In Vitro Propagation of Caper (Capparis spinosa L.): A Review
Abstract
:1. Introduction
1.1. Geographic Distribution, Botanical Classification, and Ecological Characteristics of Caper
1.2. Economic Importance and Medicinal Uses
2. Conventional Propagation of Caper
2.1. Propagation by Seeds
2.2. Propagation by Stem Cuttings
3. Caper Propagation by Tissue Culture
3.1. In Vitro Seed Germination and Seedling Development
3.1.1. Surface Disinfection and Culture Medium
3.1.2. Seed Germination
3.1.3. Seedling Growth and Plantlet Acclimatization
3.2. Caper Propagation by Microcuttings
3.2.1. Plant Material and Culture Medium
3.2.2. Surface Disinfection
3.2.3. Shoot Multiplication and Elongation
3.2.4. In Vitro Rhizogenesis of Caper Microshoots
3.2.5. Plantlet Acclimatization
3.3. Caper Propagation by Organogenesis
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fici, S. Intraspecific variation and evolutionary trends in Capparis spinosa L. (Capparaceae). Plant Syst. Evol. 2001, 228, 123–141. [Google Scholar] [CrossRef]
- Zohary, M. The species of Capparis in the Mediterranean and the Near Eastern countries. Bull. Res. Counc. Isr. 1960, 8D, 49–64. [Google Scholar]
- Inocencio, C.; Rivera, D.; Concepción Obón, M.; Alcaraz, F.; Barreña, J.-A. A systematic revision of Capparis section Capparis (Capparaceae) 1, 2. Ann. Mo. Bot. Gard. 2006, 93, 122–149. [Google Scholar] [CrossRef]
- Danin, A. Capparis in the East Mediterranean countries. Fl. Medit. 2010, 20, 179–185. [Google Scholar]
- Gristina, A.S.; Fici, S.; Siragusa, M.; Fontana, I.; Garfì, G.; Carimi, F. Hybridization in Capparis spinosa L.: Molecular and morphological evidence from a Mediterranean island complex. Flora Morphol. Distrib. Funct. Ecol. Plants 2014, 209, 733–741. [Google Scholar] [CrossRef]
- Jiang, H.E.; Li, X.; Ferguson, K.D.; Wang, Y.F.; Liu, C.J.; Li, C.S. The discovery of Capparis spinosa L. (Capparidaceae) in the Yanghai Tombs (2800 years b.p.), NW China, and its medicinal implications. J. Ethnopharmacol. 2007, 113, 409–420. [Google Scholar] [CrossRef]
- Faran, M. Capparis spinosa—The plant on the wall. In Medicinal and Aromatic Plants of the Middle-East (Medicinal and Aromatic Plants of the World); Yaniv, Z., Dudai, N., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 59–65. [Google Scholar]
- Rhimi, A.; Hannachi, H.; Hjaoujia, S.; Yousfi, H.; Boussaid, M. In vitro germination and seedling development of Tunisian caper (Capparis spinosa L.). Int. J. Agron. Agri. Res. 2017, 10, 1–8. [Google Scholar]
- Carra, A.; Del Signore, M.B.; Sottile, F.; Ricci, A.; Carimi, F. Potential use of new diphenylurea derivatives in micropropagation of Capparis spinosa L. Plant Growth Regul. 2012, 66, 229–237. [Google Scholar] [CrossRef]
- Inocencio, C.; Cowan, R.S.; Alcaraz, F.; Rivera, D.; Fay, F.M. AFLP fingerprinting in Capparis subgenus Capparis related to the commercial sources of capers. Genet. Resour. Crop. Evol. 2005, 52, 137–144. [Google Scholar] [CrossRef]
- Kdimy, A.; El Yadini, M.; Guaâdaoui, A.; Bourais, I.; El Hajjaji, S.; Le, H.V. Phytochemistry, biological activities, therapeutic potential, and socio-economic value of caper (Capparis spinosa L.). ChemRxiv 2022. [Google Scholar] [CrossRef]
