Antioxidant Activity and Mineral Content in Unripe Fruits of 10 Apple Cultivars Growing in the Northern Part of Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Sample Preparation and Extraction
2.3. Assay for Antioxidant Activity
2.3.1. Total Phenolic Content
2.3.2. Total Flavonoid Content
2.3.3. DPPH Free Radical Scavenging Activity
2.3.4. Ferric Reducing Antioxidant Power (FRAP)
2.3.5. Estimation of Vitamin C Levels
2.3.6. Mineral Composition
2.4. Statistical Analysis
3. Results
3.1. Total Phenolic and Flavonoid Contents
3.2. Antioxidant Activity
3.3. Correlation between Phytochemical, Antioxidant Activity and Mineral Contents
3.4. Mineral Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Subbiah, V.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. Phenolic Profiling of Five Different Australian Grown Apples. Appl. Sci. 2021, 11, 2421. [Google Scholar] [CrossRef]
- Francini, A.; Fidalgo-Illesca, C.; Raffaelli, A.; Sebastiani, L. Phenolics and Mineral Elements Composition in Underutilized Apple Varieties. Horticulturae 2021, 8, 40. [Google Scholar] [CrossRef]
- Preti, R.; Tarola, A.M. Study of Polyphenols, Antioxidant Capacity and Minerals for the Valorisation of Ancient Apple Cultivars from Northeast Italy. Eur. Food Res. Technol. 2021, 247, 273–283. [Google Scholar] [CrossRef]
- Aksic, M.F.; Mutic, J.; Tesic, Z.; Meland, M. Evaluation of Fruit Mineral Contents of Two Apple Cultivars Grown in Organic and Integrated Production Systems. In Proceedings of the XXX International Horticultural Congress IHC2018: International Symposium on Cultivars, Rootstocks and Management Systems of 1281, Istanbul, Turkey, 12 August 2018; pp. 59–66. [Google Scholar]
- Kumar, S.; Yadav, A.; Yadav, M.; Yadav, J.P. Effect of Climate Change on Phytochemical Diversity, Total Phenolic Content and in Vitro Antioxidant Activity of Aloe Vera (L.) Burm. f. BMC Res. Notes 2017, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sindhu, R.K.; Goyal, A.; Algın Yapar, E.; Cavalu, S. Bioactive Compounds and Nanodelivery Perspectives for Treatment of Cardiovascular Diseases. Appl. Sci. 2021, 11, 11031. [Google Scholar] [CrossRef]
- Yang, G.; Yu, R.; Geng, S.; Xiong, L.; Yan, Q.; Kumar, V.; Wen, C.; Peng, M. Apple Polyphenols Modulates the Antioxidant Defense Response and Attenuates Inflammatory Response Concurrent with Hepatoprotective Effect on Grass Carp (Ctenopharyngodon Idellus) Fed Low Fish Meal Diet. Aquaculture 2021, 534, 736284. [Google Scholar] [CrossRef]
- Meng, X.; Wang, X.; Han, Y.; He, X.; Zhao, P.; Zhang, J.; Sun, Y.; Chen, L.; Gao, T.; Li, D. Protective Effects of Apple Polyphenols on Bone Loss in Mice with High Fat Diet-Induced Obesity. Food Funct. 2022, 13, 8047–8055. [Google Scholar] [CrossRef]
