (In Russian with English Abstract). [Google Scholar]
- Ballottari, M.; Dall’Osto, L.; Morosinotto, T.; Bassi, R. Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J. Biol. Chem. 2007, 282, 8947–8958. [Google Scholar] [CrossRef]
- Rossatto, D.R.; de Araújo, P.E.; da Silva, B.H.P.; Franco, A.C. Photosynthetic responses of understory savanna plants: Implications for plant persistence in savannas under tree encroachment. Flora 2018, 240, 34–39. [Google Scholar] [CrossRef]
- Kanash, E.V.; Panova, G.G.; Blokhina, S.Y. Optical criteria for assessment of efficiency and adaptogenic characteristics of biologically active preparations. Acta Hortic. 2013, 1009, 37–44. [Google Scholar] [CrossRef]
- Yakushev, V.; Kanash, E.; Rusakov, D.; Blokhina, S. Specific and non-specific changes in optical characteristics of spring wheat leaves under nitrogen and water deficiency. Adv. Anim. Biosci. Precis. Agric. (ECPA) 2017, 8, 229–232. [Google Scholar] [CrossRef]
- Slaton, M.R.; Hunt, E.R.; Smith, W.K. Estimating near-infrared leaf reflectance from leaf structural characteristics. Am. J. Bot. 2001, 88, 278–284. [Google Scholar] [CrossRef]
- Ordoñez, J.C.; van Bodegom, P.M.; Witte, J.-F.; Bartholomeus, R.P.; van Dobben, H.F.; Aerts, R. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply. Ecology 2010, 91, 3218–3228. [Google Scholar] [CrossRef]
- Badr, A.; Brüggemann, W. Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content. Photosynthetica 2020, 58, 638–645. [Google Scholar] [CrossRef]
- Fatma, M.; Iqbal, N.; Sehar, Z.; Alyemeni, M.N.; Kaushik, P.; Khan, N.A.; Ahmad, P. Methyl jasmonate protects the PS II system by maintaining the stability of chloroplast D1 protein and accelerating enzymatic antioxidants in heat-stressed wheat plants. Antioxidants 2021, 10, 1216. [Google Scholar] [CrossRef] [PubMed]
- Fryer, M.J.; Andrews, J.R.; Oxborough, K.; Blowers, D.A.; Baker, N.R. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol. 1998, 116, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Ibrahimova, U.; Zivcak, M.; Gasparovic, K.; Rastogi, A.; Allakhverdiev, S.I.; Yang, X.; Brestic, M. Electron and proton transport in wheat exposed to salt stress: Is the increase of the thylakoid membrane proton conductivity responsible for decreasing the photosynthetic activity in sensitive genotypes? Photosynth. Res. 2021, 150, 195–211. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Babani, F. Light adaption and senescence of the photosynthetic apparatus: Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity during light adaptation and senescence of leaves. In Chlorophyll Fluorescence: A Signature of Photosynthesis; Papageorgiou, G., Govindjee, Eds.; Springer: Dordrecht, Netherlands, 2004; pp. 713–736. ISBN 978-1-4020-3217-2. [Google Scholar]