- Kereša, S.; Stanković, D.; Lodeta, K.B.; Jerčić, I.H.; Bolarić, S.; Barić, M.; Mihovilović, A.B. Efficient protocol for the in vitro plantlet production of caper (Capparis orientalis Veill.) from the East Adriatic coast. Agronomy 2019, 9, 303. [Google Scholar] [CrossRef]
- Lakrimi, M. Le caprier. Transfert Technol. Agri. 1997, 37, 1–4. [Google Scholar]
- Moghaddasi, S.M.; Haddad Kashani, H.; Azarbad, Z. Capparis spinosa L. propagation and medicinal uses. Life Sci. J. 2012, 9, 684–686. [Google Scholar]
- Ramezani-Gask, M.; Bahrani, M.J.; Shekafandeh, A.; Salehi, H.; Taghvaei, M.; Al-Ahmadi, M.J. A comparison of different propagation methods of common Caper-bush (Capparis spinosa L.) as a new horticultural crop. Int. J. Plant Dev. Biol. 2008, 2, 106–110. [Google Scholar]
- Gianguzzi, V.; Barone, E.; Sottile, A.F. In vitro rooting of Capparis spinosa L. as affected by genotype and by the proliferation method adopted during the multiplication phase. Plants 2020, 9, 398. [Google Scholar] [CrossRef] [PubMed]
- Chalak, L.; Elbitar, A.; Cordahi, N.; Hage, C.; Chehade, A. In vitro propagation of Capparis spinosa L. Acta Hortic. 2003, 616, 335–338. [Google Scholar] [CrossRef]
- Chalak, L.; Elbitar, A. Micropropagation of Capparis spinosa L. subsp. Rupestris Sibth. & Sm. by nodal cuttings. Indian J. Biotechnol. 2006, 5, 555–558. [Google Scholar]
- Hegazi, G.; Eid, S.; Sharaf, A.E.M. Micropropagation for conservation of two rare Capparis species from Egypt 1. Catrina 2011, 6, 29–39. [Google Scholar]
- El-Mekawy, M.A.; Ali, M.A.M.; Belal, A.H.; Abdallah, S.A.S. Micropropagation of caper (Capparis spinosa, L.) from wild plants growing in North Sinai. Hortsci. J. Suez Canal Univ. 2013, 1, 15–20. [Google Scholar] [CrossRef]
- Mehrabani, V. In vitro micropropagation of two native Capparis spinosa L. cultivars from Iran. Bio. Forum Int. J. 2016, 8, 144–149. [Google Scholar]
- Attia, A.; Dessoky, E.D.S.; Al-Sodany, Y.M.; Ismail, I.A. Ex situ preservation for some endemic and rare medicinal plants in Taif, KSA. Biotechnol. Biotechnol. Equip. 2017, 31, 912–920. [Google Scholar] [CrossRef]
- Gianguzzi, V.; Inglese, P.; Barone, E.; Sottile, F. In vitro regeneration of Capparis spinosa L. by using a temporary immersion system. Plants 2019, 8, 177. [Google Scholar] [CrossRef] [PubMed]
- Chedraoui, S.; Abi-Rizk, A.; El-Beyrouthy, M.; Chalak, L.; Ouaini, N.; Rajjou, L. Capparis spinosa L. in a systematic review: A xerophilous species of multi values and promising potentialities for agrosystems under the threat of global warming. Front. Plant. Sci. 2017, 8, 1845. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.; Seyedi, N.; Maghsoudi, S.; Nejad, M.S.; Sheibani, H. Green synthesis of Ag nanoparticles on the modified grapheme oxide using Capparis spinosa fruit extract for catalytic reduction of organic dyes. Inorg. Chem. Commun. 2021, 123, 108327. [Google Scholar] [CrossRef]
- Alkire, B. Capers; Center for New Crops and Plants Products: West Lafayette, IN, USA, 1998. [Google Scholar]
- Rivera, D.; Inocencio, C.; Obon, C.; Alcaraz, F. Review of food and medicinal uses of Capparis L. subgenus Capparis (Capparidaceae). Econ. Bot. 2003, 57, 515–534. [Google Scholar] [CrossRef]