- Liddle, D.M.; Lin, X.; Ward, E.M.; Cox, L.C.; Wright, A.J.; Robinson, L.E. Apple Consumption Reduces Markers of Postprandial Inflammation Following a High Fat Meal in Overweight and Obese Adults: A Randomized, Crossover Trial. Food Funct. 2021, 12, 6348–6362. [Google Scholar] [CrossRef]
- Manzano, M.; Giron, M.D.; Vilchez, J.D.; Sevillano, N.; El-Azem, N.; Rueda, R.; Salto, R.; Lopez-Pedrosa, J.M. Apple Polyphenol Extract Improves Insulin Sensitivity in Vitro and in Vivo in Animal Models of Insulin Resistance. Nutr. Metab. 2016, 13, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Francescatto, P.; Lordan, J.; Robinson, T. Precision Crop Load Management in Apples. In Proceedings of the XXX International Horticultural Congress IHC2018: International Symposium on Cultivars, Rootstocks and Management Systems of 1281, Istanbul, Turkey, 12 August 2018; pp. 399–406. [Google Scholar]
- Wei, M.; Wang, H.; Ma, T.; Ge, Q.; Fang, Y.; Sun, X. Comprehensive Utilization of Thinned Unripe Fruits from Horticultural Crops. Foods 2021, 10, 2043. [Google Scholar] [CrossRef]
- Assirelli, A.; Giovannini, D.; Cacchi, M.; Sirri, S.; Baruzzi, G.; Caracciolo, G. Evaluation of a New Machine for Flower and Fruit Thinning in Stone Fruits. Sustainability 2018, 10, 4088. [Google Scholar] [CrossRef] [Green Version]
- Jančářová, I.; Jančář, L.; Náplavová, A.; Kubáň, V. Changes of Organic Acids and Phenolic Compounds Contents in Grapevine Berries during Their Ripening. Open Chem. 2013, 11, 1575–1582. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.-Z.; Hwang, I.-W.; Kim, B.-K.; Kim, Y.-C.; Chung, S.-K. Phenolics Enrichment Process from Unripe Apples. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 457–461. [Google Scholar] [CrossRef]
- Sun, L.; Sun, J.; Thavaraj, P.; Yang, X.; Guo, Y. Effects of Thinned Young Apple Polyphenols on the Quality of Grass Carp (Ctenopharyngodon Idellus) Surimi during Cold Storage. Food Chem. 2017, 224, 372–381. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J. Antioxidant Activity Modulated by Polyphenol Contents in Apple and Leaves during Fruit Development and Ripening. Antioxidants 2020, 9, 567. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Anwar, F.; Iqbal, T.; Bhatti, I.A.; Ashraf, M. Mineral Composition of Strawberry, Mulberry and Cherry Fruits at Different Ripening Stages as Analyzed by Inductively Coupled Plasma-Optical Emission Spectroscopy. J. Plant Nutr. 2012, 35, 111–122. [Google Scholar] [CrossRef]