- Kalaji, H.M.; Oukarroum, A.; Alexandrov, V.; Kouzmanova, M.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Allakhverdiev, S.I.; Goltsev, V. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol. Bioch. 2014, 81, 16–25. [Google Scholar] [CrossRef]
VIR Catalogue No. | Name | Origin | Type | Rosette Type | Leaf Type | Leaf Blade Color |
---|---|---|---|---|---|---|
k-2886 | Kokarda | Russia | Oakleaf | Appressed | Odd, pinnately sected | Dark green with anthocyanin pigmenting |
k-2867 | Vitaminnyi | Russia | Batavia | Suberect | Entire, sessile | Bright-green |
Option | Solution Characteristic Feature | N | P | Ca | K | Mg | S | Cl |
---|---|---|---|---|---|---|---|---|
1 | Complete Knop nutrient solution(Control—C) | 154 | 56 | 119 | 135 | 24 | 33 | 57 |
2 | Nitrogen deficiency (ND) | 86 | 56 | 119 | 135 | 24 | 33 | 57 |
3 | Phosphorus deficiency (PD) | 153 | 27 | 119 | 136 | 24 | 33 | 57 |
4 | Potassium deficiency (KD) | 153 | 56 | 119 | 78 | 24 | 33 | 57 |
Reflectance Index of | Calculation Formula | Reference |
---|---|---|
Chlorophyll (ChlRI) | (R750 − R705)/(R750 + R705 − 2R445) | [30] |
Total carotenoids to total chlorophylls ratio (SIPI) | (R800 − R445)/(R800 − R680) | [31] |
Light scattering inside leaf tissues (R800) | R800 | [30] |
Photochemical activity (PRI) | (R570 − R531)/(R570 + R531) | [31] |
Anthocyanins (ARI) | [(1/R550) − (1/R700)] × R750 | [32] |
Option, Value | NL/P (pcs) | LA/P (dm2) | Bw (g) | Bd (g) | LA/1l (dm2) | SLA (dm2/g) | LMA (g/dm2) | |
---|---|---|---|---|---|---|---|---|
‘Vitaminnyi’ | ||||||||
C | M * | 18.6 ± 0.5 | 14.6 ± 0.7 | 72.3 ± 2.3 | 4.51 ± 0.20 | 0.78 ± 0.02 | 3.24 | 0.31 |
% | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | |
ND | M | 15.9 ± 0.3 * | 9.5 ± 0.6 * | 57.3 ± 2.4 * | 3.86 ± 0.17 * | 0.59 ± 0.03 * | 2.46 | 0.41 |
% | 85.5 | 65.2 | 79.2 | 85.6 | 76.2 | 76.0 | 132.3 | |
PD | M | 18.2 ± 0.4 | 14.2 ± 0.3 | 70.4 ± 4.7 | 4.57 ± 0.28 | 0.77 ± 0.01 | 3.11 | 0.32 |
% | 97.8 | 96.2 | 97.4 | 101.4 | 98.9 | 95.9 | 103.2 | |
KD | M | 15.6 ± 0.3 * | 9.4 ± 0.7 * | 59.9 ± 3.3 * | 4.60 ± 0.21 | 0.60 ± 0.04 * | 2.04 | 0.49 |
% | 83.9 | 64.7 | 82.8 | 102.0 | 77.0 | 63.1 | 158.1 | |
‘Kokarda’ | ||||||||
C | M | 23.9 ± 1.0 | 24.3 ± 1.7 | 90.8 ± 2.8 | 5.80 ± 0.18 | 1.00 ± 0.05 | 4.19 | 0.24 |
% | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | |
ND | M | 21.5 ± 0.8 * | 18.3 ± 1.0 * | 75.2 ± 3.1 * | 5.04 ± 0.23 * | 0.85 ± 0.03 * | 3.63 | 0.28 |
% | 89.9 | 75.6 | 82.8 | 86.9 | 84.7 | 86.6 | 116.7 | |
PD | M | 23.4 ± 0.5 | 22.3 ± 1.6 | 89.1 ± 5.3 | 5.34 ± 0.15 * | 0.94 ± 0.06 | 4.18 | 0.23 |
% | 97.8 | 91.7 | 98.1 | 92.1 | 98.5 | 99.7 | 95.8 | |