- Hall, J.C.; Sytsma, K.J.; Iltis, H.H. Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Am. J. Bot. 2002, 89, 1826–1842. [Google Scholar] [CrossRef] [PubMed]
- Tlili, N.; Khaldi, A.; Triki, S.; Munné-Bosch, S. Phenolic compounds and vitamin antioxidants of caper (Capparis spinosa). Plant Foods Hum. Nutr. 2010, 65, 260–265. [Google Scholar] [CrossRef]
- Bennoune, L.; Bouteldja, N.; Chebah, S.; Akkouche, Z. Etude Bibliographique de Quelques Activités Biologiques de Différentes Parties du Câprier. Master’s Thesis, Jihel University, Jijel, Algeria, 2012. [Google Scholar]
- Saifi, N.; Ibijbijen, J.; Echchgadda, G. Caractérisation morphologique et identification taxonomique du câprier (Capparis spp.) dans les régions de Fès, Taounate et My Idriss Zerhoune. In Proceedings of the International Congress of ‘Institut National des Plantes Médicinales et Aromatiques’, Fes, Morocco, 22–24 March 2007. [Google Scholar]
- Fici, S. A taxonomic revision of the Capparis spinosa group (Capparaceae) from the Mediterranean to Central Asia. Phytotaxa 2014, 174, 1–24. [Google Scholar] [CrossRef]
- Rakhimova, T.; Vaisova, G.B.; Rakhimova, N.K.; Matkarimova, A. Phytocoenotic distribution of Capparis spinosa L. (Capparaceae) under different ecological conditions in Uzbekistan. Ann. Romanian Soc. Cell Biol. 2021, 25, 7882–7895. [Google Scholar]
- Ibnou Ali El Alaoui, M. Etude de la diversité génétique chez le câprier (Capparis spp.) au Maroc. Périodique D’information Du Cent. Régional De La Rech. Agron. De Meknès 2015. Available online: https://mag.inrameknes.info/?p=886 (accessed on 15 March 2022).
- Benseghir-Boukhari, L.A.; Seridi, R. Le câprier, une espèce arbustive pour le développement rural durable en Algérie. Méditerranée 2007, 109, 101–105. [Google Scholar] [CrossRef]
- Aliyazicioglu, R.; Eyupoglu, O.E.; Sahin, H.; Yildiz, O.; Baltas, N. Phenolic components, antioxidant activity, and mineral analysis of Capparis spinosa L. Afr. J. Biotechnol. 2013, 12, 6643–6649. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Z.F. Phytochemical and pharmacological properties of Capparis spinosa as a medicinal plant. Nutrients 2018, 10, 116. [Google Scholar] [CrossRef] [PubMed]
- Mollica, A.; Stefanucci, A.; Macedonio, G.; Locatelli, M.; Luisi, G.; Novellino, E.; Zengin, G. Chemical composition and biological activity of Capparis spinosa L. from Lipari Island. S. Afr. J. Bot. 2019, 120, 135–140. [Google Scholar] [CrossRef]
- Eddouks, M.; Lemhadri, A.; Michel, J.B. Hypolipidemic activity of aqueous extract of Capparis spinosa L. in normal and diabetic rats. J. Ethnopharmacol. 2005, 98, 345–350. [Google Scholar] [CrossRef]
- Ali, Z.N.; Eddouks, M.; Michel, J.B.; Sulpice, T.; Hajji, L. Cardiovascular effect of Capparis spinosa aqueous extract. Part III: Antihypertensive effect in spontaneously hypertensive rats. Am. J. Pharmacol. Toxicol. 2007, 2, 111–115. [Google Scholar] [CrossRef]
- Boga, C.; Forlani, L.; Calienni, R.; Hindley, T.; Hochkoeppler, A.; Tozzi, S.; Zanna, N. On the antibacterial activity of roots of Capparis spinosa L. Nat. Prod. Res. 2011, 25, 417–421. [Google Scholar] [CrossRef]