- Czech, A.; Zarycka, E.; Yanovych, D.; Zasadna, Z.; Grzegorczyk, I.; Kłys, S. Mineral Content of the Pulp and Peel of Various Citrus Fruit Cultivars. Biol. Trace Elem. Res. 2020, 193, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.-Y.; Kim, S.-S.; Lee, Y.-M.; Lee, B.-H.; Han, C.-K. Phenolic Compounds Content and Tyrosinase Inhibitory Effect of Unripe Apple Extracts. J. Appl. Biol. Chem. 2010, 53, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Alberti, A.; dos Santos, T.P.M.; Zielinski, A.A.F.; dos Santos, C.M.E.; Braga, C.M.; Demiate, I.M.; Nogueira, A. Impact on Chemical Profile in Apple Juice and Cider Made from Unripe, Ripe and Senescent Dessert Varieties. LWT-Food Sci. Technol. 2016, 65, 436–443. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. ISBN 0076-6879. [Google Scholar]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapur, A.; Hasković, A.; Čopra-Janićijević, A.; Klepo, L.; Topčagić, A.; Tahirović, I.; Sofić, E. Spectrophotometric Analysis of Total Ascorbic Acid Content in Various Fruits and Vegetables. Bull. Chem. Technol. Bosnia Herzeg. 2012, 38, 39–42. [Google Scholar]
- McCleary, B.V.; Murphy, A.; Mugford, D.C. Measurement of Total Fructan in Foods by Enzymatic/Spectrophotometric Method: Collaborative Study. J. AOAC Int. 2000, 83, 356–364. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.-Z.; Kim, Y.-I.; Chung, S.-K. A Profile of Physicochemical and Antioxidant Changes during Fruit Growth for the Utilisation of Unripe Apples. Food Chem. 2012, 131, 106–110. [Google Scholar] [CrossRef]
- Sulaiman, S.F.; Yusoff, N.A.M.; Eldeen, I.M.; Seow, E.M.; Sajak, A.A.B.; Ooi, K.L. Correlation between Total Phenolic and Mineral Contents with Antioxidant Activity of Eight Malaysian Bananas (Musa Sp.). J. Food Compos. Anal. 2011, 24, 1–10. [Google Scholar] [CrossRef]
- Raudone, L.; Raudonis, R.; Liaudanskas, M.; Janulis, V.; Viskelis, P. Phenolic Antioxidant Profiles in the Whole Fruit, Flesh and Peel of Apple Cultivars Grown in Lithuania. Sci. Hortic. 2017, 216, 186–192. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zheng, W. Effect of Plant Growth Temperature on Antioxidant Capacity in Strawberry. J. Agric. Food Chem. 2001, 49, 4977–4982. [Google Scholar] [CrossRef]
- Balasooriya, H.N.; Dassanayake, K.B.; Seneweera, S.; Ajlouni, S. Impact of Elevated Carbon Dioxide and Temperature on Strawberry Polyphenols. J. Sci. Food Agric. 2019, 99, 4659–4669. [Google Scholar] [CrossRef]
- Shamloo, M.; Babawale, E.A.; Furtado, A.; Henry, R.J.; Eck, P.K.; Jones, P.J. Effects of Genotype and Temperature on Accumulation of Plant Secondary Metabolites in Canadian and Australian Wheat Grown under Controlled Environments. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
Source of Variation | ||||
---|---|---|---|---|
Variable | Cultivar | Location | C×L | Error |
TPC | 1946.6 ** | 10,137.920 ** | 327.851 ** | 2.46 |
TFC | 152.295 ** | 506.109 ** | 56.504 ** | 1.09 |