KD | M | 22.5 ± 0.5 | 18.7 ± 0.7 * | 79.4 ± 2.1 * | 6.15 ± 0.37 | 0.83 ± 0.03 * | 3.04 | 0.27 |
% | 94.1 | 77.2 | 82.8 | 105.9 | 77.0 | 72.6 | 112.5 |
Option, Value | Chl a (mg/100 g) | Chl b (mg/100 g) | Chl (a+b) (mg/100 g) | Car (mg/100 g) | Ant (mg/100 g) | |
---|---|---|---|---|---|---|
‘Vitaminnyi’ | ||||||
C | M | 28.4 ± 1.9 | 8.4 ± 0.5 | 36.8 ± 2.3 | 10.0 ± 0.5 | 0.44 ± 0.02 |
% | 100 | 100 | 100 | 100 | 100 | |
ND | M | 18.2 ± 1.2 * | 4.9 ± 0.3 * | 23.1 ± 1.7 * | 7.4 ± 0.4 * | 0.73 ± 0.03 * |
% | 64 | 58 | 62 | 74 | 165 | |
PD | M | 25.0 ± 1.5 * | 7.2 ± 0.5 * | 32.2 ± 4.7 | 9.6 ± 0.6 | 0.61 ± 0.03 * |
% | 88 | 86 | 87 | 96 | 138 | |
KD | M | 25.9 ± 1.7 | 7.2 ± 0.5 * | 33.2 ± 2.1 | 9.7 ± 0.6 | 0.62 ± 0.04 * |
% | 91 | 86 | 90 | 97 | 140 | |
‘Kokarda’ | ||||||
C | M | 48.1 ± 3.0 | 16.3 ± 1.2 | 64.4 ± 2.9 | 15.7 ± 1.2 | 3.9 ± 0.2 |
% | 100 | 100 | 100 | 100 | 100 | |
ND | M | 32.2 ± 2.5 * | 10.6 ± 0.8 * | 42.8 ± 3.5 * | 12.0 ± 0.7 * | 4.7 ± 0.3 * |
% | 67 | 65 | 66 | 76 | 121 | |
PD | M | 49.3 ± 2.9 | 15.6 ± 0.9 | 64.9 ± 3.8 | 17.2 ± 1.1 | 4.4 ± 0.2 * |
% | 102 | 96 | 100 | 110 | 113 | |
KD | M | 43.3 ± 2.5 | 13.7 ± 0.8 * | 57.0 ± 3.5 * | 15.8 ± 1.0 | 4.1 ± 0.2 |
% | 90 | 84 | 88 | 100 | 105 |
Reflectance Index | ND | PD | KD | |||
---|---|---|---|---|---|---|
η2 * | p | η2 | p | η2 | p | |
‘Vitaminnyi’ | ||||||
ChlRI | 52.7 ** | <0.0001 | 37.7 | <0.0001 | 20.4 | <0.0001 |
SIPI | 40.2 | <0.0001 | 11.7 | 0.0026 | 3.6 | 0.101 |
R800 | 10.1 | 0.0056 | 10.0 | 0.0057 | 0.01 | 0.93 |
PRI | 18.8 | 0.0001 | 26.9 | <0.0001 | 12.0 | 0.0023 |
ARI | 57.2 | <0.0001 | 47.3 | <0.0001 | 17.9 | 0.0002 |
‘Kokarda’ | ||||||
ChlRI | 50.9 | <0.001 | 32.1 | <0.0001 | 30.7 | <0.0001 |
SIPI | 0.02 | 0.893 | 0.6 | 0.473 | 0.6 | 0.829 |
R800 | 3.5 | 0.091 | 12.8 | 0.0012 | 1.1 | 0.362 |
PRI | 9.7 | 0.005 | 12.0 | 0.0018 | 5.2 | 0.042 |
ARI | 0.3 | 0.865 | 2.1 | 0.202 | 2.6 | 0.157 |
Reflectance Index | ND | PD | KD | |||
---|---|---|---|---|---|---|
η2 * | p | η2 | p | η2 | p | |
‘Vitaminnyi’ | ||||||
ChlRI | 23.2 ** | <0.0002 | 3.8 | 0.111 | 1.4 | 0.313 |
SIPI | 19.0 | 0.0002 | 1.2 | 0.371 | 1.0 | 0.701 |
R800 | 6.2 | 0.041 | 23.4 | <0.0001 | 3.1 | 0.149 |
PRI | 0.9 | 0.90 | 10.9 | 0.006 | 10.0 | 0.009 |
ARI | 22.3 | <0.0001 | 1.0 | 0.407 | 0.9 | 0.756 |
‘Kokarda’ | ||||||
ChlRI | 46.8 | <0.0001 | 0.2 | 0.907 | 0.7 | 0.948 |
SIPI | 1.2 | 0.426 | 3.6 | 0.162 | 0.007 | 0.846 |
R800 | 0.04 | 0.989 | 6.9 | 0.541 | 9.7 | 0.471 |
PRI | 6.5 | 0.058 | 9.8 | 0.018 | 0.005 | 0.989 |
ARI | 1.3 | 0.790 | 1.1 | 0.809 | 6.80 | 0.052 |
FL | ‘Vitaminnyi’ | ‘Kokarda’ | ||||
---|---|---|---|---|---|---|
ND | PD | KD | ND | PD | KD | |
F | 0.110 | 0.463 | 0.115 | 0.027 | 0.115 | 0.027 |
Fm′ | 0.500 | 0.046 | 0.046 | 0.173 | 0.463 | 0.074 |