- Gull, T.; Sultana, B.; Bhatti, I.A.; Jamil, A. Antibacterial potential of Capparis spinosa and Capparis decidua extracts. Int. J. Agric. Biol. 2015, 17, 727–733. [Google Scholar] [CrossRef]
- Hamuti, A.; Li, J.; Zhou, F.; Aipire, A.; Ma, J.; Yang, J.; Li, J. Capparis spinosa fruit ethanol extracts exert different effects on the maturation of dendritic cells. Molecules 2017, 22, 97. [Google Scholar] [CrossRef]
- Al-Azawi, A.H.; Ghaima, K.K.; Hawazen, H.S. Phytochemical, antibacterial and antioxidant activities of Capparis spinosa L. cultivated in Iraq. Biosci. Res. 2018, 15, 2611–2618. [Google Scholar]
- Barbera, G. Il Cappero; Edagricole: Bologna, Italy, 1993. [Google Scholar]
- Bahrani, M.J.; Gask, M.R.; Shekafandeh, A.; Taghvaei, M. Seed germination of wild caper (Capparis spinosa L., var. parviflora) as affected by dormancy breaking treatments and salinity levels. Seed Sci. Technol. 2008, 36, 776–780. [Google Scholar] [CrossRef]
- Caglar, C.; Caglar, S.; Ergin, O.; Yarim, M. The influence of growth regulators on shoot proliferation and rooting of in vitro propagated caper. J. Environ. Biol. 2005, 26, 479–485. [Google Scholar]
- Mazri, M.A.; Koufan, M.; Moussafir, S.; Essatte, A.; Belkoura, I. Recent advances in argan propagation: A review. Trees 2022, in press. [Google Scholar] [CrossRef]
- Orphanos, P.I. Germination of caper (Capparis spinosa L.) seeds. J. Hortic. Sci. 1983, 58, 267–270. [Google Scholar] [CrossRef]
- Sozzi, G.O.; Chiesa, A. Improvement of caper (Capparis spinosa L.) seed germination by breaking seed coat-induced dormancy. Sci. Hortic. 1995, 62, 255–261. [Google Scholar] [CrossRef]
- Suleiman, M.K.; Bhat, N.R.; Abdal, M.S.; Jacob, S.; Thomas, R.R.; Al-Dossery, S.; Bellen, R. Germination studies of Capparis spinosa L. Propag. Ornam. Plants 2009, 9, 35–38. [Google Scholar]
- Arefi, I.H.; Nejad, S.K.; Kafi, M. Roles of duration and concentration of priming agents on dormancy breaking and germination of caper (Capparis spinosa L.) for the protection of arid degraded areas. Pak. J. Bot. 2012, 44, 225–230. [Google Scholar]
- Labbafi, M.R.; Mehrafarin, A.; Badi, H.N.; Ghorbani, M.; Tavakoli, M. Improve germination of caper (Capparis spinosa L.) seeds by different induction treatments of seed dormancy breaking. Trakia J. Sci. 2018, 16, 70–74. [Google Scholar] [CrossRef]
- Saifi, N.; Echchgadda, G.; Nassiri, L.; Ibijbijen, J. Ability to root formation and germination of some Moroccan ecotypes of caper (Capparis spp.). Sci. Lib. 2014, 6, 141201. [Google Scholar]
- Ibáñez, A.J. Estudio Para la Mejora de la Propagación de la Alcaparra Mediante Estaquillas. Ph.D. Thesis, Universitat Politècnica de València, València, Spain, 2015. [Google Scholar]
- Ghorbel, A.; Ben Salem, F.A.; Khouildi, S.; Skouri, H.; Chibani, F. Le câprier: Caractérisation et multiplication. In Des Modèles Biologiques à l’Amélioration des Plantes; Hamon, S., Ed.; AUF: Paris, France, 2001; pp. 157–172. [Google Scholar]
- Germanà, M.; Chiancone, B. In vitro germination and seedling development of caper (Capparis spinosa L.) mature seeds. Acta Hortic. 2009, 839, 181–186. [Google Scholar] [CrossRef]