DPPH | 1278.980 ** | 4528.186 ** | 232.064 ** | 2.7 |
FRAP | 57,216.78 ** | 581,496.8 ** | 20,025.1 ** | 10.89 |
VC | 3.315 ** | 9.064 ** | 1.566 ** | 0.02 |
P | 4.513 ** | 0.275 ** | 1.663 ** | 0.02 |
K | 31.732 ** | 6.292 ** | 20.8 ** | 0.19 |
Ca | 19.558 ** | 1.233 ** | 3.2 ** | 0.019 |
Mg | 7.528 ** | 1.077 ** | 1.1 ** | 0.008 |
Jeongseon | Chuncheon | |||
---|---|---|---|---|
Cultivar | TPC | TFC | TPC | TFC |
Arisoo | 9.2 ± 1.6 d | 16.47 ± 0.5 b | 14.28 ± 0.9 g | 11.38 ± 0.3 f |
Fuji | 20.77 ± 2.4 c | 15.16 ± 0.6 b | 45.75 ± 0.4 d | 21.34 ± 0.4 d |
Gamhong | 29.92 ± 0.3 b | 10.19 ± 0.6 c | 69.33 ± 1.8 b | 18.51 ± 1.1 e |
Green Ball | 14.73 ± 1.4 d | 11.56 ± 1.5 c | 60.26 ± 1.3 c | 24.54 ± 0.7 c |
Honggeum | 30.92 ± 0.4 b | 18.83 ± 0.9 a | 69.57 ± 1.3 b | 26.78 ± 2.2 b |
Hongro | 42.18 ± 2 a | 19.24 ± 0.9 a | 81.46 ± 2.6 a | 33.81 ± 0.2 a |
Picnic | 20.80 ± 1.7 c | 15.16 ± 0.4 b | 59.39 ± 0.8 c | 20.91 ± 0.5 d |
Shinano Gold | 12.96 ± 1 d | 14.17 ± 1.7 b | 29.87 ± 0.5 f | 19.78 ± 1.14 d,e |
Summer King | 7.1 ± 0.8 e | 6.8 ± 0.7 d | 8.9 ± 0.6 h | 9.3 ± 1.47 g |
Tsugaru | 7.5 ± 0.3 e | 12.58 ± 0.8 c | 33.62 ± 1 e | 13.18 ± 0.7 f |
Jeongseon | Chuncheon | |||||
---|---|---|---|---|---|---|
Cultivar | DPPH | FRAP | Vitamin C | DPPH | FRAP | Vitamin C |
Arisoo | 30.68 ± 1.8 d,e | 41.99 ± 0.4 f | 1.6 ± 0.1 e | 40.58 ± 0.6 g | 115.73 ± 0.5 h | 0.8 ± 0.07 f |
Fuji | 33.65 ± 0.5 d | 50.41 ± 2.03 e | 1.7 ± 0.02 c | 55.58 ± 0.4 d | 340.01 ± 1.6 c | 3 ± 0.3 c |
Gamhong | 28.87 ± 1.5 e | 23.68 ± 0.2 g | 1.2 ± 0.01 f | 66.98 ± 0.4 b,c | 276.81 ± 3.5 e | 2.2 ± 0.03 d,e |
Green Ball | 30.23 ± 4.4 de | 54.30 ± 1.9 e | 1.6 ± 0.04 d,e | 66.2 ± 0.3 c | 323.64 ± 3.5 d | 2.3 ± 0.01 d |
Honggeum | 60.02 ± 2.1 b | 185.69 ± 4.3 a | 1.9 ± 0.02 b | 68.53 ± 1.6 b | 371.12 ± 2.9 b | 4.9 ± 0.1 a |
Hongro | 73.24 ± 0.7 a | 158.63 ± 3.3 b | 2.8 ± 0.03 a | 82.58 ± 0.04 a | 562 ± 5.5 a | 3.3 ± 0.06 b |
Picnic | 48.92 ± 1.1 c | 107.93 ± 4.4 c | 1.7 ± 0.05 c,d,e | 66.56 ± 2.3 c | 326.39 ± 3.4 d | 1.9 ± 0.07 e |
Shinano Gold | 33.71 ± 2.7 d | 65.80 ± 3.5 d | 1.8 ± 0.01 c | 51.18 ± 0.9 e | 220.74 ± 4.8 f | 2.4 ± 0.1 d |
Summer King | 29.73 ± 1.2 e | 26.76 ± 0.5 g | 1.1 ± 0.12 f | 27.17 ± 0.1 h | 33.54 ± 1.4 i | 1.1 ± 0.07 f |
Tsugaru | 29.79 ± 1.8 e | 36.8 ± 2.2 f | 1.7 ± 0.05 c,d,e | 46.53 ± 1.2 f | 150.89 ± 0.0 g | 3.06 ± 0.4 c |
TPC | TFC | DPPH | FRAP | VC | P | K | C | Mg | |
---|---|---|---|---|---|---|---|---|---|
TPC | |||||||||
TFC | 0.831 ** | ||||||||
DPPH | 0.895 ** | 0.851 ** | |||||||
FRAP | 0.916 ** | 0.901 ** | 0.890 ** | ||||||
VC | 0.710 ** | 0.589 ** | 0.683 ** | 0.712 ** | |||||
P | 0.357 | 0.288 | 0.326 | 0.468 * | 0.182 | ||||
K | 0.220 | 0.232 | 0.220 | 0.301 | 0.064 | 0.847 ** | |||