Y(II) | 0.046 | 0.173 | 0.463 | 0.028 | 0.027 | 0.027 |
Fo′ | 0.027 | 0.074 | 0.027 | 0.600 | 0.463 | 0.685 |
qP | 0.046 | 0.249 | 0.345 | 0.027 | 0.028 | 0.027 |
qN | 0.027 | 0.916 | 0.753 | 0.027 | 0.046 | 0.046 |
qL | 0.043 | 0.248 | 0.225 | 0.028 | 0.027 | 0.027 |
NPQ | 0.027 | 0.916 | 0.753 | 0.028 | 0.046 | 0.046 |
Y(NO) | 0.027 | 0.172 | 0.600 | 0.028 | 0.027 | 0.027 |
Y(NPQ) | 0.027 | 0.753 | 0.753 | 0.074 | 0.046 | 0.074 |
Fo | 0.027 | 0.115 | 0.027 | 0.600 | 0.345 | 0.916 |
Fm | 0.910 | 0.046 | 0.043 | 0.248 | 0.345 | 0.115 |
Fv/Fm | 0.110 | 0.753 | 0.115 | 0.463 | 0.892 | 0.074 |
FL | ‘Vitaminnyi’ | ‘Kokarda’ | ||||
---|---|---|---|---|---|---|
ND | PD | KD | ND | PD | KD | |
F | 0,07 | 0.07 | 0.89 | 0.138 | 0.685 | 0.685 |
Fm′ | 0.07 | 0.13 | 0.89 | 0.138 | 0.345 | 0.892 |
Y(II) | 0.07 | 0.043 | 0.89 | 0.079 | 0.500 | 0.224 |
Fo′ | 0.07 | 0.07 | 0.68 | 0.224 | 0.500 | 0.043 |
qP | 0.07 | 0.043 | 0.89 | 0.079 | 0.345 | 0.225 |
qN | 0.89 | 0.89 | 0.68 | 0.500 | 0.345 | 0.225 |
qL | 0.06 | 0.043 | 0.22 | 0.079 | 0.345 | 0.224 |
NPQ | 0.89 | 0.89 | 0.68 | 0.715 | 0.345 | 0.224 |
Y(NO) | 0.34 | 0.68 | 0.22 | 0.225 | 0.500 | 1.000 |
Y(NPQ) | 0.89 | 0.89 | 0.34 | 0.685 | 0.345 | 0.224 |
Fo | 0.13 | 0.07 | 0.89 | 0.245 | 0.500 | 0.043 |
Fm | 0.13 | 0.22 | 0.89 | 0.138 | 0.685 | 0.685 |
Fv/Fm | 0.50 | 0.50 | 0.50 | 0.893 | 0.893 | 0.079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanash, E.V.; Sinyavina, N.G.; Rusakov, D.V.; Egorova, K.V.; Panova, G.G.; Chesnokov, Y.V. Morpho-Physiological, Chlorophyll Fluorescence, and Diffuse Reflectance Spectra Characteristics of Lettuce under the Main Macronutrient Deficiency. Horticulturae 2023, 9, 1185. https://doi.org/10.3390/horticulturae9111185
Kanash EV, Sinyavina NG, Rusakov DV, Egorova KV, Panova GG, Chesnokov YV. Morpho-Physiological, Chlorophyll Fluorescence, and Diffuse Reflectance Spectra Characteristics of Lettuce under the Main Macronutrient Deficiency. Horticulturae. 2023; 9(11):1185. https://doi.org/10.3390/horticulturae9111185
Chicago/Turabian StyleKanash, Elena V., Nadezhda G. Sinyavina, Dmitryi V. Rusakov, Ksenia V. Egorova, Gayane G. Panova, and Yuriy V. Chesnokov. 2023. "Morpho-Physiological, Chlorophyll Fluorescence, and Diffuse Reflectance Spectra Characteristics of Lettuce under the Main Macronutrient Deficiency" Horticulturae 9, no. 11: 1185. https://doi.org/10.3390/horticulturae9111185
APA StyleKanash, E. V., Sinyavina, N. G., Rusakov, D. V., Egorova, K. V., Panova, G. G., & Chesnokov, Y. V. (2023). Morpho-Physiological, Chlorophyll Fluorescence, and Diffuse Reflectance Spectra Characteristics of Lettuce under the Main Macronutrient Deficiency. Horticulturae, 9(11), 1185. https://doi.org/10.3390/horticulturae9111185