- Koufan, M.; Belkoura, I.; Mazri, M.A.; Amarraque, A.; Essatte, A.; Elhorri, H.; Zaddoug, F.; Alaoui, T. Determination of antioxidant activity, total phenolics and fatty acids in essential oils and other extracts from callus culture, seeds and leaves of Argania spinosa (L.) Skeels. Plant Cell Tissue Organ Cult. 2020, 141, 217–227. [Google Scholar] [CrossRef]
- Koufan, M.; Mazri, M.A.; Essatte, A.; Moussafir, S.; Belkoura, I.; El Rhaffari, L.; Toufik, I. A novel regeneration system through micrografting for Argania spinosa (L.) Skeels, and confirmation of successful rootstock-scion union by histological analysis. Plant Cell Tissue Organ Cult. 2020, 142, 369–378. [Google Scholar] [CrossRef]
- Abbasi Khalaki, M.; Moameri, M.; Asgari Lajayer, B.; Astatkie, T. Influence of Nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regul. 2021, 93, 13–28. [Google Scholar] [CrossRef]
- Amghar, I.; Diria, G.; Boumlik, I.; Gaboun, F.; Iraqi, D.; Labhilili, M.; Mentag, R.; Meziani, R.; Mazri, M.A.; Ibriz, M.; et al. An efficient regeneration pathway through adventitious organogenesis for the endangered Argania spinosa (L.) Skeels. Vegetos 2021, 34, 355–367. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–479. [Google Scholar] [CrossRef]
- Hernández-Muñoz, S.; Pedraza-Santos, M.E.; López, P.A.; De La Cruz-Torres, E.; Martínez-Palacios, A.; Fernández-Pavía, S.P.; Chávez-Bárcenas, A.T. Estimulación de la germinación y desarrollo in vitro de Laelia autumnalis con rayos gamma. Rev. Fitotec. Mex. 2017, 40, 271–283. [Google Scholar] [CrossRef]
- Ngoenngam, L.; Pongtongkam, P.; Arananant, J.; Poeaim, S.; Poeam, A. In vitro effect of gamma irradiation and plant growth regulators (PGRs) for induction and development of Stylosanthes hamata cv. Verano. Int. J. Agric. Technol. 2019, 15, 63–74. [Google Scholar]
- Al-Safadi, B.; Elias, R. Improvement of caper (Capparis spinosa L.) propagation using in vitro culture and gamma irradiation. Sci. Hortic. 2011, 127, 290–297. [Google Scholar] [CrossRef]
- Graeber, K.; Nakabayashi, K.; Miatton, E.; Leubner-Metzger, G.; Soppe, W.J.J. Molecular mechanisms of seed dormancy. Plant Cell. Environ. 2012, 35, 1769–1786. [Google Scholar] [CrossRef]
- Miransari, M.; Smith, D.L. Plant hormones and seed germination. Environ. Exp. Bot. 2014, 99, 110–121. [Google Scholar] [CrossRef]
- Kosakivska, I.V.; Voytenko, L.V.; Vasyuk, V.A.; Vedenichova, N.P.; Babenko, L.M.; Shcherbatyuk, M.M. Phytohormonal regulation of seed germination. Fiziol. Rast. Genet. 2019, 51, 187–206. [Google Scholar] [CrossRef]
- Gaspar, T.; Kevers, C.; Penel, C.; Greppin, H.; Reid, D.M.; Thorpe, T.A. Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell. Develop. Biol. Plant 1996, 32, 272–289. [Google Scholar] [CrossRef]
- Gentile, A.; Jàquez Gutiérrez, M.; Martinez, J.; Frattarelli, A.; Nota, P.; Caboni, E. Effect of meta-Topolin on micropropagation and adventitious shoot regeneration in Prunus rootstocks. Plant Cell Tissue Organ Cult. 2014, 118, 373–381. [Google Scholar] [CrossRef]
- Deb, G.; Sultana, S.; Bhuiyan, M.S.U.; Sarker, K.K.; Papry, A.S. In vitro plant regeneration of wild eggplant (Solanum sisymbriifolium) to produce large number of rootstocks for tomato grafting. J. Adv. Biotechnol. Exp. Ther. 2019, 2, 65–72. [Google Scholar] [CrossRef]