C | 0.222 | 0.187 | 0.270 | 0.358 | −0.008 | 0.719 ** | 0.596 ** | ||
Mg | 0.077 | 0.066 | 0.176 | 0.244 | −0.083 | 0.741 ** | 0.605 ** | 0.956 ** |
Jeongseon | Chuncheon | |||||||
---|---|---|---|---|---|---|---|---|
Cultivar | Phosphorus z | Potassium | Calcium | Magnesium | Phosphorus | Potassium | Calcium | Magnesium |
Arisoo | 67.6 ± 0.2 c | 212.1 ± 1.4 c | 63.4 ± 0.1 b | 45.4 ± 0.2 c | 58.1 ± 1.4 e | 178.7 ± 1.4 d | 42.8 ± 0.1 d | 33.1 ± 0.7 d |
Fuji | 54.9 ± 0.3 e | 161.6 ± 1.8 g | 49.2 ± 0.4 e | 44.3 ± 0.1 c | 60.5 ± 0.6 d,e | 162.0 ± 2.9 e | 47.5 ± 0.1 c | 37.5 ± 1.2 c |
Gamhong | 55.5 ± 0.1 d,e | 168.9 ± 0.3 f | 44.2 ± 0.4 f | 42.6 ± 0.4 d | 63.5 ± 0.2 b,c | 198.3 ± 3.9 c | 57.6 ± 0.2 b | 45.9 ± 0.3 b |
Green Ball | 72.0 ± 0.3 b | 240.7 ± 0.2 a | 61.1 ± 0.7 c | 49.4 ± 0.9 b | 64.4 ± 0.2 b | 217.4 ± 4.2 a | 45.5 ± 0.8 c,d | 37.4 ± 0.2 c |
Honggeum | 54.3 ± 0.3 e | 180.4 ± 5.4 e | 31.7 ± 0.8 g | 29.3 ± 0.5 e | 61.2 ± 0.5 c,d | 190.4 ± 3.8 c | 46.9 ± 0.9 c | 36.6 ± 0.1 c |
Hongro | 52.8 ± 3.1 e | 183.1 ± 0.4 e | 28.2 ± 0.6 h | 27.7 ± 0.4 f | 64.1 ± 0.4 b | 208.1 ± 3.2 b | 44.7 ± 0.9 c,d | 32.3 ± 0.1 d |
Picnic | 58.3 ± 0.2 d | 200.5 ± 0.2 d | 80.0 ± 0.0 a | 58.1 ± 0.1 a | 71.7 ± 0.3 a | 218.3 ± 3.0 a | 100.7 ± 2.6 a | 66.9 ± 0.4 a |
Shinano Gold | 75.5 ± 0.2 a | 231.2 ± 0.6 b | 51.6 ± 0.2 d | 49.0 ± 0.6 b | 62.3 ± 1.9 b,c,d | 178.7 ± 1.3 d | 46.8 ± 0.1 c | 36.3 ± 0.2 c |
Summer King | 48.8 ± 0.0 f | 201.1 ± 0.0 d | 29.3 ± 0.3 h | 26.9 ± 0.0 f | 37.4 ± 0.0 g | 134.1 ± 2.1 f | 21.3 ± 0.4 f | 18.6 ± 0.0 f |
Tsugaru | 40.3 ± 0.1 g | 135.4 ± 0.2 h | 22.4 ± 0.1 i | 26.7 ± 0.2 f | 50.6 ± 0.5 f | 171.4 ± 3.2 d | 35.9 ± 0.5 e | 28.2 ± 0.3 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geleta, B.T.; Lee, J.-C.; Heo, J.-Y. Antioxidant Activity and Mineral Content in Unripe Fruits of 10 Apple Cultivars Growing in the Northern Part of Korea. Horticulturae 2023, 9, 114. https://doi.org/10.3390/horticulturae9010114
Geleta BT, Lee J-C, Heo J-Y. Antioxidant Activity and Mineral Content in Unripe Fruits of 10 Apple Cultivars Growing in the Northern Part of Korea. Horticulturae. 2023; 9(1):114. https://doi.org/10.3390/horticulturae9010114
Chicago/Turabian StyleGeleta, Birtukan Tolera, Je-Chang Lee, and Jae-Yun Heo. 2023. "Antioxidant Activity and Mineral Content in Unripe Fruits of 10 Apple Cultivars Growing in the Northern Part of Korea" Horticulturae 9, no. 1: 114. https://doi.org/10.3390/horticulturae9010114
APA StyleGeleta, B. T., Lee, J. -C., & Heo, J. -Y. (2023). Antioxidant Activity and Mineral Content in Unripe Fruits of 10 Apple Cultivars Growing in the Northern Part of Korea. Horticulturae, 9(1), 114. https://doi.org/10.3390/horticulturae9010114