- Ahmad, A.; Ahmad, N.; Anis, M.; Alatar, A.A.; Abdel-Salam, E.M.; Qahtan, A.A.; Faisal, M. Gibberellic acid and thidiazuron promote micropropagation of an endangered woody tree (Pterocarpus marsupium Roxb.) using in vitro seedlings. Plant Cell Tiss. Organ Cult. 2021, 144, 449–462. [Google Scholar] [CrossRef]
- Bicalho, E.M.; Pintó-Marijuan, M.; Morales, M.; Müller, M.; Munné-Bosch, S.; Garcia, Q.S. Control of macaw palm seed germination by the gibberellin/abscisic acid balance. Plant Biol. 2015, 17, 990–996. [Google Scholar] [CrossRef]
- Song, Q.; Cheng, S.; Chen, Z.; Nie, G.; Xu, F.; Zhang, J.; Zhou, M.; Zhang, W.; Liao, Y.; Ye, J. Comparative transcriptome analysis revealing the potential mechanism of seed germination stimulated by exogenous gibberellin in Fraxinus hupehensis. BMC Plant Biol. 2019, 19, 199. [Google Scholar] [CrossRef]
- Van Staden, J.; Zazimalova, E.; George, E.F. Plant growth regulators II: Cytokinins, their analogues and antagonists. In Plant Propagation by Tissue Culture; George, E.F., Hall, M.A., De Klerk, G.-J., Eds.; Springer: Basel, Switzerland, 2008; Volume 1, pp. 205–226. [Google Scholar]
- Mazri, M.A.; Belkoura, I.; Meziani, R. Use of TDZ for micropropagation of some Mediterranean crop species. In Thidiazuron: From Urea Derivative to Plant Growth Regulator; Ahmad, N., Faisal, M., Eds.; Springer: Singapore, 2018; pp. 115–137. [Google Scholar]
- Heydariyan, M.; Basirani, N.; Sharifi-Rad, M.; Khmmari, I.; Rafat Poor, S. Effect of seed priming on germination and seedling growth of the caper (Capparis Spinosa) under drought stress. Int. J. Adv. Biol. Biomed. Res. 2014, 2, 2381–2389. [Google Scholar]
- Rodriguez, R.; Rey, M.; Cuozzo, L.; Ancora, G. In vitro propagation of caper (Capparis spinosa L.). In Vitro Cell. Develop. Biol. Plant 1990, 26, 531–536. [Google Scholar] [CrossRef]
- Linsmaier, E.M.; Skoog, F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 1965, 18, 100–127. [Google Scholar] [CrossRef]
- Nitsch, J.P.; Nitsch, C. Haploid plants from pollen grains. Science 1969, 163, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, G.; McCown, B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb. Proc. Int. Plant Propagators Soc. 1980, 30, 421–427. [Google Scholar]
- Rugini, E.; Verma, D.C. Micropropagation of difficult-to-propagate almond (Prunus amygdalus, Batsch.) cultivar. Plant Sci. Lett. 1983, 28, 273–281. [Google Scholar] [CrossRef]
- Sottile, F.; Giuggioli, N.R.; Marinoni, D.T.; Peano, C.; Del Signore, M.B. Selection and micropropagation of valuable caper genotypes. Hortic. Sci. 2020, 47, 110–116. [Google Scholar] [CrossRef]
- Koufan, M.; Belkoura, I.; Alaoui, T. The multiplication of the argane tree by microcutting (Argania spinosa L. Skeels). Eur. J. Biotechnol. Biosci. 2018, 6, 47–52. [Google Scholar]
- Parra, R.; Amo-Marco, J.B. Effect of plant growth regulators and basal media on in vitro shoot proliferation and rooting of Myrtus communis L. Biol. Plant 1996, 38, 161–168. [Google Scholar] [CrossRef]
- Nowakowska, K.; Pacholczak, A.; Tepper, W. The effect of selected growth regulators and culture media on regeneration of Daphne mezereum L. ‘Alba’. Rend. Lincei. Sci. Fis. Nat. 2019, 30, 197–205. [Google Scholar] [CrossRef]
- Kulus, D. Influence of growth regulators on the development, quality, and physiological state of in vitro-propagated Lamprocapnos spectabilis (L.) Fukuhara. In Vitro Cell. Develop. Biol.-Plant 2020, 56, 447–457. [Google Scholar] [CrossRef]
- Musallam, I.; Duwayri, M.; Shibli, R.A. Micropropagation of caper (Capparis spinosa L.) from wild plants. Funct. Plant Sci. Biotechnol. 2011, 5, 17–21. [Google Scholar]
- Mazri, M.A. Effect of liquid media and in vitro pre-acclimatization stage on shoot elongation and acclimatization of date palm (Phoenix dactylifera L.) cv. Najda. J. Ornament. Hortic. Plants 2012, 2, 225–231. [Google Scholar]
- Mazri, M.A.; Meziani, R. An improved method for micropropagation and regeneration of date palm (Phoenix dactylifera L.). J. Plant Biochem. Biotechnol. 2013, 22, 176–184. [Google Scholar] [CrossRef]
- Meziani, R.; Mazri, M.A.; Arhazzal, M.; Belkoura, I.; Alem, C.; Jaiti, F. Evaluation of in vitro shoot elongation and rooting of date palm, and determination of physiological characteristics of regenerated plantlets. Not. Sci. Biol. 2019, 11, 77–85. [Google Scholar] [CrossRef]
- Mazri, M.A.; Meziani, R.; Elmaataoui, S.; Alfeddy, M.N.; Jait, F. Assessment of genetic fidelity, biochemical and physiological characteristics of in vitro grown date palm cv. Al-Fayda. Vegetos 2019, 32, 333–344. [Google Scholar] [CrossRef]
- Mazri, M.A.; Meziani, R.; El Bakouri, Z. Cost analysis of date palm (cv. Mejhoul) plantlets produced by organogenesis in Morocco. Plant Cell Tissue Organ. Cult. 2021, 146, 409–415. [Google Scholar] [CrossRef]
- Amghar, I.; Ibriz, M.; Ibrahimi, M.; Boudra, A.; Gaboun, F.; Meziani, R.; Iraqi, D.; Mazri, M.A.; Diria, G.; Abdelwahd, R. In vitro root induction from argan (Argania spinosa (L.) Skeels) adventitious shoots: Influence of ammonium nitrate, auxins, silver nitrate and putrescine, and evaluation of plantlet acclimatization. Plants 2021, 10, 1062. [Google Scholar] [CrossRef] [PubMed]
- Movafeghi, A.; Ghader, H.; Aliasgharpour, M. Regeneration of Capparis spinosa L. using hypocotyl explants. Iran. J. Biol. 2008, 21, 289–297. [Google Scholar]
- Elmaghrabi, A.M.; Abunghnia, E.; Hamoud, S. In vitro propagation of the wild medicinal plant, caper (Capparis spinosa L.). Afr. J. Biotechnol. 2017. Available online: https://www.researchgate.net/profile/Adel-Elmaghrabi/publication/319687304_In_vitro_propagation_via_wild_medicinal_plants_of_Caper_Capparis_spinosa_L/links/59b97ed0a6fdcc6872314444/In-vitro-propagation-via-wild-medicinal-plants-of-Caper-Capparis-spinosa-L.pdf (accessed on 15 March 2022).
- Fahmideh, L.; Sheikhi, M.; Benakashani, F.; Solouki, M. Callus induction and organogenesis from various explants of Capparis spinosa L. plant under in vitro conditions. J. Plant Prod. 2019, 26, 75–88. [Google Scholar] [CrossRef]
Pretreatment | Germination Medium | PGRs | Culture Conditions | Germination Percentage (%) | Reference |
---|---|---|---|---|---|
H2SO4 for 20 min with scratching | MS | PGR-free | Darkness, 25 °C | 46% | Al-Safadi and Elias [65] |
Gamma irradiation (a 100 Gray dose) | MS | PGR-free | Darkness, 25 °C | 50% | |
H2SO4 for 30 min followed by soaking in 2000 mg L−1 GA3 for 48 h | MS | PGR-free | 16 h photoperiod, 22 °C | 75% | Rhimi et al. [8] |
Sterile distilled water | PGR-free | 16 h photoperiod, 22 °C | 62.5% | ||
Scarification | MS | PGR-free | 16 h photoperiod, 26 °C | 71% | Chalak et al. [17] |
Sterile distilled water | PGR-free | 16 h photoperiod, 26 °C | 64% | ||
Imbibition in 20 ppm GA3 | MS | 0.4 mg L−1 NAA + 0.45 mg L−1 BAP + 0.7 mg L−1 GA3 | 16 h photoperiod, 27 °C | 32.1% | Germanà and Chiancone [57] |
Hot temperature (40 °C) for 1 h | MS | 0.4 mg L−1 NAA + 0.45 mg L−1 BAP + 0.7 mg L−1 GA3 | 16 h photoperiod, 27 °C | 80.4% |
Bud Break/ Culture Initiation Medium | Photoperiod | Multiplication-Elongation Medium | Photoperiod | Average Number of Shoots Per Explant | Rooting Medium | Photoperiod | Rooting Percentage | Plantlet Acclimatization | Reference |
---|---|---|---|---|---|---|---|---|---|
MS | 16 h | MS + 6 µM (≃1.35 mg L−1) BAP + 0.12 µM IBA (≃0.02 mg L−1) | 16 h | 8.9 | MS + 5 µM (≃1.01 mg L−1) IBA | Light | 93.7% | 75–82% | Carra et al. [9] |
MS | 16 h | MS + 0.5 mg L−1 BAP + 0.5 mg L−1 IBA | 16 h | 5.2 | Either PGR-free ½MS or MS + 1.5 mg L−1 NAA | 16 h | 56.7% | 65% | Attia et al. [22] |
PGR-free MS | 16 h | MS + 4 µM (≃0.9 mg L−1) BAP + 0.3 µM (≃0.05 mg L−1) IAA + 0.3 µM (≃0.1 mg L−1) GA3 | 18 h | N/A | ½MS + 30 μM IAA | Darkness | 70% | N/A | Rodriguez et al. [78] |
PGR-free MS | In darkness then 16 h photoperiod | MS + 6.6 µM (≃1.59 mg L−1) meta-topolin + 0.25 µM (≃0.05 mg L−1) IBA | In darkness then 16 h photoperiod | 5.24-7.32 | MS + 0.75 mg L−1 NAA + 0.25 mg L−1 IBA | In darkness then 16 h photoperiod | 67% | N/A | Gianguzzi et al. [16,23] |
WPM | 16 h | WPM + 0.8 mg L−1 kinetin + 0.05 mg L−1 IBA + 0.1 mg L−1 GA3 | 16 h | 4.6 | ½MS + 5 mg L−1 IAA | N/A | 80% | 63% | Musallam et al. [88] |
MS + 1 mg L−1 zeatin | 16 h | MS + 1 mg L−1 Zeatin | 16 h | >20 | 4 h pulse treatment in darkness with 100 mg L−1 IAA solution followed by culture on ½MS | Darkness | 92% | 92% | Chalak and Elbitar [18] |
MS | 16 h | MS + 0.50 mg L−1 BAP + 0.05 mg L−1 NAA | 16 h | 3.89 | ½MS + 1.5 mg L−1 IBA | 16 h | 85% | 90% | El-Mekawy et al. [20] |
Modified MS + 1.5 mg L−1 BAP + 0.05 mg L−1 IBA + 0.1 mg L−1 GA3 | N/A | Modified MS + 1.5 mg L−1 BAP + 0.05 mg L−1 IBA + 0.1 mg L−1 GA3 | N/A | 5.43 | 4 h pulse treatment in darkness with 100 mg L−1 IAA solution followed by culture on ½MS | Darkness | 87% | 40% | Chalak et al. [17] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koufan, M.; Belkoura, I.; Mazri, M.A. In Vitro Propagation of Caper (Capparis spinosa L.): A Review. Horticulturae 2022, 8, 737. https://doi.org/10.3390/horticulturae8080737
Koufan M, Belkoura I, Mazri MA. In Vitro Propagation of Caper (Capparis spinosa L.): A Review. Horticulturae. 2022; 8(8):737. https://doi.org/10.3390/horticulturae8080737
Chicago/Turabian StyleKoufan, Meriyem, Ilham Belkoura, and Mouaad Amine Mazri. 2022. "In Vitro Propagation of Caper (Capparis spinosa L.): A Review" Horticulturae 8, no. 8: 737. https://doi.org/10.3390/horticulturae8080737
APA StyleKoufan, M., Belkoura, I., & Mazri, M. A. (2022). In Vitro Propagation of Caper (Capparis spinosa L.): A Review. Horticulturae, 8(8), 737. https://doi.org/10.3390/horticulturae8080737